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Abstract

Vast collections of documents available in image format need to be indexed for information retrieval pur-

poses. In this framework, word spotting is an alternative solution to optical character recognition (OCR),

which is rather inefficient for recognizing text of degraded quality and unknown fonts usually appearing in

printed text, or writing style variations in handwritten documents. Over the past decade there has been a

growing interest in addressing document indexing using word spotting which is reflected by the continuously

increasing number of approaches. However, there exist very few comprehensive studies which analyze the

various aspects of a word spotting system. This work aims to review the recent approaches as well as fill

the gaps in several topics with respect to the related works. The nature of texts and inherent challenges

addressed by word spotting methods are thoroughly examined. After presenting the core steps which com-

pose a word spotting system, we investigate the use of retrieval enhancement techniques based on relevance

feedback which improve the retrieved results. Finally, we present the datasets which are widely used for

word spotting, we describe the evaluation standards and measures applied for performance assessment and

discuss the results achieved by the state of the art.
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1. Introduction

A great amount of information in libraries and cultural institutions exist all over the world and need to

be digitized so as to preserve it and protect it from frequent handling. Among others, Google has put an

effort to digitize books on a large scale [1, 2], thereby providing support to the document understanding

research community. In order to create digital libraries which allow efficient searching and browsing for5

future users, thousands of digitized documents have to be transcribed or at least indexed at a certain

degree. However, the automatic recognition of poor quality printed text and especially, handwritten text, is

not feasible by traditional OCR approaches which mainly suffice for modern printed documents with simple

layouts and known fonts. Most of the constraints encountered by recognition systems stem from difficulties

in segmenting characters or words, the variability of the handwriting and the open vocabulary. For this10

reason, more flexible information retrieval and image analysis techniques are required.
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1.1. Document indexing using image retrieval methods

The actual problem behind building digital libraries lies on the retrieval of digitized documents in terms

of reliable extraction and access to specific information. While a document image processing system analyzes

different text regions so as to convert them to machine-readable text using OCR, a document image retrieval15

system searches whether a document image contains particular words of interest, without the need for correct

character recognition, but by directly characterizing image features at character, word, line or even document

level.

On one hand, recognition-based retrieval relies on the complete recognition of documents either at char-

acter level using OCR, or at word level using word recognition methods. In the latter case, the goal is20

to correctly classify a query word into a labeled class, or else, obtain its transcription. Most methods of

this type require prior transcription of text-lines, words or characters to train character or word models.

During the search phase, a text dictionary or lexicon is used and only words from that lexicon can be used

as candidate transcriptions in the recognition task. These methods usually rely on hidden Markov models

(HMMs) [3, 4], conditional random fields (CRFs) [5], neural networks (NNs) [6, 7] or they might follow a25

hybrid approach by combining different classifiers, such as support vector machines (SVMs) with HMMs

[8, 9] or HMMs with NNs [10]. An obvious drawback of these approaches is that they have to deal with the

inherent handwriting variability and handle a large number of word and character models. Nevertheless,

the scope of this work does not focus on recognition-based retrieval methods and thus, we only briefly refer

to them.30

On the other hand, the recognition-free retrieval which is also known in the literature as word spotting or

keyword spotting is the main subject of this study. The goal here is to retrieve all instances of user queries

in a set of document images which may be segmented at text lines or words. Actually, the user formulates a

query and the system evaluates its similarity with the stored documents and returns as output a ranked list

of results which are most similar to the query. The process is totally based on matching between common35

representations of features, such as color, texture, geometric shape or textual features, while conversion of

whole documents into machine readable format and recognition do not take place at all. Therefore, the

selection and use of proper features and robust matching techniques are the most important aspects of a

word spotting system.

Word spotting methods may be divided into multiple categories according to various factors. Depending40

on how the input is specified by the user we can distinguish query-by-example (QBE) from query-by-string

(QBS) methods. In the QBE scenario, the user selects an image of the word to be searched in the document

collection, whereas in the QBS paradigm, the user provides an arbitrary text string as input to the system.

Another way to categorize word spotting methods depends on whether training data are used offline, either

to learn character and word models or tune the parameters of the system. This way we can distinguish45

learning-based from learning-free approaches. Finally, word spotting methods which can be directly applied

to whole document pages are considered as segmentation-free, in contrast with segmentation-based methods,

where a segmentation step has to be applied at line or word level during preprocessing.

Word spotting was initially proposed in the speech recognition community [11]. Its application was

adopted later on for printed [12, 13] and handwritten [14] document indexing. While early approaches were50

based on raw features extracted directly from image pixels [14, 15], the state of the art is to characterize

document images with more complex features based on gradient information, shape structure, texture, etc.
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(see Section 4.1).

1.2. Applications

There are a variety of applications of word spotting for document indexing and retrieval including the55

following:

• retrieval of documents with a given word in company files,

• searching online in cultural heritage collections stored in libraries all over the world,

• automatic sorting of handwritten mail containing significant words (e.g. “urgent”, “cancelation”,

“complain”) [16],60

• identification of figures and their corresponding captions [17],

• keyword retrieval in pre-hospital care reports (PCR forms) [18],

• word spotting in graphical documents such as maps [19],

• retrieval of cuneiform structures from ancient clay tablets [20],

• assisting human transcribers in identifying words in degraded documents, especially those appearing65

for the first time.

Although word spotting and word recognition belong to two separate retrieval paradigms, they sometimes

interact by assisting one another. For instance, the authors in [21] propose a keyword spotting approach

relying on a NN-based recognition system. On the contrary, in [22], word spotting contributes as a means

of bootstrapping a handwriting recognition system, in terms of selecting new elements from the retrieved70

results. These elements can be used to augment the training set through a semi-supervised procedure, thus

increasing the final recognition accuracy while at the same time avoiding the costly manual annotation

process.

1.3. Evolution of the related works

In order to track the recent literature, we present some statistics related to the evolution of word spotting75

methods over the last decade. The research community concentrates on indexing historical documents on

a grand scale using word spotting and thus, we consider that the whole process remains an open problem.

To the best of our knowledge, Figure 1 provides a concise view of the various word spotting approaches for

offline, handwritten or printed documents, which were published in conferences and journals since 2007. As

it can be seen in Figure 1, there is an increased number of papers over the past few years which confirms80

the growing interest of the community in word spotting.

1.4. Contributions and outline of the paper

Apart from the proposed methods, there also exist a number of surveys for word spotting, either for a

specific script, or a particular domain (machine-printed, handwritten), or even for a variety of applications.

Murugappan et al. [23] present a study for word spotting in printed documents. The authors divide85

the word spotting methods according to a character-based and a word-based representation depending on
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Figure 1: Word spotting approaches published over the last decade.

the features used in each case. Their work implies that character-based approaches provide satisfactory

results if character segmentation is easy to obtain, whereas word-based approaches can deal with touching

characters efficiently and analyze the shapes of the words without explicit character recognition. In addition,

a comparative study for segmentation and word spotting methods is presented in [24] for handwritten and90

printed text in Arabic documents. The segmentation techniques rely on horizontal and vertical profile

features and scale space segmentation. The features under comparison are geometrical moments and word

profiles, whereas the similarity computation is carried out using the cosine metric and dynamic time warping

(DTW). An explicit view of the various aspects of a word spotting system is presented by Marinai et al. [25].

Therein, the different features used for each technique are categorized according to the layer at which the95

similarity computation is applied (pixel/column features, connected components, word level features etc.).

Image representations (i.e. feature vectors) with respect to the specific feature types are also analyzed along

with the respective similarity measures. Finally, the work of Tan et al. [26] underlines the necessity for

content-based image retrieval as an economical alternative to OCR, relying on proper selection of features,

representation and similarity measures. Word spotting is defined under a framework of categories with100

respect to the word image representation.

Nevertheless, a considerable number of word spotting approaches proposed over the last years as well

as several techniques involved for the improvement of the performance yet remain unexplored. This survey

aims to review the recently proposed methods and complete the missing parts of other studies in the word

spotting literature. To this end, we analyze the nature of text sources along with the inherent difficulties105

addressed by word spotting methods. Among the main steps of the word spotting system, namely, feature

extraction, representation and similarity computation, we also investigate the preprocessing stage with

respect to binarization, segmentation and normalization techniques. Furthermore, we present the benefits

accrued from relevance feedback methods employed in the retrieval phase of a word spotting task, either

by involving the user to select true query instances or in a completely unsupervised way. Subsequently, we110

examine whether direct comparison among different methods is straightforward or not, since the evaluation

measures and protocols applied for assessing the performance may differ substantially. Finally, we present

the most commonly used datasets along with the experimental results published by the state-of-the-art

methods and discuss about the performance obtained in each case.
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The rest of our work is structured as follows. In Section 2, we describe the challenges involved in115

document image word spotting. In Sections 3 and 4, we present the core steps of the word spotting pipeline

with respect to the preprocessing and feature extraction, the input of the spotting system and the different

similarity metrics applied among common representations upon the extracted features. Section 5 describes a

number of techniques which enhance the retrieved results from the image matching step based on relevance

feedback, data fusion and re-ranking. In Section 6, we present the most common datasets along with120

some distinct measures used to evaluate word spotting systems and examine the results achieved by the

state-of-the-art methods. Finally, conclusions are drawn in Section 7.

2. Challenges in document image word spotting

Keyword spotting in document images presents several challenges which are related to the nature of

the original documents. In this section, we first investigate the various text sources used by word spotting125

methods and subsequently overview the corresponding challenges.

2.1. Nature of text addressed in word spotting

Regarding the nature of documents which have been addressed so far by the research community for

word spotting, we can distinguish various categories depending on factors such as the age of the text, its

alphabet, the underlying language and the source which created the text (e.g. human or machine). Table 1130

illustrates the various scripts addressed by most of the representative works for word spotting, during the

period considered in this work.

Historical documents typically contain text written in a language that is no longer in use. Contrary

to modern documents, the alphabet, the writing style or the accents are different. Historical documents

usually suffer from degradations such as stained paper, faded ink or ink bleed through, winkles and unknown135

graphical symbols, as opposed to modern text, thus hampering the readability and in turn the word spotting

process.

So far, word spotting has been applied to various scripts, such as Arabic, Chinese, Devanagari, Greek

and Latin. These scripts differ from each other owing to factors such as the writing direction, the size of

the alphabet (number of characters), possible diacritic marks (polytonic Greek text) and cursiveness. For140

example, documents in Arabic scripts are written from right to left, in horizontal direction and are fully

cursive. On the contrary, text in Latin script is written from left to right in horizontal direction only,

cursively in some cases. Chinese scripts contain thousands of characters and are written in two dimensions,

either from left to right horizontally, or from top to bottom vertically. Devanagari scripts are written

horizontally, from left to right in a complex cursive way, whereas Greek scripts are written from left to right145

without cursiveness. Furthermore, each separate character of the Chinese scripts has specific meanings or

semantics, in contrast with the isolated characters of other scripts.

