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ABSTRACT

A real time, kernel based, model-free tracking algorithm is proposed, which employs a weighted von
Mises mixture as the target’s appearance model. The mixture weights, which are provided by a spatial
kernel, along with the hue values are used in order to estimate the parameters of the weighted von
Mises mixture model. The von Mises distribution is suitable for circular data and it is employed
in order to eliminate drawbacks in kernel-based tracking caused by eventual shifts of the target’s
histogram bins. The weights allow a mean shift-like gradient based optimization by maximizing the
weighted likelihood, which would not be feasible in the context of a standard von Mises mixture.
Moreover, as only the hue component of the target is involved, many quantities of the algorithm may
be pre-calculated for given parameters and therefore the algorithm can perform in real time, which is
experimentally confirmed. Finally, it is shown that the proposed method has comparative performance
in terms of accuracy and robustness with other state-of-the-art tracking algorithms.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Visual object tracking is among the challenging problems in
computer vision, with many applications, such as human com-
puter interaction, robotics and surveillance. The challenges in
visual object tracking include the presence of occlusion, change
of scene illumination, variations in object’s scale and shape,
camera movement and varying viewpoints. In order to tackle
these challenges, many trackers have been proposed with differ-
ent approaches to the problem (Smeulders et al., 2014). Some
of these techniques include particle filters (Liwicki et al., 2012;
Kim et al., 2014; Marras et al., 2014), template matching (Mei
and Ling, 2011; Zhang et al., 2014; Wang et al., 2013), tar-
get’s subregion tracking (Zimmermann et al., 2009; Ellis et al.,
2011; Zhang and van der Maaten, 2014) and object - back-
ground distinction (Tzimiropoulos et al., 2011; Godec et al.,
2011; Belagiannis et al., 2012; Zhang et al., 2013; Duffner and
Garcia, 2013; Yang et al., 2014). Usually, the representation
of the target and the function that matches the target between
the frames is part of the proposed methodology. However, in a
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different approach the matching function is learned by the pro-
posed Siamese deep neural network (Tao et al., 2016).

A category of trackers addresses the problem of model-free
shape by employing spatial kernels and modeling the color dis-
tribution of the target (Leichter et al., 2010; Li et al., 2010;
Liu et al., 2013; Vojir et al., 2013; Choi et al., 2014; Li et al.,
2014). Although the algorithms in this category have some dif-
ferences, they share some common properties. In general, the
region of the object is approximated by an ellipse and it is spa-
tially masked by a kernel which assigns greater weights to pix-
els near the center of the ellipse. The kernel makes feasible
a gradient-based optimization instead of a brute force search
for target localization and real-time performance. Moreover, its
color distribution is usually modeled by a histogram. Here, we
must note that the term kernel which is used in the current work
should not be confused with the kernel trick that is used in some
approaches and can efficiently perform a non-linear classifica-
tion. These approaches include a kernelised SVM classifier
which learns a prediction function that directly estimates the
object transformation between frames (Hare et al., 2011) and a
kernelized correlation filter which has the exact same complex-
ity as its linear counterpart and can process hundreds of frames
per second (Henriques et al., 2015).

A representative algorithm of this category is the mean shift
algorithm (Comaniciu et al., 2003). In the first frame, it es-
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timates a target model which is represented by a histogram.
In consecutive frames, the location in which the correspond-
ing histogram is similar to the target model is estimated. This
approach compares only the corresponding bins between his-
tograms, so if the bins values are shifted due to illumination
change, then the object may be lost. Some other approaches
have tried to solve this issue. The earth mover’s distance (EMD)
was used in order to estimate the distance between the target
model and target candidate histogram signatures (Zhao and Tao,
2010). However, the solution is not in closed form and each it-
eration is limited to one pixel movement. Similar in spirit, an
algorithm was proposed which minimizes the EMD between
Gaussian mixture models (Karavasilis et al., 2011). In an other
method, the EMD is minimized for 1D histograms but its com-
putation is avoided for multidimensional histograms using a
cross-bin metric (Leichter, 2012). Finally, weighted Gaussian
mixture models have been employed in order to model the tar-
get in the first frame of the image sequence and to estimate the
spatial location of the target in subsequent frames using a mean
shift update (Karavasilis et al., 2015).