Many of the proposed techniques for word spotting in a specific language may be directly applied to a

different language on the ground that it is written in a relevant script. However, the application of a word

spotting method in different scripts is not straightforward, since it heavily depends on the features which150

are extracted before image matching takes place. For instance, profile or pixel-based features [37, 92] are

suitable for obtaining representations which allow for word spotting in heterogeneous documents regardless
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Table 1: Text sources addressed by word spotting methods.
Publications Context Language Script Type
Aldavert et al. [27, 28], Zagoris et al. [29] Historical English Latin Handwritten
Zhang and Tan [30], Fornés et al. [31] Historical English Latin Handwritten
Roy et al. [32], Rothacker et al. [33, 34] Historical English Latin Handwritten
Mondal et al. [35], Dovgalecs et al. [36] Historical English Latin Handwritten
Rath et al. [37], Zhong et al. [38] Historical English Latin Handwritten
Cao et al. [18], Wagan et al. [39] Modern English Latin Handwritten
Kumar et al. [40] Modern English Latin Handwritten
Retsinas et al. [41], Krishnan et al. [42] Historical, modern English Latin Handwritten
Almazán et al. [43], Liang et al. [44] Historical, modern English Latin Handwritten
Wilkinson et al. [45], Fischer et al. [46] Historical, modern English Latin Handwritten
Ghosh and Valveny [47] Historical, modern English Latin Handwritten
Kessentini et al. [48, 49], Choisy [50] Modern French Latin Handwritten
Howe [51, 52], Frinken et al. [21] Historical English, German Latin Handwritten
Puigcerver et al. [53], Riba et al. [54] Historical Spanish Latin Handwritten
Fink et al. [55] Historical German Latin Handwritten
Chatbri et al. [56] Modern French Latin Handwritten,

machine-printed
Lladós et al. [57], Wang et. al. [58] Historical English, Spanish Latin Handwritten
Oosten et al. [59], Der Zant et al. [60] Historical Dutch Latin Handwritten
Kovalchuk et al. [61], Almazán et al. [62] Historical English Latin Handwritten,

machine-printed
Mondal et al. [63, 64] Historical English, French Latin Handwritten,

machine-printed
Sfikas et al. [65] Historical Greek Greek Handwritten,

machine-printed
Rodŕıguez-Serrano and Perronnin [66] Historical, modern English, French, Latin, Arabic Handwritten

Arabic
Sudholt et al. [67] Historical, modern English, Spanish, Latin, Arabic Handwritten

Arabic
Leydier et al. [68] Historical Middle English, Latin, Arabic, Handwritten

Semitic, Chinese Chinese
Terasawa and Tanaka [69] Historical English, Japanese Latin, Chinese Handwritten
Abidi et al. [70], Sagheer et al. [71] Historical Urdu Arabic Handwritten
Khayyat et al. [72], Li et al. [73] Modern Farsi Arabic Handwritten
Kumar et al. [74], Wshah et al. [75] Modern English, Urdu, Latin, Arabic, Handwritten

Hindi Devanagari
Srihari and Ball [76] Modern English, Urdu, Latin, Arabic, Handwritten

Hindi Devanagari
Huang et al. [77] Modern Chinese Chinese Handwritten
Giotis et al. [78] Modern Greek Greek Handwritten
Saabni et al. [79] Modern Arabic Arabic Handwritten
Shah et al. [80] Modern Pashto Arabic Handwritten
Can and Duygulu [81], Rusiñol et al. [82] Historical English, Ottoman Latin, Arabic Handwritten,

machine-printed
Wei et al. [83, 84] Historical Kanjur Mongolian Woodblock-printed
Ranjan et al. [85], Li et al. [86] Modern English Latin Machine-printed
Zagoris et al. [87], Bai et al. [88] Modern English Latin Machine-printed
Louloudis et al. [89], Roy et al. [90] Historical French Latin Machine-printed
Papandreou et al. [91] Historical French Latin Machine-printed
Gatos and Pratikakis [92] Historical German Latin Machine-printed
Sousa et al. [93] Historical Portuguese Latin Machine-printed
Marinai [94] Historical Latin Latin Machine-printed
Konidaris et al. [95], Kesidis et al. [96] Historical Greek Greek Machine-printed
Xia et al. [97] Historical Chinese Chinese Machine-printed
Hassan et al. [98], Krishnan et al. [99] Modern English, Indian, Latin, Bangla, Machine-printed

Gujarati Devanagari
Shekhar et al. [100], Yalniz et al. [101] Modern English, Indian Latin, Telugu Machine-printed
Meshesha and Jawahar [102] Modern English, Amharic, Latin, Amharic, Machine-printed

Hindi Devanagari
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of the underlying language. This is contrasted with structural features and shape codes [88, 103] which are

defined to capture the specific shapes of the writing symbols of a language.

One other aspect of the documents addressed by word spotting techniques is related to the creation of155

the respective text. Handwritten documents, either historical or modern, always suffer from variability in

writing style, not only among different authors but also for documents of the same writer. This is not the

case though for machine-printed text where variations mainly concern the font type. An exception is the case

of woodblock-printed documents of Chinese and Mongolian scripts which present intra-writer variability for

the same author. Word spotting in handwritten text is generally considered more challenging than spotting160

printed text, as apart from variations in writing style, handwriting is also unconstrained. For instance,

words may be skewed, characters may be slanted, non-text content such as symbols may be present and

letters may be broken or connected in a cursive manner. Nevertheless, historical printed documents also

present challenges for word spotting because of degradations such as missing data, non-stationary noise due

to illumination changes during the scanning process, low contrast, show through or warping effects etc.165

Indexing documents contained in large databases around the globe is not the only area of application

for image retrieval methods. Online handwritten text presents a growing significance due to the increasing

use of PDAs, Tablet PCs, and digital pens. Understanding such documents may be useful, for instance,

in the case of a smart meeting room which allows participants to search, browse or organize handwritten

notes taken with digital pens during a meeting. However, an important difference between online and offline170

text lies on the features which are extracted from each of the respective sources. Instead of focusing on

color, texture or geometric shape, features related to the pen tip trace and the stroke’s characteristics are

extracted, such as its width, height, the pen’s pressure and others. Example works for online text can be

found in the literature, regarding either word spotting [104, 105] or recognition [106]. In this work though,

we only consider offline documents.175

2.2. Challenges addressed by existing methods

Degradations involved in historical documents, pre-hospital care reports and other text sources hinder

the overall performance of a word spotting system. For example, low image quality directly affects the

following segmentation and feature extraction stages of a word spotting system.

Apart from possible degradations, handwritten documents usually present high variability in writing180

style, meaning, the same query word may differ substantially among its instances. This calls for features

which are distinctive enough to be detected inside the query instances, yet not too dependent on a specific

writing style. Most methods that deal with multi-writer word spotting rely on annotated data to learn a

model able to capture the basic structure or semantic information of a word, regardless of the writing style.

The need for adequate training data poses another challenge for word spotting, since they are not always185

easy to obtain. For instance, historical handwritten documents are unconstrained and thus often render the

transcription process difficult even for palaeographers. Methods that do not require training present a solid

advantage in this respect.

Text cursiveness found in handwritten documents, overlapping sub-word components existing in Arabic

scripts and many punctuation marks or graphical symbols lying in historical documents may lead to in-190

accurate segmentations. In that sense, methods that avoid potential error-prone segmentations tackle this

challenge.
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It is often expected that the user has to find a particular instance of a query in order to initiate the

search for similar instances. In some cases though, it is more preferable for the user to insert an arbitrary

string to be searched for. However, there are QBS methods which are not able to perform out of vocabulary195

(OOV) word spotting, namely, only a limited number of keywords, which are known during training, can be

used as queries.

In Section 2.1, we mentioned the dependence of a word spotting method on a specific language, let alone

a particular alphabet. A learning-based method able to perform well in different languages for a relevant

script is not essentially suitable for a different script, unless new training data are used. On the contrary,200

script-independent approaches deal with this matter.

Chinese and Japanese documents have a large number of character classes (almost over 5000) and they

present no explicit differences between inter-character and inter-word spaces. To cope with this challenge

some keyword spotting methods follow the strategy of over-segmenting the text lines into primitive segments

and adopt a character classifier to assign a small number of high-confidence classes to the input character205

pattern.

Word spotting methods need to be accurate enough for successful indexing while at the same time fast

enough for high scalability. One way to achieve computationally efficient retrieval is to use fixed-length

feature representations, since they are faster to compare than variable length sequences, as we will discuss

in Section 4.2. Table 2 summarizes the aforementioned challenges along with the respective key methods210

which address them.

Table 2: Challenges addressed by word spotting methods.

Challenges Publications

Robustness to degradations [18, 21, 27–38, 41–47, 51–55, 57–71, 81–84, 89–97]

Multi-writer conditions [18, 21, 28, 38, 40, 41, 43, 45–50, 52, 54, 55, 57, 58, 66, 67, 70–81, 83, 84]

Learning-free scenario [28–31, 33, 36, 37, 39, 41, 51, 54–58, 61–64, 68–70, 80–82, 84, 86–92, 95, 96, 99, 101]

Segmentation-free methods [30, 33, 34, 36, 47, 54–56, 61, 62, 68, 82, 92]

OOV spotting (QBS) [21, 27, 32, 34, 38, 42–49, 52, 53, 65, 67, 68, 88]

Script-independence [28, 41, 66, 68, 69, 74–76, 81, 82, 98–102]

Chinese/Japanese characters [68, 69, 77, 83, 84, 97]

Scalability [27, 29, 31, 32, 34–39, 41–45, 47, 48, 52–55, 57, 61, 62, 65, 67, 82, 89, 90, 92, 99]

3. Basic document image analysis technologies involved

Although the intermediate stages of a word spotting system may vary across different methods, we

can distinguish some common steps. Document images are initially preprocessed in order to enhance the

subsequent feature extraction step. After appropriate features have been extracted, a common representation215

is selected to describe both the documents at a specific level (word, line or page) and query, which in most

cases is a single word provided either as an image or a text string. The next part lies on the matching

algorithm applied between the representations of the query and the documents. This matching outcome

is used at a later stage for retrieving the desired information. In the following, we will discuss some basic

technologies involved during the preprocessing step.220
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3.1. Binarization

Binarization is the starting step of most word spotting systems and refers to the conversion of the

original input to a binary black-and-white image. It can provide a good starting point for segmentation

as well as feature extraction. For instance, some methods which perform text-line segmentation using

connected components analysis require the documents to be properly binarized. Similarly, contour-based225

features extracted from skeletons or outer contours are heavily dependent on the binarization outcome.

Otsu’s global thresholding [107] is one of the most commonly used binarization techniques in the literature

[19, 87, 103, 108–110]. This method selects a global threshold value from all possible thresholds as the one

minimizing the intra-class variance of the thresholded black and white pixels. Can et al. [81] obtained

similar results to Otsu’s method using another global thresholding technique in which the threshold is based230

on the mean intensity value of the gray-scale image. Other global thresholding approaches can be found in

[47, 61, 93, 111].

In the case though of degraded document collections which usually suffer from non-uniform illumination,

image contrast variation, bleeding-through or smear effects, more efficient local thresholding techniques

are required. For instance, Sauvola’s technique [112] calculates a local threshold which is adapted to the235

neighborhood of each pixel according to the local mean value and the local standard deviation inside the

neighborhood which is defined by a sliding window. Methods based on local thresholding can be found in

[40, 44, 113–115]. Some methods also include an image enhancement step. Fink et al. [55] preprocess images

to improve the overall contrast between the script and the document background. To this end, they employ

histogram equalization to the intensity channel in an YCrCb color space and subsequently use a 9x9 median240

filter to reduce the background noise. Kumar et al. [40] normalize the background light intensity using

an adaptive linear or non-linear function [116] that best fits the background. The background normalized

image is further enhanced by Histogram Normalization. Finally, the normalized image is binarized using an

adaptive thresholding algorithm. Cao et al. [18] follow a probabilistic approach [117] to binarize documents

and remove inherent grid lines. They model degraded images with MRFs where the prior is learnt from a245

training set of high quality binarized images, whereas the probabilistic density is learnt on-the-fly from the

gray-level histogram of input images.

Several state-of-the-art approaches for binarizing degraded documents rely on hybrid schemes which

combine global and local thresholding. The authors in [64, 92, 95, 96] use the technique proposed in [118]

which consists of five steps: a preprocessing procedure using a low-pass Wiener filter, a rough estimation of250

foreground regions, a background surface calculation by interpolating neighboring background intensities,

a thresholding by combining the calculated background surface with the original image and finally a post-

processing step that improves the quality of text regions and preserves stroke connectivity. Wei et al. [83]

make use of three global thresholding methods to extract regions of interest (ROI) from gray-level images.

Each ROI is then processed by a modified Sauvola’s algorithm with variant sizes of the small windows. Howe255

[51] employs the method proposed in [119] which optimizes a global energy function based on the Laplacian

operator upon the local likelihood of foreground and background labels, the Canny edge detection to identify

likely discontinuities and a graph cut implementation to find the minimum energy solution of the objective

function.

However, there is often a tradeoff between the amount of missing data and accurate data after binarization260

is applied and therefore some works [30, 33, 37, 68, 69, 80, 82, 120–123] prefer to perform directly on the
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gray-scale image. For example, Zhang et al. [30] propose an illumination invariant descriptor of gray-scale

document images using features extracted from keypoints. If the images suffer from low resolution, the

authors report a low number of detected keypoints which in turn yields a reduced number of retrieved

query instances, despite the high accuracy of those retrieved. Leydier et al. [68, 121] prefer to separate265

the text from the background using a gradient norm threshold instead of binarizing the document image.

This renders their proposed gradient-based features more informative in high magnitude zones computed

on the gray-scale image. Similarly, Terasawa and Tanaka [69] deem a background removal more suitable for

their method. The background is removed using a simple thresholding technique such that the graylevel

information which is important for the proposed gradient-based features is not affected. To exploit fast270

matching algorithms which can only be applied to binary images, Shah and Suen [80] extract features

directly from gray-scale images and then convert the resulting feature vectors into their binary equivalents

using an encoding scheme with four bits per feature value. A drawback of this approach is that the final

feature vector has high dimensionality. Cao et al. [120] consider the gray-scale images more preferable when

dealing with heavily degraded documents, such as carbon medical forms, where the binarized version is not275

even readable by a human.

Other methods [70, 79] work on both gray-scale and binary images aiming to combine the advantages

of each type. Abidi et al. [70] employ a set of profile-based features which can be extracted from either

gray-scale or binary images to match partial words in Arabic script. To examine the discriminative power

of each independent feature, they evaluate the retrieval percentage of five features obtained from binary280

images and one feature extracted from the gray-scale version, which proved to outperform the other five

features. Nevertheless, the authors report that the combined information from all features improves the

word spotting performance. Saabni and Bronstein [79] propose a multi angular descriptor of either binary

or gray-scale word images. The descriptor is based on multiple view points obtained from rings out of the

shape of the word and therefore is not significantly affected by the binarization step.285

3.2. Segmentation

Segmentation-based word spotting methods involve a segmentation preprocessing stage in order to seg-

ment the document pages at word or line level. Although segmentation can be considered as a simple

task for modern machine-printed documents, segmentation of handwritten or historical documents is still

an open research problem due to the significant challenges that are involved. These include variations in290

inter-line or inter-word gaps, overlapping and touching text parts, existence of accents, punctuation marks

and decorative letters, local text skew and slant.

In the following, we present a categorization of the general text line techniques together with one repre-

sentative reference per each category. (a) Projection-based methods: the horizontal image projections are

analyzed in order to detect hills (correspond to text lines) and valleys (correspond to white spaces between295

text lines). Although these methods are usually applied to machine-printed documents, they can also be

used for handwritten documents [124]. (b) Smearing methods: the white runs in a certain direction are

analyzed and eliminated under several conditions [125]. (c) Grouping methods: low-level elements such as

pixels or related components are grouped together based on several rules [126]. (d) Methods based on Hough

transform: a set of points is projected to the Hough space in order to detect lines [127].300

Concerning word segmentation, the proposed techniques usually first calculate the distances of adjacent

components using the bounding box, the Euclidean, the run-length or the convex hull distance [128]. At a
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next step, these distances are classified as inter-word or intra-word [129].

Some segmentation-based word spotting methods assume that datasets are already segmented to text

lines or words while others perform a respective segmentation step. Example word spotting methods based305

on horizontal projection profiles for text line separation, followed by vertical profiles for word segmentation

can be found in [44, 98, 108, 130–132]. Rodriguez-Serrano and Perronin [16] use horizontal projection profiles

to obtain text lines. For each line they compute the convex hulls of connected components and define a

distance between neighboring components as the minimum distance between their convex hulls. Distances

larger than a threshold are likely to correspond to word gaps. Kumar et al. [40] extract text lines using the310

algorithm proposed by Shi et al. [133] which uses a steerable filter to convert a down-sampled version of

the input document image into an Adaptive Local Connectivity Map (ALCM). Connected component based

grouping is done to extract each text line. Word segmentation is then done by finding convex hulls for each

connected component and learning the distribution over the distances between the centroids of the convex

hulls for within and between word gaps.315

The Run Length Smoothing Algorithm (RLSA) [134] is a common smearing technique for segmenting

document pages into text lines and words. RLSA examines the white runs existing in the horizontal and

vertical directions. For each direction, white runs with length less than a threshold are eliminated. The

horizontal and vertical length thresholds are usually defined proportionally to the average character height.

The application of RLSA results in a binary image where characters of the same word become connected to320

a single connected component. Then, a connected component analysis is applied in order to extract the final

word segmentation result. Example works using RLSA can be found in [63, 64, 95, 96]. RLSA works well for

printed documents but usually presents poor results in handwritten historical documents where inter-word

spaces are variable. Mondal et al. [64] evaluate a number of DTW-based sequence alignment techniques

under conditions of perfect (manual) and error-prone (RLSA-based) word segmentations and confirm that325

DTW works well only in the first case. Otherwise, they propose a Continuous Dynamic Programming (CDP)

method which performs robust partial matching at line (or piece of line) level.

Most works in Arabic scripts [71, 72, 109, 135] are only able to perform on partial word level. Pieces of

Arabic Words (PAW) are obtained either manually or from connected component analysis on the segmented

words. Each word in the Arabic script consists of one or more PAW, each of which contains only one major330

connected component (CC) and some or none minor CCs. These minor CCs are often called diacritics and

dots. Major and minor CCs can be distinguished by their size and location. Khayyat et al. [72] smear the

documents with a morphological dilation using a binary dynamic adaptive mask [136] to extract text lines.

Then they extract major and minor components from PAW.

Chinese scripts also show variations between inter-character and inter-word spaces. Most keyword spot-335

ting methods follow the strategy of over-segmenting the text lines into primitive segments. For instance,

Huang et al. [77] segment the document image into text lines using a graph-based clustering algorithm [137].

Each line is then over-segmented into primitive segments using the algorithm of [138]. Candidate characters

generated by concatenating consecutive segments form a candidate segmentation lattice.

In a language independent scenario, Srihari et al. [76] perform text line segmentation using a clustering340

method. For word segmentation, the problem is formulated as a classification problem as to whether or not

the gap between two adjacent CCs in a line is word gap or not. An artificial neural network with features

characterizing the CCs was used for this classification task.
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3.3. Normalization

The segmentation is usually followed by a normalization step in which several variabilities are removed.345

For instance, handwritten documents present challenges such as text skew and slant or warping effects

accrued during the scan process. Wang et al. [139] handle text skew by combining projection profiles with

Hough transform to separate the text according to the skew angle of each line. To cope with different writing

styles, most approaches based on line segmentation [21, 46, 140], as well as word-based methods, such as

the works of Rodŕıguez-Serrano and Perronnin [16, 66], determine the skew angle by a regression analysis350

based on the bottom-most black pixel of each image column extracted via a sliding window. Then, the skew

of the text line is corrected by rotation. After estimating the slant angle based on a histogram analysis, a

shear transformation is applied to the image. Moreover, a vertical scaling procedure is applied to normalize

the height with respect to the lower and upper baseline and finally, horizontal scaling normalizes the width

of the text line with respect to the estimated number of letters. Scale normalization at word level is also355

applied for handwritten and printed documents. In [95, 96], the segmented words are resized to fit in a

fixed bounding-box while preserving their aspect ratio, whereas in [61] each candidate word is resized to fit

a fixed-size rectangle regardless of its size and aspect ratio.

4. Keyword spotting system architecture

In this section, we examine the main steps of the word spotting pipeline. Figure 2 illustrates a general360

purpose word spotting system where the whole procedure is divided in an offline and an online phase. In the

offline stage, features are extracted from word images, text lines or whole pages which are then represented

by feature vectors. In the case where training data are used, feature vectors are usually modelled with

statistical models (e.g. HMMs). In the online phase, a user formulates a query either by selecting an actual

example from the collection (QBE), or by typing an ASCII text word (QBS). Depending on the query type,365

a common representation with that of the offline phase is used to describe the query and then a matching

process is applied between these representations in order to obtain a similarity score which in turn yields a

ranking list of results according to their similarity with the query.