Although the features that represent the object are usually the
luminance or the RGB color value of each pixel, the HSV pro-
vides an attractive representation that has been used for visual
tracking (Bao et al., 2017). Moreover, the HSV color space was
employed in the context of mean shift (Bradski, 1998). The
hue component is a flexible representation, due to the fact that
is closely related to what humans perceive as color. Moreover,
hue is unrelated to illumination changes, as these changes are
encoded in the saturation and value components. These proper-
ties are highlighted by the author in order to support his decision
to use only the hue component. Another advantage of using the
hue component of the HSV color space instead of the full RGB
color space is that the dimensions of the problem are reduced
to one instead of three.

The hue component does not depend on illumination
changes, but this does not prevent its histogram bins to be
shifted (Fig. 3). In these cases, we can not directly apply the
approaches that were proposed for the mean shift algorithm,
due to the fact that the hue is periodic with period 2π and these
methodologies have been proposed for linear color spaces.

In this work, we use the hue component of the HSV color
space for visual object tracking and we employ a weighted von
Mises mixture model in order to overcome drawbacks caused
by shifting histogram values. The von Mises distribution is the
circular analog of the normal distribution on a line, and it can
be used in order to model circular data. The values of the hue
component that is periodic with period 2π, can be represented
as points in the two dimensional unit circle. Thus, the terms
periodic random variable and circular data will be considered
interchanged in this paper. Moreover, we propose the weighted
von Mises mixture to model the distribution of the hue value
when a single von Mises distribution is not flexible enough to
describe the target. To the best of our knowledge, this is the
first time a von Mises mixture is used in visual object tracking
in order to model the object appearance. Moreover, the pro-
posed weighted von Mises mixture employs the spatial weights
that are provided by the kernel. The von Mises distribution has

been employed in order to model sensor noise (Pons-Moll et al.,
2011), the direction of the movement (Song et al., 2010; Calder-
ara et al., 2011; Kratz and Nishino, 2012), and the pose of an
object (Javed et al., 2004). Moreover, a single wrapped Gaus-
sian distribution, which was also designed for circular data, was
used in order to model the background hue component (Seitner
and Hanbury, 2006).

In the remaining of the paper, section 2 reviews the von Mises
distribution and presents the proposed weighted von Mises mix-
ture model, section 3 integrates the proposed weighted von
Mises mixture model in the visual tracking framework. Exper-
imental results are presented in section 4 and conclusions are
drawn is section 5.

2. Weighted von Mises mixture model

2.1. Introduction to the von Mises distribution
There are cases in image processing and analysis where the

measured quantity is periodic and modeling it by a periodic
variable may be an advantage (e.g. the hue component of an
image in the HSV color space). In what follows, we assume
that the period is 2π and the periodic variable is defined in the
interval [0, 2π). If the variable is defined in another interval,
we may map this interval to [0, 2π). We will also refer to the
observations (e.g. hue values) as angles accordingly.

The main drawback of circular data is that we can not directly
apply a conventional distribution (e.g. Gaussian) as there is a
dependence on the choice of the origin. For example, if we
have two angles one at 0 and one at π, then if we select 0 as
the origin then the mean of these angles is π/2. However, if we
select π/2 as the origin, that is the interval is [π/2, 5π/2), the
mean is 3π/2 due to the fact that the angle 0 is mapped to the
angle 2π. In order to overcome these drawbacks, the von Mises
distribution has been proposed. For a complete reference to its
properties, the reader is referred to (Bishop, 2006). Here we
summarize the key points.

The von Mises probability density function for an angle a is
given by:

M(a; θ,m) =
1

2πI0(m)
em cos(a−θ), (1)

where θ is the mean, m is the concentration (analogous to the
inverse variance), I0(m) is the zeroth-order Bessel function of
the first kind, which is defined as I0(m) =

∫ 2π
0 em cos(t)dt. For

large values of m the distribution becomes Gaussian and for
m = 0 it becomes uniform.