The most common distinction of word spotting approaches depends on how the input is specified. Each

type (QBE or QBS) has its own merits and handicaps. One obvious drawback of QBE methods is that the370

search is constrained for words that appear at least once in a document collection since an actual instance of

the query word is required to trigger it. QBS approaches on the other hand allow arbitrary textual queries

without the need to find a particular query occurrence. Herein, the keyword representation is usually accrued

from trained character models. However, in the case where labeled data are not available or inadequate, an

alternative solution is to artificially generate the query input in ASCII text from character images selected375

either manually or in a semi-supervised way. In this context, the word spotting task is also referred to as

word retrieval [44, 68, 86, 95, 96, 141, 142].

In the following, we review the main steps of a word spotting system with respect to the extracted

features, the representation defined to describe both documents and queries at a specific level and the

similarity measures used to compare them. A concise view of some key approaches considered in this work380

is presented in Table 3. Since most word spotting approaches belong to various distinct categories, we

mainly divide them according to the representation used in each case.
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Table 3: Overview of key techniques according to the core steps of the word spotting pipeline.
Publications Query Features Representation Similarity
[28, 36, 57, 82, 122] QBE SIFT BoVW Cosine, Euclidean
[108] QBE SIFT BoVW Symmetric KL-divergence
[101] QBE SIFT BoVW Longest Common Subsequence
[33, 55] QBE SIFT BoF-HMM Viterbi decoding probability
[34] QBS SIFT BoF-HMM Viterbi decoding probability
[46, 140] QBS Geometrical HMM Viterbi decoding probability
[143] QBE Local Gradient Histogram (LGH) HMM Viterbi decoding probability
[144] QBE Geometrical, pixel counts SC-HMM, HMM Viterbi decoding probability
[16] QBE Geometrical, pixel counts, LGH SC-HMM, HMM Viterbi decoding probability
[38] QBE Pixel values NN internal representation NN learned similarity
[41] QBE Gradient-based (POG) Fixed-length vector Euclidean
[145] QBE Zoning/NN layer activations Fixed-length vector Euclidean
[67] QBE/QBS Pixel values/PHOC Fixed-length vector Bray-Curtis dissimilarity
[45] QBE/QBS Pixel values/PHOC/DCTofW Fixed-length vector Euclidean
[42] QBE/QBS NN layer activations Fixed-length vector Euclidean
[43, 65, 146] QBE/QBS SIFT/PHOC Fixed-length vector Euclidean
[47, 147] QBE SIFT/PHOC Fixed-length vector Euclidean
[61] QBE HoG, LBP Fixed-length vector Euclidean
[29, 71, 84] QBE Gradient/profile-based Fixed-length vector Euclidean
[98] QBE Shape Context Fixed-length vector Euclidean
[89, 148] QBE Adaptive Zoning Fixed-length vector Euclidean
[31] QBE Blurred Shape Model Fixed-length vector Euclidean
[149] QBE Characteristic Loci Fixed-length vector Euclidean
[39] QBS Gradient-based Fixed-length vector Euclidean
[95, 96] QBS Standard Zoning Fixed-length vector Euclidean
[120] QBS Gabor (gray-scale) Fixed-length vector Euclidean
[141] QBS Global, Profiles Fixed-length vector Dot Product
[87] QBE Global, Profiles Fixed-length vector Minkowski distance
[92] QBE Standard Zoning Fixed-length vector Square distance-based
[80] QBE Zoning/Profile-based Fixed-length vector Correlation-based
[62, 150] QBE HoG Fixed-length vector Cosine Distance
[131] QBS Moment-based Fixed-length vector Cosine Distance
[30, 105] QBE Dali, SIFT Heat Kernel Signature Euclidean-based
[56] QBE Point Distribution Histogram Variable-length Histogram Intersection
[35, 63, 151] QBE Profiles, Moments, Gabor Variable-length DTW-based
[37, 83, 152] QBE Word profiles Variable-length DTW-based
[70, 109] QBE Global, profile-based Variable-length DTW-based
[79] QBE Multi Angular Descriptor Variable-length DTW-based
[91] QBE Adaptive Zoning Variable-length DTW-based
[69] QBE Slit Style HoG Variable-length DTW-based
[102] QBS Profiles, Moments, DFT Variable-length DTW-based
[153] QBE Wavelet coefficients Variable-length Earth Movers Distance
[68, 121] QBS Gradient-based (ZoI) Variable-length Cohesive Elastic Matching
[88] QBS Column-based Word Shape Coding Sequence alignment
[86] QBS Column-based Word Shape Coding Edit Distance
[103] QBS Character shape features Word Shape Coding Edit Distance
[115] QBE Profile-based Graph-based Edit Distance-based
[90] QBE Character primitives Graph-based Edit Distance-based
[58, 132, 139] QBE Structural, Shape Context Graph-based Edit Distance-based
[54] QBE Graphemes of convex groups Graph-based Edit Distance-based
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Figure 2: General word spotting system architecture.

4.1. Feature extraction

The appropriate selection of features has a great impact on the performance of a word spotting system

as well as numerous other computer vision applications. Girshick et al. [154] state that progress made on385

various visual recognition tasks in the last decade relied considerably on the use of SIFT [155] and HoG

[156] features. Particularly in word spotting applications, Rodŕıguez-Serrano and Perronnin evaluate the

performance of different feature types using DTW [143] and HMMs [16]. In both cases, the authors show

that their proposed local gradient histogram features outperform other profile-based or geometrical features.

Other word spotting approaches [57, 110, 157] also confirm the effect of features on the final performance.390

In general, we can distinguish two broad categories of features. Global features are extracted from the

object of interest which can be either a word image or a document region as a whole. Examples of such

features are the width, height, or the aspect ratio of the word image, the number of foreground pixels,

moments of background pixels and others. On the contrary, local features may be detected independently at

different regions of the input image, which may be a text line, word or primitive word parts. For instance,395

the pixel densities, the position or the number of holes, valleys, dots and crosses at keypoints or regions are

local features. We should note here that approaches based only on global features are obsolete in the recent

literature.

Local features from the other hand are very common and are used either solely or in combination

with global features. Local features extracted from raw pixels to directly represent document images were400

outperformed throughout the years by higher level features. A typical example of higher level features

comprise the upper and lower word profiles, the number of foreground pixels and the number of transitions

from background to foreground. These column features, also known as word profiles, were popularized by

Rath and Manmatha [37, 158] and adopted by many other researchers. They are extracted from each column

of the word image or the text line and concatenated to variable-length sequences of features which describe405

text regions (e.g. words) as a whole.

Geometrical column features are also widely used with the sliding window approach in [21, 46, 140, 159,
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160]. These typically contain three global and six local features. The global features are the moments of the

black pixels distribution within the window. The local features are the position of the top-most and that

of the bottom-most black pixel, the inclination of the top and bottom contour of the word at the actual410

window position, the number of vertical black/white transitions and the average gray scale value between

the top-most and bottom-most black pixel. These features also form a variable-length sequence of features,

usually modelled with HMMs or NNs, which can adapt better to writing style variations.

Zoning features [89, 91, 95, 96] have also been proved quite efficient statistical features which provide

high speed and low complexity word matching. They are usually calculated by the density of pixels or415

other pattern characteristics in the zones that the pattern frame is divided. Their application to printed

documents yields satisfactory results which is not always the case for handwritten documents.

Neural network-based models typically use raw pixel intensity information as their input [67, 145]. From

a theoretical stand-point, using image information with little or no preprocessing is a valid practice in the

case of NNs, as intermediate net layer activations can be considered as the image features, dynamically420

learned during network training. Following this rationale a step further, in a number of works the NN is

used purely as a feature extractor [42, 145]. The image is fed-forward through the NN, and the activations

of one or more layers are used to form feature vectors.

Gradient-based features are also widely used as higher level local features. This family of features tends

to be superior over the word profiles for multi-writer word spotting since it can also capture the directions425

of the strokes, which are discriminative for distinguishing different words. Typical examples of this type are

the Histograms of Gradients (HoG) [156] as well as the features extracted using the Scale Invariant Feature

Transform (SIFT) [155]. Similar to SIFT, HoG computes a histogram of gradient orientations in a certain

local region. One of the main differences between SIFT and HoG is that HoG normalizes such histograms

in overlapping local blocks and makes a redundant expression. HoG features are computed in a rigid grid430

while SIFT features are either densely sampled in local patches of the image or extracted from keypoints

(e.g. corners). Several variants of HoG and SIFT features have been successfully used for word spotting

[69, 143, 157].

Pattern features are computed by placing primitives in local image regions and analyzing the relative

differences. Pattern analysis is quite useful in texture information representations. Examples of this type435

are the Local Binary Patterns (LBP) [161] and Gabor features [162]. LBP features mainly focus on the

gradient information about the local pattern and they can preserve more local information than the features

extracted from only one pixel wide column. They are usually combined with gradient-based features to yield

a more discriminative representation for word spotting [61]. Gabor features are related with Gabor wavelets

for human perception simulation, which are computed by convolving images with Gabor filters. Application440

of this type of features can be found in [35, 120].

Apart from statistical features (e.g. SIFT, HoG), structural features, such as graphemes from connected

components, adjacent line segments or graphs arranged into tree structures have also found their way in

word spotting. The main motivation behind selecting such features is that the structure of the handwriting

is more stable than the pure appearance of its strokes. This is especially important when dealing with the445

elastic deformations of different handwriting styles. Such structural features may be extracted from the

contour [48, 58, 79] or the skeleton [44, 51, 54, 56–58, 78] of an image.

Advanced gradient, structural and concavity (GSC) features [163] are a good choice for Arabic scripts
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[74–76]. They are multi-resolution features that combine three different attributes of the character shape, the

gradient (representing the local orientation of strokes), the structural features (which extend the gradient450

to longer distances and provide information about stroke trajectories) and the concavity features (which

capture stroke relationships at long distances).

Finally, a recently proposed technique introduced the idea of using attributes as features for word spotting

[146]. Attributes are semantic properties that can be used to describe images and categories since they can

transfer information from different training words and lead to compact signatures. The selection of these455

attributes is usually a task-dependent process, so for their application to word spotting they are defined as

word-discriminative and appearance-independent properties. In a nutshell, they combine visual (features)

and textual (labels) information to encode a word image representation which is robust to writing styles,

enables both QBE and QBS and is fast to compare.

4.2. Representation460

After a set of features has been extracted, a suitable representation of their values has to be defined in

order to allow efficient comparison between the query image and the documents at a specific level. Variable-

length representations describe word images or text lines as a time series, usually using a window that slides

over the image in the writing direction. In contrast, fixed-length representations extract a single feature

vector of fixed size which characterizes the document region as a whole.465

Variable-length representations adopt the sequential nature of handwritten words formed by the concate-

nation of individual characters. Nevertheless, since two words may have different numbers of characters or

widths, defining a distance between feature vectors is not straightforward. In this case, a standard practise

is to use sequence alignment techniques such as the DTW.

Probabilistic representations are also very popular and have proven to be more effective than variable-470

length vectors obtained directly from image features. These typically consist of character or word models

which represent the sequential features and are trained from annotated data usually based on hidden Markov

models [33, 46, 50, 66] as well as neural networks [21, 22, 83].

Word Shape Coding (WSC) [86, 88, 103] is also another way to represent sequential features on stroke

level. Particularly, each word image is encoded as a sequence of symbols roughly corresponding to characters.475

In most cases the symbol set has a lower cardinality with respect to the character set in the original language

and it is easier to recognize. Each word is represented by a symbol string. Due to the reduced number of

symbol classes, one-to-one correspondences between a symbol and a character are uncertain and therefore a

symbol string can be mapped to several words.

A growing interest in graph-based representations [44, 54, 58, 132, 139] is also reported by the research480

community. Such representations are defined on structural features extracted from connected components or

strokes, along with their spatial arrangements. Although structural features are considered language depen-

dent as they capture the specific shapes of the writing symbols of a language, graph-based representations

of such features may perform well in terms of speed and accuracy under large variability in writing style.

Fixed-length representations present a clear advantage over sequential representations, as the fixed-size485

feature vectors can be compared using standard distances such as the Euclidean distance, or any statistical

pattern recognition technique. This way image matching is reduced to a much faster nearest neighbor search

problem. In some cases, fixed-length descriptions are formed directly from the extracted features without

involving some learning step.
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There are cases though where variable-length representations are pooled to fixed-length feature vectors490

using an encoding scheme. In this spirit, many researches from the document analysis community deem the

word spotting problem as an object detection task based on matching techniques between features extracted

from keypoints. However, the keypoint matching framework presents the same drawbacks as the sequential

methods since an alignment between the keypoint sets has to be computed. In order to avoid exhaustively

matching all keypoint pairs, the bag-of-features paradigm from the information retrieval field was adopted as495

the Bag-of-Visual-Words (BoVW) [164]. This consists in an holistic and fixed-length image representation

while keeping the discriminative power of local features such as SIFT. The BoVW representation relies on

the following steps:

1. Keypoints are extracted from the document images at a specific level using an appropriate detector.

2. Keypoints or shape descriptors evaluated upon them, are clustered and similar descriptors are assigned500

to the same cluster. Each cluster corresponds to a visual word that is a representation of the features

shared by the descriptors belonging to that cluster.

3. Each image region is described by a vector containing the occurrences of each visual word in that

image.

Instead of using keypoints to build the visual codebook, recent approaches prefer to densely sample features505

over regular fixed-size grids [82, 122] since the larger amount of descriptors extracted from an image, the

better the performance of the BoVW model is. Descriptors having a low gradient magnitude are directly

discarded. One main drawback of BoVWmodels is that they do not take into account the spatial distribution

of the features. In order to add spatial information to the orderless BoVW model, Lazebnik et al. [165]

proposed the Spatial Pyramid Matching (SPM) method which takes into account the visual word distribution510

over the fixed-size patch by creating a pyramid of spatial bins.

Another way to form fixed-length descriptions from variable-length representations is the Fisher vector

[166]. Assuming that a set of features such as SIFT are extracted from a dense grid, corresponding for

instance to a word image, the next step is to train a Gaussian mixture model (GMM) using SIFT descriptors

from all input images of the document collection. Subsequently, Fisher vectors are calculated for each image515

as a function of their SIFT description and the gradients of the GMM with respect to its parameters.

This yields a fixed-length, highly discriminative representation, that can be seen as an augmented BoVW

description which encodes higher order statistics. Fisher vectors have previously been used with success in

various fields of computer vision [167, 168].

Relevant examples of pooling features to fixed-length vectors can be found in [79]. The authors employ520

the Boostmap algorithm described in [169] to embed the feature space of variable-length representations

which are matched with DTW into a Euclidean space for faster comparisons. In the same direction, Wei et

al. [84] use DFT on variable-length word profiles to create fixed-length vectors.

Finally, of note is the NN-based model proposed in [38]. In this work, a convolutional neural network

accepts pairs of word images as inputs and returns a similarity score in the output. Image description is not525

explicitly expressed as either a variable or fixed-length vector. Hence, there is no image descriptor in the

classical sense, and images are processed and represented internally throughout the NN layer pipeline.

17



4.3. Matching process

The matching task is composed of the similarity computation between the feature representations of the

query, which may be a feature vector, a graph, or a statistical model and the document image at word,530

line or page level. The system performance is greatly affected by the suitable selection of the matching

technique. Actually, an improper choice of a matching algorithm may lead to lower performance despite the

potentially good choices of features and representations for a particular case.

4.3.1. Word to word matching

This family of approaches requires the document images to be segmented at word level and the matching535

is carried out directly between the representations of the query and each word image. Apart from the query

type (template image or string), we can further distinguish learning-free from learning-based techniques.

Many of the proposed methods follow the learning-free paradigm under the QBE scenario. For instance,

Rath and Manmatha [37] compare variable-length sequences of features extracted from word profiles using

DTW for word spotting in historical handwritten documents. In the same direction, many variants of DTW-540

based word spotting methods have been proposed. Adamek et al. [170] employ DTW to align convexity

and concavity features extracted from single closed contours for spotting words in historical handwritten

documents. In historical printed text, Khurshid et al. [115] propose an approach to initially align features (S-

characters) extracted from connected components at character level by DTW and subsequently compare the

resulting character prototypes at word level using a segmentation-driven edit distance. Rodŕıguez-Serrano545

and Perronnin [143] confirm the superiority of local gradient histogram features over the word profiles for

multi-writer handwritten word spotting using DTW. Papandreou et al. [91] propose an adaptive zoning

description that can also be matched by DTW for printed documents.

Fixed-length representations are also very common in the QBE learning-free case. Gatos et al. [148]

introduce the idea of adaptive zoning features for QBE word spotting in a historical printed document550

dataset. These features are extracted after adjusting the position of every zone based on local pattern

information. The adjustment is performed by moving every zone towards the pattern body according to

the maximization of the local pixel density around each zone. In the same dataset, a size-normalization

technique along with zoning and profile features to compute the dissimilarity between two word images is

proposed in [171]. The distance is based on a combination of a windowed Hausdorff measure and a robust555

curvature estimation using integral invariants. Another learning-free fixed-length representation which is

based on zoning characteristics is proposed in [95] and uses the L1 distance metric. Moreover, characteristic

Loci features [172], which are a particular case of the shape context descriptor, have been used by Fernandez

et al. [149]. They are extracted from keypoints, represented by histograms of Locu numbers in a fixed-length

vector and compared using the Euclidean distance. In Retsinas et al. [41], projections of image gradients560

are combined in a Radon transform-like procedure to form fixed-length vectors which are compared using

the Euclidean distance.

Aldavert et al. [28] propose an unsupervised QBE method based on the BoVW framework which is

enhanced by several improvements recently proposed in computer vision, though not exploited by the docu-

ment analysis community. Particularly, they encode descriptors using the sparse coding technique proposed565

in [173], known as Locality-constrained Linear Coding (LLC). To make visual words more discriminative,

they add spatial information using a Spatial Pyramid Matching (SPM) [165] as well as a power normalization
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technique during the pooling process. The query fixed-length vector is then matched with the vectors of the

dataset word images using the Euclidean distance.

With respect to the learning-free paradigm, there are also methods which allow textual queries as inputs570

(QBS). Bhardwaj et al. [131] extract high order geometrical moments from binary word images as global

features to form fixed-length feature vectors which are compared using the cosine similarity. A template is

used to generate the query word image corresponding to the query text inserted as input by the user. Another

type of techniques that falls in this category relies on representations using word shape coding (WSC). Image

matching is usually performed among code strings by means of the minimum Edit Distance or by some575

sequence alignment procedure. The Edit Distance between two strings is given by the minimum number of

operations needed to transform one string to the other, where the operation is an insertion, a deletion, or a

substitution of a single character. For example, Bai et al. [88] extract features such as character ascenders,

descenders, deep eastward and westward concavity, holes, i-dot connectors and horizontal-line intersection.

These features are represented using word shape coding and the resulting vectors are compared by a sequence580

alignment technique. The main advantage of WSC approaches is that arbitrary textual queries can be used

without involving training on labeled images. However, such approaches have become obsolete over the

years as they are language dependent and feasible mainly in printed documents with already known fonts.

A probabilistic representation for learning-based QBE word spotting in multi-writer text is proposed in

[16]. The query and the dataset word images are represented as sequences of feature vectors extracted using585

a sliding window in the writing direction and they are modeled using statistical models. Particularly, the

authors use multiple instances of a potential query for training a HMM. During the matching process, the

similarity between the query and a word image is obtained by the posterior probability of the candidate

image, given the model. This probability is calculated using either a continuous HMM (c-HMM) or a semi-

continuous HMM (sc-HMM) and a GMM as a universal vocabulary for score normalization. Among different590

types of features, they report the best performance when local gradient histogram features (LGH) are chosen.

However, the method is constrained to queries for which at least one instance appears in the training set.

This issue is tackled in their extended work [66] for spotting out-of-vocabulary (OOV) words using a sc-

HMM. In fact, the model’s parameters are estimated on a pool of unsupervised samples which allow the

model to adapt online to the query image. Moreover, the similarity computation between two sc-HMMs is595

simplified to a DTW between their Gaussian mixture weight vectors which reduces the computational cost.

Concerning learning-based methods, recently there has been much interest in using neural networks for

keyword spotting. When dealing with word image description and word to word matching, convolutional

neural networks (CNN) or similar feed-forward networks that include convolutional layers in their architec-

ture have been used. These networks work typically either by producing in their output a suitable descriptor600

of the input word image [67], or by using network layer activations to create input word image descriptors

[42, 145]. Again a typical distance that is used is the Euclidean, with the exception of Sudholt et al. [67] who

use the Bray-Curtis dissimilarity. The Bray-Curtis dissimilarity is a metric that has been shown to work well

with spatial pyramid representations [174]. In Zhong et al. [38], a neural network that accepts pairs of word

images has been proposed. This model directly outputs similarity scores for the input pair. In order to deal605

with the fact that neural networks require a comparably large training set, the technique of jittering or data

augmentation has been used to augment training sets. Following this technique, a number of simple affine

transformations can be applied on the training word images to create new training images and boost NN
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performance [42, 45, 67]. Pretraining on a generic set and then refining the network on a different second set,

which typically should be qualitatively closer to the test set, is another standard practice [42, 45]. In Sfikas610

et al. [145], only pretraining with a generic set is performed, skipping refining altogether. They proceed

using combinations of intermediate layer activations as features, aiming to capture more abstract textual

features in this manner.