In order to estimate the parameters θ and m having some ob-
served angles A = {an}n=1,...,N , we can use the maximum likeli-
hood estimation. The log-likelihood of the model is given by:

ln p(A; θ,m) = ln
N∏

n=1

M(an; θ,m)

= −N ln(2π) − N ln(I0(m)) + m
N∑

n=1

cos(an − θ). (2)

By maximizing (2) with respect to θ we obtain:

θ = tan−1
 ∑N

n=1 sin(an)∑N
n=1 cos(an)

 . (3)
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By maximizing (2) with respect to m we obtain the equation:

I1(m)
I0(m)

=
1
N

N∑
n=1

cos(an − θ), (4)

which can be numerically solved, where I1(m) = I′0(m) =∫ 2π
0 em cos(t) cos(t)dt.

2.2. Von Mises mixture model
If the von Mises distribution is not flexible enough in order

to model the observations, then we can use the von Mises mix-
ture model as a linear superposition of von Mises components.
The probability density function of an angle a for a von Mises
mixture model can be defined as:

L(a; θ,m,π) =
K∑

k=1

πkM(a; θk,mk), (5)

where K is the number of components, θ = {θk}k=1,...,K are the
means of the components, m = {mk}k=1,...,K are the concentra-
tions of the components and π = {πk}k=1,...,K are the importances
(weights) of the components.

In order to estimate the parameters we have to maximize the
log-likelihood function with respect to these parameters, which
can be achieved using the Expectation-Maximization algorithm
(Bishop, 2006; Calderara et al., 2011). We assume that we have
observed N angles A = {an}n=1,...,N and we want to estimate the
parameters θ, m and π of the von Mises mixture model. The
log-likelihood function is defined as:

ln L(A; θ,m,π) =
N∑

n=1

ln (L(an; θ,m,π)) . (6)

We can define a set of random variables Z = {zn}n=1,...,N ,
where zn is a K-dimensional binary random variable which has
znk = 1 if the n-th angle is produced from the k-th component,
and zn j = 0 for j , k. Thus zn can reveal from which com-
ponent the observation an has been generated. In practice, the
values of the variables Z are not known, so they are called latent
variables. If the value of the corresponding latent variable zn is
known for each observation an, then the set {A, Z} is called the
complete data set. The complete data log-likelihood function is
given by:

ln L(A, Z; θ,m,π)

= ln

 N∏
n=1

K∏
k=1

(πkM(an; θk,mk))znk


=

N∑
n=1

K∑
k=1

znk (ln πk + lnM(an; θk,mk)) . (7)

Due to the fact that the latent variables Z are not known, we
can only use their posterior distribution:

p(Z; A, θ,m,π) =
p(A; Z, θ,m,π)p(Z; θ,m,π)

p(A; θ,m,π)

∝

N∏
n=1

K∏
k=1

(πkM(an; θk,mk))znk . (8)

The expectation of the complete data log-likelihood is given by:

Q =
∑

Z

p(Z; A, θ,m,π) ln L(A, Z; θ,m,π)

=

N∑
n=1

K∑
k=1

r(znk) (ln πk + lnM(an; θk,mk)) , (9)

where the r(znk) is the expectation of the latent variable znk:

r(znk) = E[znk] =
∑

znk
znk p(znk; an, θk,mk, πk)∑

zn j
p(zn j; an, θ j,m j, π j)

=
πkM(an; θk,mk)∑K
j=1 π jM(an; θ j,m j)

. (10)

Now, the maximization of (9) with respect to θ,m,π can be
easily achieved.

Thus, in order to evaluate the parameters θ,m,π of the von
Mises mixture model, we initialize these parameters to some
values and repeatedly apply the E-step and M-step.

E-step:

r(znk) =
πkM(an; θk,mk)∑K
j=1 π jM(an; θ j,m j)

. (11)

M-step:

Nk =

N∑
n=1

r(znk), (12)

πk =
Nk

N
, (13)

θk = tan−1
∑N

n=1 r(znk) sin(an)∑N
n=1 r(znk) cos(an)

, (14)

I1(m)
I0(m)

=
1

Nk

N∑
n=1

r(znk) cos(an − θk). (15)

Note that (15) is not in closed form but can be numerically
solved with respect to the parameter m.