It is interesting to notice that there exist learning-based methods which can deal with both types of

query formulation (QBE and QBS). In the seminal work of Almazán et al. [43, 146], the authors have615

proposed a model to learn projections from an image space and a text-string space to a common latent

subspace using Kernel Common Subspace Regression (CSR). Vectors in the latent subspace correspond to

a common fixed-length representation, computable both for word images and text strings. Dense SIFT

descriptors are extracted from word images, encoded to Fisher vectors, while their labels are used to create

Pyramidal Histogram of Characters (PHOC) descriptors. PHOC encode textual information in the form of620

a spatial pyramid of character histograms, treating the absence or presence of unigrams and bigrams as text

attributes. At test time, dataset word images and the query are projected to a Euclidean common latent

subspace and compared using nearest neighbour search. A number of recent works have been inspired by

the work of Almazán et al., further extending or adapting the base model [42, 45, 65, 67]. In Sudholt et

al. [67], PHOC descriptors are computed using a deep CNN, while in Krishnan et al. [42] a deep CNN is625

used to create word image descriptions. In Wilkinson et al. [45], a triplet CNN is used, accepting pairs

of positive word matches plus a negative. Also, a new text descriptor is proposed, dubbed DCT of Words

(DCTofW). The work of Aldavert et al. [27] also combines visual (SIFT) and textual information obtained

from character n-gram models to allow example-based or textual queries. Word images are represented by

fixed-length vectors and matched using the cosine similarity.630

4.3.2. Word to line matching

This family of methods requires the documents to be segmented at text lines. A window slides over the

text lines in order to extract column-based features. We can distinguish two main types of approaches.

In the first category, there are learning-free QBE methods that represent the query and the text lines

with sequences of feature vectors and word spotting is applied as a subsequence matching task. In this635

framework, Terasawa and Tanaka [69] extract Slit Style HoG features from the query image and the text lines

using a sliding window. These features are a modification of HoG which is based on gradient distribution.

Variable length sequences representing the query and the text lines are then matched using a DTW-based

technique which uses Continuous Dynamic Programming (CDP). CDP computes similarities between the

query sequence and all the possible subsequences of a text line. Similarly, Mondal et al. [63] make use640

of word profiles and propose a flexible sequence matching technique which is based on DTW and has the

ability to find subsequences in a sliding window-oriented approach, permits one-to-many and many-to-one

correspondences while at the same time skipping outliers.

The second category is mainly composed of learning-based QBS methods. Therein, representations of

features extracted via a sliding window are modeled using statistical models, such as HMMs [46, 140, 160]645

and recurrent neural networks [21, 159].

For instance, a HMM-based method which learns character models for word spotting in handwritten text

is proposed in [140]. Initially, text line images are normalized to reduce variability in writing style. Each

text line image is represented by a sequence of feature vectors which is obtained by a sliding window of
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one pixel width moving from left to right over the image. At each window position, 9 geometrical (Section650

4.1) features are extracted. A character HMM has a standard number of states, each emitting observable

feature vectors with output probability distributions given by a GMM. Character models are trained offline

using labeled text line images. Then, a text line model is created as a sequence of letter models according

to the transcription. The probability of this text line model to emit the observed feature vector sequence

of the line image is maximized by iteratively adapting the initial output probability distributions and the655

transition probabilities between states with the Baum-Welch algorithm [175].

A HMM-Filler model which can generate any sequence of characters is created using all trained letter

HMMs. For a given text line image which is modeled by the Filler model, the likelihood of the observed

feature vector sequence is computed using the Viterbi algorithm [175]. This way the Filler model can be

used once to compute offline the Viterbi decoding for all given text line images. In the online phase, a660

textual query is represented by a keyword model which is build from character and Filler HMMs. A Viterbi

score is also computed for this keyword model and a given text line image and the final matching score

between the query and the specific text line is a likelihood ratio of the keyword and Filler text line models,

normalized by the length of the query word. This work is improved in [46] by integrating character n-gram

language models into the spotting task.665

An important drawback of this approach is the large computational cost of the keyword-specific HMM

Viterbi decoding process needed to obtain the confidence scores of each word to be spotted. To counter this

issue, Toselli et al. [160] propose a technique to compute such confidence scores, directly from character

lattices produced during a single Viterbi decoding process using only the Filler model, meaning that no

explicit keyword-specific decoding is needed.670

Another learning-based QBS method which makes use of the same features, the same representation and

employs bidirectional long-short term memory (BLSTM) recurrent NNs is presented in [21]. The input layer

contains one node for each of the 9 geometrical features extracted at each position of the sliding window,

the hidden layer consists of the long short-term memory (LSTM) cells and the output layer contains one

node for each possible character along with a special node to indicate “no character”. The output activation675

of the nodes in the output layer are normalized to sum up to 1. This way they can be seen as a vector

indicating the probability for each letter to occur at a particular position. The output of the network is

therefore a matrix of probabilities for each letter and each position. A score is assigned to each path through

the matrix by multiplying all probability values along the path. The letters visited along the optimal path,

meaning, the one with maximum score, give the spotted letter sequence. To spot a query keyword inside680

a text line, the character probability sequence is extended by an additional entry with a constant value of

1. By adding this symbol at the beginning and at the end of the keyword, the algorithm finds the best

path through the output matrix that passes through the symbol added at the beginning, then through all

the characters of the keyword, and then through the symbol added at the end. In other words, the path

traverses through the letters of the keyword at their most likely position while the rest of the text line has685

no influence. This way, the keyword spotting score reflects the product of all character probabilities of the

optimal subsequence that starts with the space before the first character of the keyword and ends with the

space after its last character. This score is also normalized by the length of the query word.
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4.3.3. Word to page matching

One of the major issues of the preprocessing stage is that possible segmentation errors are regularly690

conveyed in the spotting phase. Particularly, accurate word segmentations are difficult to obtain in hand-

written and degraded documents. For this reason, several segmentation-free word spotting techniques have

emerged.

Leydier et al. [68, 121] compute local keypoints over a document page in order to detect regions of

interest. Gradient features are then extracted from these zones of interest and the query image. The user695

actually inserts a textual query which is artificially generated from manually selected character images. The

query image feature vector is then matched with that of each zone using an elastic matching method between

different pixel-wise gradient matchings. In a similar fashion, Zhang and et al. [30, 123] detect regions of

interest by computing local keypoints over the document pages. Features based on the Heat Kernel Signature

(HKS) [176] are extracted from these regions and used through a costly distance computation in a language700

independent manner, though not scalable in large datasets.

The most common approach is to use a patch-based framework [33, 36, 62, 82, 92] in which a window

slides over the whole document. In this framework, perfect segmentations are not expected and elements

from surrounding words will appear within a patch. Gatos et al. [92] detect salient text regions on a

document page using a RLSA-based smoothing. A block-based extraction of pixel densities is then applied705

for the query image and the salient regions which are matched using a template matching process satisfying

invariance in terms of translation, rotation and scaling. Rusiñol et al. [82] represent document regions with

a fixed-length descriptor based on the BoW representation of SIFT features extracted via a sliding window

over the whole page. In this case, comparison of regions is much faster since a dot-product or Euclidean

distance can be used. In addition, Latent Semantic Indexing (LSI) is used to learn a latent space where710

the distance between word representations is more meaningful than that in the original space. Rothacker

et al. [33] also make use of the BoW to feed a HMM obtaining a robust representation of the query in a

patch-based framework. The HMM is trained on-the-fly from the specific query.

However, when following a sliding-window approach there are too many possible targets to consider,

depending on the number of scales and the stride length. This leads to an increase in the number of false715

matches and the computational demands. To this end, Kovalchuk et al. [61] propose the extraction of

a set of overlapping candidate targets as groups of connected components that satisfy location and scale

constraints to fit a standard-size bounding box. Subsequently, they combine HoG and LBP features to form

a fixed-size feature vector representing the query and the candidate target images which are matched using

the Euclidean distance.720

Almazán et al. [62] use HoG features to describe the query image and the document pages in a fixed

grid using a sliding window. In order to speed up the sliding-window approach, both Almazán et al. [62]

and Rusiñol et al. [122] make use of the product quantization method [177] to compress the descriptor size.

In the same direction, Ghosh et al. [147] perform QBS word spotting by avoiding the costly computation

of the attribute-based representation over a sliding-window at query-time, which is previously employed in725

[43] for segmentation-based word spotting. This is achieved by pre-computing an integral representation of

the attributes at the cost of discrimination.

Moreover, Riba et al. [54] employ a graph representation relying on a codebook of graphemes which are

extracted from shape convexities upon the vectorial approximation of the skeleton graph. These graphemes
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are used as stable units of handwriting, along with their spatial relationships. Segmentation-free word730

spotting is achieved by localizing the query word graph as a subgraph of the entire graph representing the

whole document. The image matching is performed using an approximate graph Edit Distance method

based on a bipartite-graph matching [178] between the two graphs. This time-consuming graph matching is

improved by a graph indexing approach that makes use of binary embeddings during preprocessing.

5. Retrieval enhancement735

In this section, we present a number of methods which are used to improve the retrieved results of a word

spotting system in terms of incorporating the information of the ranked lists obtained from user queries.

This is done either by involving the user to select positive query instances in a supervised process, or in a

purely unsupervised manner.

5.1. Supervised relevance feedback740

The ranked lists of the images which are most similar to the query usually contain many false positive

instances. In order to improve the performance of content-based image retrieval systems, several boosting

mechanisms have been proposed over the years. Relevance feedback is a common technique of this type

of approaches. The idea is to examine the results that are initially returned from a given query and to

use information about whether or not those results are relevant. This feedback about relevance allows745

to provide an enhanced result list in the subsequent iterations. Relevance feedback is also used in more

general information retrieval applications such as multimedia retrieval (MMR) [179], aiming to refine the

multimedia data representation. The proper extraction of semantic information from multimedia data

sources is a challenging task since these sources include directly perceivable media such as audio, image

and video, indirectly perceivable sources such as text, bio-signals as well as not perceivable sources like750

bio-information, stock prices, etc. Particularly for word spotting, we can distinguish two main families of

approaches, namely, supervised and unsupervised methods.

In the case of supervised relevance feedback, also known as explicit feedback, the user provides relevance

judgements using either a binary or a graded relevance system. Herein, we can further notice two more

categories. On one hand, relevance feedback methods may follow the idea of query reformulation. Its goal755

is to search, given the relevance assessments, a new query point in the vector domain that is closer to the

positive instances and farther to the negative ones than the original query point. On the other hand, re-

ranking methods attempt to reorganize the initial ranked list by means of the relevance judgements, without

casting any new query.

For instance, the works of Bhardwaj et al. [131] and Cao et al. [114] adopt the query reformulation760

idea to improve the retrieved results based on the widely-used Rocchio’s formula [180]. At each relevance

feedback iteration the Rocchio’s algorithm reformulates the query feature vector by adjusting the values

of its individual features according to the relevance information. In a similar way, Konidaris et al. [95]

and Kesidis et al. [96] propose to include the user in the retrieval phase by selecting positive instances

from the initial ranked list obtained from synthetic query strings. Since the initial results are based on an765

heterogeneous comparison between synthetic keywords and real images, the accuracy might not be adequate.

Consequently, the transition from synthetic to real data is made feasible by exploiting relevant judgements

and use them to perform new queries thus leading to an increased performance. Of great interest is also the
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work of Rusiñol et al. [110] where relevance feedback is tested both under the query reformulation scenario

and the re-ranking scheme. Particularly, Rocchio’s method [180] and a related variant are compared with770

a relevance score [181] (re-ranking). This score is assigned for each word image of the initial ranked list as

the ratio between the nearest relevant and the nearest non-relevant word images for this particular image.

These relevance scores are then used to form the final ranked list.

5.2. Unsupervised feedback and re-ranking

The obvious benefits of supervised relevance feedback lie on the fact that the user judgements are775

assigned for only a small portion of all possible candidate targets of the query image inside the document

collection. However, this manual process still remains costly and sometimes, even error-prone, i.e. for

historical degraded and cursive documents where the visual information is not distinctive enough. This

gives rise to unsupervised methods where it is more preferable to automatically select instances from the

retrieved results. Pseudo-relevance feedback [182] is a characteristic example of this type of techniques. In780

this case, the top-N results from the ranked list are considered as relevant. Subsequently, an unsupervised re-

ranking scheme is used on these top ranked results in order to select a number of elements from the reordered

list. These elements are finally added into the query for query expansion to obtain a new improved ranked

list. The process repeats iteratively until the desirable performance is reached.

Regarding the unsupervised re-ranking scheme, Almazán et al. [62] apply a second ranking step which785

considers only the best candidates retrieved by an initial efficient ranking step and uses more discriminative

features encoded with the costly Fisher vector representation. Once the results retrieved by the sliding-

window search are re-ranked using more informative features, a number of top-ranked window regions are

used for query expansion. Then the expanded query set is used as the new positive samples of the query

model. Although this set may also contain negative samples the accuracy seems to improve per each iteration.790

In the same spirit, Ghosh and Valveny [147] use a re-ranking step to compensate for the loss of accuracy

accrued from an approximate solution of the powerful attribute-based representation in order to transit from

segmentation-based to segmentation free word spotting. In other words, they use the top-N candidates from

the ranked list given by the initial ranking obtained with the sliding window search and then re-rank them

using the more discriminative original representation. Shekhar and Jawahar [182] follow a similar pseudo-795

relevance feedback paradigm. Therein, the top-N retrieved results are re-ranked according to a score which

integrates information from SIFT descriptors and BoVW representation with spatial information, which was

missing on the indexing stage. Concisely, the spatial pyramid is used to calibrate the score of each region

of the word independently.

5.3. Data fusion800

Pseudo-relevance feedback methods may sometimes result into several ranked lists which need to be

combined into a final ranked list. Data fusion methods accept two or more ranked lists and merge them

into a single ranked list thus providing a better effectiveness than any original ranked list. There are two

main categories of data fusion techniques. Methodologies which use the similarity values from each ranked

list in order to produce the final ranked list are known as score-based, while those which use the ranking805

information from each list in order to create the final ranking are defined as rank-based.

It is interesting to notice that the work of Rusiñol et al. [110] also proposes three different data fusion

techniques. The idea is to deal with variability in writing style by casting multiple queries and combine
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the results. An early fusion method combines feature vectors accrued from different queries before the

retrieval phase. This is done by averaging the query image descriptors and then normalizing by the L2-810

norm. The second method is a late fusion score-based technique (CombMAX) which assigns to each word

in the collection its maximum score across the different casted queries. The third fusion technique is a

rank-based method, called Borda Count [183]. Herein, the top most image on each ranked list gets n votes,

where n is the dataset size. Each subsequent rank gets one vote less than the previous rank. The final

ranked list is obtained by adding all the votes per image and re-sorting.815

Louloudis et al. [89] also make use of three rank-based fusion methods in order to combine multiple lists

obtained from different word spotting systems applied to the same query. Particularly, the authors consider

the same preprocessing steps and matching algorithms and test two different feature types for the same

query. This results into two different ranked lists. The first combination method (Rank Position) takes into

account only the rank positions of the corresponding words. The second method is the Borda Count and820

the third method which seems to outperform the other two is a Minimum Ranking method. Therein, for

each retrieved word the minimum rank position on all ranked lists is considered as the distance measure.

Finally, the authors in [84] present five scored-based and three rank-based fusion methods to merge

multiple ranked lists obtained from each top-ranked instance on the initial ranking list. Since the similarity

scores among separate ranked lists may differ both in range and distribution, they also suggest to normalize825

these scores using a number of score normalization techniques.

6. Evaluation

The ranked list of results obtained from a word spotting system for a number of different queries is

finally used to evaluate its accuracy. In this section, we introduce the databases which are publicly available

and most widely used for word spotting. After describing the importance of having a common evaluation830

scheme for direct comparison between methods, we present the distinct measures used for assessing the

performance. Finally, we present and discuss the results achieved by the state of the art in various word

spotting applications. With respect to the results we have two sources of information. The first one contains

results from two keyword spotting competitions, namely, H-KWS 2014 [184] and KWS-2015 [185], which

were organized in conjunction with the ICFHR 2014 and ICDAR 2015 conferences, respectively. The second835

source derives from the results reported by the recently published papers.

6.1. Databases

The IAM 1 database [186] consists of 1, 539 pages of modern handwritten English text, written by 657

writers. Pages are segmented and annotated, comprising 13, 353 text lines and 115, 320 words.

The George Washington2 (GW) database [187] contains 20 pages of historical English text written by840

George Washington and his associates in 1755. The writing styles present only small variations and it can

be considered a single-writer dataset. Pages are segmented and annotated, comprising 656 text lines and

4, 894 words. This is the most commonly used dataset for comparing different word spotting methods.

1http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
2http://www.iam.unibe.ch/fki/databases/iam-historical-document-database
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The H-KWS 2014 Bentham and H-KWS 2014 Modern datasets3 were used in the H-KWS 2014 compe-

tition. The first one contains 50 pages from a document collection written by the English philosopher and845

reformer Jeremy Bentham (1748-1832) and his secretarial staff. It contains significant variability in writing

style and font size as well as noise. The second one is composed of 100 modern handwritten document pages

written by 25 authors in four different languages (English, French, German and Greek).

The KWS-2015 Bentham4 dataset contains 70 document pages containing 15, 419 segmented word images

and was used in the KWS-2015 competition.850

To alleviate the process of cross-referencing the results among new word spotting methods and the ones

considered in this work, Table 4 discriminates the proposed approaches for the aforementioned databases.

We note that, to our knowledge, some of the proposed methods applied in the KWS-2015 Bentham dataset

are not published yet and therefore we mention the respective groups and refer to the specific contest.

As we will show in Section 6.3, apart from the competitions, we mainly focus on the results reported by855

the methods presenting the best comparison degree, in terms of the employed evaluation protocols and

experimental setups.

Table 4: List of word spotting methods that use certain databases.

Databases Methods
IAM Bhardwaj et al. [131], Kumar et al. [40, 74], Frinken et al. [21], Toselli and Vidal [160],

Fischer et al. [46], Almazán et al. [43], Wshah et al. [75], Ghosh and Valveny [47, 147],
Sudholt et. al. [67], Wilkinson et al. [45], Krishnan et al. [42]

GW Leydier et al. [121], Bhardwaj et al. [131], Rusiñol et al. [82, 110, 122], Lladós et al. [57],
Rodŕıguez-Serrano and Perronnin [66], Frinken et al. [21], Almazán et al. [43, 62, 150, 157],
Liang et al. [44], Aldavert et al. [27, 28], Howe [51, 52], Dovgalecs et al. [36],
Zhang et al. [30], Fischer et al. [46], Rothacker et al. [33, 34], Kovalchuk et al. [61],
Mondal et al. [63], Zagoris et al. [29], Wang et al. [58], Ghosh and Valveny [47, 147]
Sudholt et al. [67], Wilkinson et al. [45], Krishnan et al. [42], Zhong et al. [38]

H-KWS 2014 Bentham Kovalchuk et al. [61], Almazán et al. [146], Howe et al. [51], Leydier et al. [68],
Pantke et al. [188], Aldavert et al. [28], Yao et al. [189]

H-KWS 2014 Modern Kovalchuk et al. [61], Almazán et al. [146], Howe et al. [51], Leydier et al. [68],
Pantke et al. [188], Aldavert et al. [28]

KWS-2015 Bentham Rothacker et al. (PRG) [185], Rusiñol et al. (CVC) [185], Leifert et al. (CITlab) [185],
Sfikas et al. [145]

6.2. Evaluation protocols and measures

Many word spotting methods published in the recent years vary in assumptions and settings on which

they depend. More specifically, some studies require the words to be segmented during preprocessing, while860

others require segmentation at line level or no segmentation at all. In addition, some methods are meant to

perform well on a particular language, while others are able to deal with different languages and sometimes

even heterogeneous scripts. There are also methods that target only printed text or specific writing styles,

whereas others cope with handwriting variability. Moreover, some works rely on substantial prior learning

using annotated data, while others are applied on unlabeled sets.865

Apart from this wide variety of procedures and targets, there is also a huge discrepancy among methods

that follow different evaluation protocols. This lack of homogeneity may lie on the distinct evaluation

3http://vc.ee.duth.gr/H-KWS2014/
4http://transcriptorium.eu/~icdar15kws/data.html
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metrics, the sets of queries used for a specific dataset, the occurrence frequency of different queries, the

number of pages or folds used for validation and testing for learning-based methods and others. The notable

work of Rusiñol et al. [122] includes a review of the results obtained from various word spotting methods870

when tested on the English manuscript from the George Washington collection [187]. The inhomogeneity of

these results somewhat confirms this discrepancy.