2.3. Weighted von Mises mixture model

In our approach, we want the pixels that are more likely to
belong to the object to affect the estimation of the log-likelihood
more than the pixel that are less likely to belong to the object.
In the general case, we seek to adapt (6) in order to model the
fact that some observations are considered more important than
others:

ln L(A,w; θ,m,π) =
N∑

n=1

wn ln (L(an; θ,m,π)) , (16)

where w = {wn}n=1,...,N are the weights of the observations. The
rational behind this approach is that the values an are used mul-
tiple times in (6) instead of just one, virtually changing the num-
ber of observations N. However, by aggregating their appear-
ances into wn we can keep the number of observations N con-
stant, which yields the definition of the weighted log-likelihood
(16).
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By using the same approach the E-step equation (11) remains
the same. On the other hand, the M-step equations (13), (14)
and (15) change accordingly:

Nk =

N∑
n=1

wnr(znk), (17)

πk =
Nk∑N

n=1 wn
, (18)

θk = tan−1
∑N

n=1 wnr(znk) sin(an)∑N
n=1 wnr(znk) cos(an)

, (19)

I1(m)
I0(m)

=
1

Nk

N∑
n=1

wnr(znk) cos(an − θk). (20)

3. Tracking using the weighted von Mises mixture model

In this work we assume that the images employ the HSV
color model and we use only the hue component, that is, each
pixel is represented by a single value in the interval [0, 2π).
We use only the hue component as it provides a good repre-
sentation of the target while being less computational intensive
compared to other approaches like salient region detection (Lin
et al., 2015). Moreover, we assume that the object to be tracked
can be represented by an ellipse. The ellipse has a center de-
noted by y = [y(1), y(2)]T , where y(1) is the horizontal coordinate
and y(2) is the vertical coordinate of the center in the image co-
ordinates system, and a vector h = [h(1), h(2)]T , where h(1) is the
length of the horizontal semi-axis and h(2) is the length of the
vertical semi-axis of the ellipse.

Having set the parameters y and h, we can assign a weight to
every pixel of the image by using a spatial kernel k(t) which will
assign greater weights to pixels near the center of the ellipse.
More specifically, we use a kernel with exponential profile:

k(t) =
{

e(−t/σ) if t ≤ 1
0 otherwise . (21)

Using this kernel, the weight wn(y) of the n-th pixel with spatial
coordinates xn = [x(1)

n , x(2)
n ]T is given by:

wn(y) = k(M(xn; y, h)), (22)

where

M (xn; y, h) =

 x(1)
n − y(1)

h(1)

2 +  x(2)
n − y(2)

h(2)

2
= (xn − y)T H−1(xn − y), (23)

is the squared Mahalanobis distance between xn and y with
diagonal covariance matrix H = diag(h(1), h(2)). By using
the function M in (22) the drawback of the difference in axis
lengths is overcome because the normalized pixel coordinates,
for pixels inside the ellipse, are now in the interval [0, 1]. Thus,
the weights wn(y) for pixels inside the ellipse are greater than
zero, while pixels outside the ellipse have weights equal to zero.

3.1. First frame
We assume that the position of the ellipse is known in the first

frame of the sequence. Thus, the objective here is to estimate
the von Mises mixture model using the hue component of the
pixels. The image consists of N pixels (with some given order,
e.g. row-by-row), each pixel’s weight wn(y) is given by (22)
and each pixel’s hue component is denoted by an. We can now
estimate the von Mises mixture model parameters θ,m,π using
equations (11), (18), (19) and (20) of the EM algorithm.

3.2. Tracking in consecutive frames
In every frame of the video (except for the first), we know:

(i) the center y and the size h of the ellipse which represents the
target in the imediatelly previous frame and (ii) the parameters
θ,m,π of the von Mises mixture model which models the distri-
bution of the hue component of the object’s pixels. In order to
estimate the center of the ellipse in the current frame, a gradient
based technique will be used.

We seek to estimate the position y which maximizes the log-
likelihood:

ln L(A,w(y); θ,m,π) =
N∑

n=1

wn(y) ln (L(an; θ,m,π)) . (24)

This can be achieved by taking the derivative of (24) and setting
it to zero. The derivative of (24) is defined as:

dL
dy
=

[
dL

dy(1) ,
dL

dy(2)

]T
, (25)

where:
dL

dy( j) =

N∑
n=1

dwn(y)
dy( j) L(an; θ,m,π). (26)

The only term that depends on y is wn(y). By defining the neg-
ative derivative of the kernel function as g(t) = − dk(t)

dt , we have:

dk (M (xn; y, h))
dy( j) ∝ g (M (xn; y, h))

x( j)
n − y( j)

h( j)2 . (27)

By substituting (27) into (26) we have:

dL
dy( j) ∝

N∑
n=1

g (M (xn; y, h))
x( j)

n − y( j)

h( j)2 L(an; θ,m,π). (28)

By setting (28) equal to zero, we get the update formula (in
vector form):

y =
∑N

n=1 xng (M (xn; y, h))L(an; θ,m,π)∑N
n=1 g (M (xn; y, h))L(an; θ,m,π)

. (29)

Thus, in every frame, starting from y estimated at the previ-
ous frame, we iteratively apply equation (29) in order to move
the center y to a new position, until (24) decreases. Using this
approach, the local maximum of the weighted likelihood (24) is
computed, which is equivalent of finding the position that best
matches the appearance model of the object (Comaniciu et al.,
2003). In (29), the value of y in the left side of the equation is
the new center while the value of y in the right side of the equa-
tion is the old center. Scale estimation can be performed by
increasing and decreasing the ellipse size by a percentage (for
example 10%) and choose the ellipse with the bigger average
likelihood.
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3.3. Implementation details

The execution time of the proposed algorithm can be im-
proved as the values of the hue component are integers in the
interval [0, 359].

First, in (16), the termL(an; θ,m,π) depends only on the hue
value of the pixel. Thus, we can aggregate the weight wn of the
pixels that have the same hue value to a new weight Wn. This
is equivalent to creating a new image with 360 pixels having
values from 0 to 359 and assign to each pixel the corresponding
weight Wi =

∑N
n=1 wnδ(i − an). The delta function is zero every-

where except the δ(0) = 1. Using this approach, the number of
the pixels used by the EM algorithm is constant and this makes
also the time needed for the initialization on the first frame rel-
atively constant. Here, we must highlight that this is not an
approximation and the result is the same as it would be if we
used every pixel of the original image.

Second, in (29), the term L(an; θ,m,π) can be pre-calculated
for all the values of an. The parameters θ, m and π are deter-
mined for the first frame and are keep constant in the subsequent
frames. Thus, we can have an array of 360 values which can be
computed after the estimation of the parameters θ, m and π.
During the tracking procedure, we can use this array instead of
the equations (16) and (1).

4. Experimental results

In this section we evaluate the performance of the optimized
versions of the proposed algorithm and compare its perfor-
mance with other state-of-the art algorithms. The single param-
eter of the algorithm is the number of components K, which is
set a priori but its estimation is not a guess. The components
of the von Mises mixture model, roughly represent the number
of colors of the object. In our experiments, we used K = 10
but we noticed that if the actual number of colors of the object
is smaller than K, some components will have πk = 0. This
effect may be easily clarified using an example. If the object
to be tracked is a ball with only red and green patches, then the
hue distribution of the object will have the majority of its values
around the green and red points in the histogram needing only
two components in the mixture. If the model contains more than
two components, some of them could have mixing proportions
πk = 0 as a result of the EM algorithm. Then, we could delete
these components from the mixture model to further speed up
the computation.

First, we examine the performance benefits of the proposed
optimized implementations that have been presented in section
3.3. In Table 1, the performance of the different initialization
strategies and likelihood estimations is presented. The first col-
umn indicates the size of the target in pixels. K indicates the
number of components used by mixture based algorithms and B
is the number of bins used by histogram based algorithms. The
optimized implementations are described in section 3.3. For
the initialization, our algorithm uses only 360 pixels in order
to estimate the parameters of the model through the EM algo-
rithm. For the likelihood estimation, the algorithm employs a
precomputed array with elements the values of the likelihood
for a given set of parameters. The standard implementations do

not use the ideas of section 3.3. The column indicated by GMM
is an implementation which uses a Gaussian mixture model.
The column indicated by Hist refers to an approach that uses
histograms in order to estimate the likelihood for each pixel
and was originally proposed in the framework of the mean shift
tracker (Comaniciu et al., 2003). The results for the initializa-
tion step show that the time needed by the optimized implemen-
tation is relatively constant and around 1 msec. This time also
includes the time needed in order to create the image with the
360 pixels and its aggregated weights. On the other hand, the
time needed by the standard implementation increases as the
number of pixels increases. The number of components K has
the same impact on both approaches. If K is doubled, then the
execution time is also doubled. This is expected, as the num-
ber of factors in the equations (11), (13), (14) and (15) is dou-
bled. The results for the likelihood estimation step show that
the proposed optimized method is around 200 times faster than
the straightforward approach that evaluates the exponential and
cosine functions in every pixel and 20 times faster than the ap-
proach that uses histograms. Moreover, the time needed by the
optimized approach does not depend on the number of compo-
nents K, as the likelihood of the mixture is evaluated before-
hand for every possible input value. In the experiments above,
all mixtures have the same number of components and produce
the same results. The evaluation has been performed 10000
times and we present here the mean values. The machine that
was used is a laptop with a dual core CPU at 2.26 GHz.

In order to evaluate the tracking performance of the pro-
posed method we used the Visual Object Tracking (VOT) 2014
dataset (URL: http://votchallenge.net). The authors of the VOT
dataset (Kristan et al., 2016) provided a detailed description of
the dataset and the evaluation methodology. Here we will pro-
vide a quick overview of the dataset and the toolkit. The VOT
dataset consist of 25 color image sequences with one moving
object in each sequence. In every image, the ground truth of the
target has been manually annotated by bounding boxes. The
information provided for the initialization of the tracker is the
bounding box in the first frame. A target is considered to have
lost the object when there is no overlap between the estimated
target and the ground truth. If the tracker loses the object, then
it is reinitialized in a subsequent frame. The evaluation of the
tracker is performed Nrep times for each image sequence. The
accuracy is associated with the average overlap per repetition
per frame between the target’s ground truth bounding box and
the bounding box which was estimated by the tracker. The ro-
bustness index is associated with the average number of times
the tracker failed per repetition. The performance of the tracker
is evaluated in two sets of experiments. In the first set, which is
called Baseline, the initialization of the target is done using the
exact ground truth bounding box. In the second set, which is
called Region Noise, a noisy initialization is done. The authors
of the VOT dataset (Kristan et al., 2016) has already tested the
performance of 38 trackers and the tools needed to compare a
new tracker with these state-of-the-art algorithms are included
in the toolkit.

In Fig. 1, the plots for the Baseline and Region Noise ex-
periments are presented. The proposed method is called VMT,
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which stands for von Mises Tracker. The horizontal and vertical
axis denote the robustness rank and accuracy rank respectively.
The proposed tracker, which is highlighted, is placed near the
center of the plot, thus it has average performance in both mea-
sures with respect to the other algorithms. It is worth noting that
the 38 other trackers constitute the state of the art in the frame-
work of the VOT2014 dataset (Kristan et al., 2016). Moreover,
the performance of a similar tracker, (denoted by GMM) that
used the Gaussian distribution instead of the von Mises distribu-
tion is presented. Due to the fact that the Gaussian distribution
can not model circular data in the beginning of the axis accu-
rately, it exhibits an inferior performance than the von Mises
distribution.

Table 2 presents the comparison of VMT with the top ranked
methods of VOT2014. There are cases where VMT’s perfor-
mance is similar or even better than the top ranked methods.
The cases that most influence the performance of VMT are the
shape of the target and the color distribution. Fig. 2 contains
the first frame of some sequences where VMT does not per-
form well. In the motocross video, a large part of the ellipse
which represents the target contains background elements. This
is even worse in the torus video, where the center of the ellipse
is entirely covered by the background. The situation is differ-
ent in the tunnel video, where the target is white and its values
have saturation near zero, making the hue component meaning-
less. This results from the fact that in order to model the black
and white colors in the HSV color space we have to use both
the value and the saturation components. On the other hand,
VMT performs well if the shape of the target can be modeled
by an ellipse and its color distribution by a von Mises mixture.
Moreover, VMT is not strongly affected by camera motion, il-
lumination change, object motion, occlusion or size change.

In Table 2, various cases concerning the performance of
VMT are presented. For example hand1 and hand2 videos have
nearly the same attributes but VMT performs better that the av-
erage in hand1. In hand2 sequence, the hand moves in front of
the face many times, so VMT may follow the face instead of
the hand. This is not the case in hand1, where the hand moves
above the head in the majority of the frames. The person also
opens and closes the hand in hand1, but this does not affect
VMT. Finally, the proposed optimized VMT can process hun-
dreds of frames per second by keeping the same accuracy and
robustness as the standard VMT.

Some representative frames from the VOT’s sphere and sun-
shade image sequence along with their corresponding his-
tograms are presented in Fig. 3. In these figures, the first
row shows some frames while the second row shows the cor-
responding histogram bins (computed from pixels inside the
target) and the weighted von Mises mixture (estimated in the
first frame and not changing along time) which is indicated by
a continuous black line. For demonstration purposes, the his-
togram bins are normalized to [0 − 1]. In the sphere video, the
target has a dominant red color, which in the beginning of the
sequence is located mainly at the right side of the histogram
while at the end the bins are shifted to the right and circularly
appear at the left side of the histogram (due to the fact that the
Hue component is periodic). Even in these cases, the proposed

algorithm successfully tracks the object due to the fact that the
von Mises distribution is periodic. More specifically, it assigns
a likelihood to the pixels whose colors belong to the right side
of the histogram which is sufficient to distinguish the object
from the background. In the sunshade video, the target has two
color components. The target oscillates back and forth from
the sunshade to the sun, thus it illumination changes. As the
hue component is immutable to changes in the brightness, the
proposed method successfully follows the object between these
transitions.

From these experiments, we can underpin some properties
of the algorithm: a) The performance of VMT if not affected
significantly when the initialization in the first frame of the im-
age sequence does not contain exactly the target. This can be
confirmed by the results of the Baseline and the Region Noise
experiments, where the performance, both in terms of accuracy
and robustness, remain nearly the same (Fig. 1). b) The tracker
continues to perform well when the histogram of the color is
shifted, like for example in the sphere sequence (Fig. 3).

5. Conclusion

The proposed algorithm eliminates drawbacks in kernel-
based tracking which usually appear in standard applications
and are due to periodic shift of the histogram bins of the target.
Although some approaches have been proposed to handle this
issue for linear spaces (Zhao and Tao, 2010; Karavasilis et al.,
2011; Leichter, 2012; Karavasilis et al., 2015), these methods
can not be directly applied for circular data as the determination
of the origin of the axis affect the distance between two points.
The VMT method proposed herein, employs the weighted von
Mises mixture in order to estimate the target position within
a maximum likelihood framework using a gradient based ap-
proach. As the von Mises is a continuous distribution, the like-
lihood is not affected by shifts in the histogram bins of the hue.
Moreover, as the hue values are integers in [0, 359], the pre-
calculation of key quantities of the likelihood of the mixture
model, both in terms of computational time and memory. Al-
though VMT uses the hue values, other circular data could be
used, like the angle of the image gradient. Furthermore, a per-
spective of this work is to intergrade periodic and non-periodic
spaces, as the full HSV space, in the same distribution.
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Table 1. Comparison of different different initialization and likelihood estimation approaches presented in section 3.3. GMM indicates a Gaussian mixture
model and Hist a histogram approach employed in the mean shift algorithm. All times are in microseconds (10−6 second).

Size Initialization Likelihood estimation
Optimized Standard Optimized Standard GMM Hist
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Baseline experiments Region Noise experiments

Fig. 1. Comparative evaluation of the proposed VMT with respect to state-of-the-art algorithms over all the video sequences of the
VOT2014 data set. The plot is generated by the VOT 2014 toolset.

Table 2. Performance of VMT with respect to the top ranked methods presented in (Kristan et al., 2014); DSST (Danelljan et al., 2014), SAMF (Li and
Zhu, 2015) and KCF (J.F. Henriques, 2014). The attributes column contains the number of frames having: camera motion, illumination change, object
motion, occlusion and object size change.
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