Consequently, one must take seriously into account the aforementioned aspects before evaluating a word

spotting method, so as to make it directly comparable to as many approaches as possible. This way the

results reported in the related literature will become more beneficial for new publications. Table 5 presents875

a clear view of the word spotting methods considered in this work with respect to the variable categories

which are related to the evaluation issues mentioned above. Concisely, we consider the level at which

segmentation is applied during preprocessing (word, line) and use the term “free” for methods that perform

no segmentation at all. We then take into account whether annotated data is used for training or not. The

variability of the handwriting with respect to the number of authors is also taken into consideration (single880

author or multiple writers) except for printed documents. As we can see in Table 5, there are some distinct

evaluation indices in the word spotting literature which are defined as follows. Precision is the fraction of

retrieved words that are relevant to the query:

P =
|{relevant instances} ∩ {retrieved instances}|

|{retrieved instances}|

Recall is the fraction of relevant words that are successfully retrieved:

R =
|{relevant instances} ∩ {retrieved instances}|

|{relevant instances}|

The F-measure is defined as the harmonic mean of the precision and the recall:885

F = 2 · P ·R
P +R

The R-Precision index is defined as the Precision at a specific Recall value where P = R. In the case that

precision should be determined for the k top retrieved words, P@k is defined by:

P@k =
|{relevant instances} ∩ {k retrieved instances}|

|{k retrieved instances}|

This measure defines how successfully the methods produce relevant results to the first k positions of the

ranked list. Finally, the Average Precision index (AP) is defined as the average of the precision value

obtained after each relevant word is retrieved:890

AP =

n∑
k=1

(P@k × rel(k))

|{relevant instances}|

where rel(k) is an indicator function equal to 1 if the word at rank k is relevant and 0 otherwise. The

mean value of the Average Precision over all queries used in a word spotting task defines the Mean Average

Precision (MAP). In Table 5 it is easy to observe that this index is the most dominant, thereby indicating
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its objectiveness and reliability.

In the case though where non-binary relevance assessments are provided beforehand, the Normalized895

Discounted Cumulative Gain (NDCG) index can be used in order to handle small variations of the query

word that can be found in the datasets. The NDCG measures the performance of a retrieval system based

on the graded relevance of the retrieved entities. It varies from 0.0 to 1.0, with 1.0 representing the ideal

ranking of the entities. For example, the words “fort” and “Fort” may have a relevance judgement equal to

0.9. It is defined by:900

nDCG =
DCG

IDCG

where:

DCG = rel1 +

n∑
i=2

reli
log2(i+ 1)

where reli is the relevance judgement at position i, and IDCG is the ideal DCG which is computed from

the perfect retrieval result.

Finally, we would like to emphasize some crucial points of the performance evaluation of a word spotting

system. As it is previously mentioned, the relevance criterion determines which query instances should be905

considered as retrieved and which of the retrieved as relevant. In the case of segmented words, the relevance

criterion is a trivial choice as it states directly whether a retrieved word image is correctly classified as the

word being searched for.

Actually, the larger the entity that is searched for occurrences of the query is, the less meaningful the

relevance criterion becomes. In other words, when line-based methods are evaluated, this criterion only states910

if a retrieved line indeed contains the keyword, without any particular information of the relative location

inside the line. Therefore, the evaluation measures could overestimate the performance. Not to mention

that such a binary relevance assessment would yield a completely biased evaluation in a segmentation-free

method where a retrieved word area would be considered as relevant if it just contained an actual instance

in the document page. Due to this issue, the relevance criterion for segmentation-free word spotting systems915

should take into account the location information. A widely used measure in the literature considers the

intersection over union (IoU) percentage between the retrieved word area and the ground-truth one. If this

overlap ratio exceeds a specific threshold (usually 50%) the retrieved result is deemed as relevant. By these

means, the system is evaluated in terms of how accurately the query instance is retrieved. We should also

note here that in a segmentation-free method under the QBE scenario, the query itself should be taken into920

account in the final hit list, since it could be missing from the retrieved regions.

6.3. Evaluation results

Regarding the first handwritten keyword spotting competition [184], an evaluation framework was estab-

lished for assessing QBE keyword spotting approaches. The competition was divided in two distinct tracks.

A segmentation-based track, where the location of word images inside the document pages was provided925

and a fully segmentation-free track. For each track, 50 document images of the H-KWS 2014 Bentham

dataset and 100 document images of the H-KWS 2014 Modern dataset (25 pages per language) were used

for testing at the competition, resulting in a total number of 300 document images for both tracks. The

query set of each dataset contained word image queries of length greater than 6 letters appearing more than

5 times. The measures employed in the performance evaluation of the submitted word spotting algorithms930
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Table 5: Review of word spotting methods according to the employed evaluation procedure.

Publications Segmentation Learning Writing style Evaluation index

[21, 46, 72–75, 160] Line Yes Multi-writer MAP

[30, 33, 61, 62, 82] Free No Single MAP

[31, 57, 58, 110, 142] Word No Multi-writer MAP

[29, 35, 39, 51, 108] Word No Single MAP

[88, 90, 95, 96] Word No Printed Precision/Recall

[54, 55, 122] Free No Multi-writer MAP

[18, 43, 66] Word Yes Multi-writer MAP

[99, 100, 152] Word Yes Printed MAP

[102, 115, 141] Word No Printed Precision/Recall, F-measure

[27, 52] Word Yes Single MAP

[36, 56] Free No Single Precision/Recall

[80, 149] Word No Multi-writer Precision/Recall

[48, 49] Line Yes Multi-writer Precision/Recall

[89, 91] Word No Printed Detection rate

[97, 111] Character Yes Printed Precision/Recall

[92] Free No Printed Precision/Recall, F-measure

[139] Line No Multi-writer MAP

[78] Word Yes Multi-writer F-measure

[135] Word-part No Multi-writer Detection rate

[63] Line No Single F-measure

[153] Word No Single Precision/Recall

[70] Word No Single Precision/Recall, F-measure

[44] Word Yes Single MAP at rank 10

[79] Word Yes Multi-writer Precision rate

[182] Word No Printed MAP

[83] Word Yes Multi-writer Precision/Recall, F-measure

[71] Word-part Yes Multi-writer Precision/Recall rates

[87] Word No Printed Mean Precision/Recall

[120] Word Yes Single Precision/Recall

[147] Free Yes Multi-writer MAP

[151] Line No Printed MAP

[34] Free Yes Single MAP

[84] Word No Multi-writer R-Precision

[68] Free No Multi-writer R-Precision
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are the Precision at Top 5 Retrieved words (P@5), the Mean Average Precision (MAP) and the Normal-

ized Discounted Cumulative Gain (NDCG) for both binary and non-binary relevance judgements. In the

segmentation-free track, an overlap percentage criterion was used to consider a retrieved result as relevant

based on three overlap thresholds (0.6, 0.7, 0.8).

Five distinct research groups have participated in the competition with three methods for the segmentation-935

based track and four methods for the segmentation-free track. However, we present only the results achieved

by the winners of each track. For more details about the methods participating and the results obtained

in each case we refer the reader to [184]. The winner of the segmentation-based track is the learning-based

method of Almazán et al. [146] which relies on the attribute representation of visual and textual features.

We should note here that the authors adapt their system to the Bentham and the Modern benchmarks, by940

training attributes in the George Washington and the IAM datasets, respectively.

The winner of the segmentation-free track is the learning-free method of Kovalchuk et al. [61] based

on the fixed-length representation of HOG and LBP features. The results obtained by these methods are

presented in Table 6. The third row corresponds to the segmentation-based track, whereas the last row

stands for the segmentation-free track. For the segmentation-free track we only present the results obtained945

on average for all the threshold values of the overlap percentage criterion.

Table 6: Experimental results achieved by the winners of each respective track.

Method
Bentham Modern

P@5 MAP NDCG (Binary) NDCG P@5 MAP NDCG (Binary) NDCG

Almazán et al. [146] 0.724 0.513 0.744 0.764 0.706 0.523 0.757 0.757

Kovalchuk et al. [61] 0.609 0.416 0.638 0.56 0.539 0.263 0.483 0.483

The second handwritten keyword spotting competition [185] was divided into two distinct tracks, namely,

a learning-free (TRACK I) and a learning-based (TRACK II) track whereas each track included two optional

assignments. A segmentation based assignment at word level and a segmentation-free assignment compose

Track I. The training-based track was divided in QBE and QBS methods in a segmentation-free framework.950

Participants could submit to one or both of assignments, depending on the capabilities or restrictions of

their systems. The evaluation set consisted of 70 document images from the KWS-2015 Bentham dataset,

containing 15, 419 segmented words. The query set consists of 243 keywords of different lengths (615 char-

acters). Each of these queries is represented by 6 or less different instances, comprising a total of 1421 query

images. All queries occur at least 4 times in the evaluation set.955

For each assignment, a baseline system was provided to the participants in order to compare their methods

and tune the parameters of their systems, using a validation set of 10 document images, containing 3, 234

words. The query set for the validation partition included 95 images of 20 different keywords, extracted

from the training page images as well. An additional set of 423 document images, manually segmented and

transcribed into 11, 144 lines, was also handed to the participants competing in Track II as training data.960

No other training sets were allowed in this track.

Mean average precision (MAP) and P@k were used to evaluate the solution of each participant corre-

sponding to a particular assignment of each track. If a participant submitted solutions for both assignments,

the MAP scores of each assignment were combined to produce a single ranking for each track. The combi-

nation rule was designed in order to favor participants with a flexible system without hampering those with965

a highly-specialized method. In segmentation-free scenarios, an overlap ratio of 0.7 between the retrieved
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area and the ground truth one was required to accept a result as a true positive.

Six research groups submitted final solutions to the evaluation system. Four of them participated in

Track-I and the other two in Track-II. We will only present the results achieved by the winners of each

track. To our knowledge, the proposed methods of the winning systems are not yet published. For this970

reason, we only mention the respective groups and refer the reader to [185] for more details about the

baseline systems, the participant systems as well as the results achieved in each case.

The winner of the learning-free track was the Pattern Recognition Group (PRG - Leonard Rothacker,

Sebastian Sudholt, Gernot A. Fink), from TU Dortmund University of Germany and submitted solutions for

both assignments. The winner of the learning-based track was the Computational Intelligence Technology975

Lab. (CITlab - Gundram Leifert, Tobias Strauß, Tobias Grüning, Roger Labahn) from the University of

Rostock, Germany who also submitted solutions in both assignments of Track II. Tables 7 and 8 illustrate

the results for each case, respectively.

Table 7: Results for the winner of Track I.
Assignment Segm. based Segm. free

Group MAP P@5 MAP P@5

PRG 0.4244 0.4605 0.2761 0.3434

Table 8: Results for the winner of Track II
Assignment QBS QBE

Group MAP P@5 MAP P@5

CITlab 0.8711 0.8737 0.8521 0.8552

In order to provide further insight of the state-of-the-art performance achieved in word spotting, we

present the results reported by the recently published methods in the GW and IAM databases. Although980

these datasets are widely used, there exists no standard experimental setup and each work adapts it to the

needs of their proposed algorithm. For instance, learning-based methods use cross validation and do not

evaluate the method on the same data used to fit their model. This reduces the amount of queries as query

words must appear both in train and test folds. However, we choose these specific datasets since the reported

results are comparable between various methods, at least at a certain degree. In this context, we review985

these results in Tables 9 and 10 by distinguishing various methods according to the query formulation, the

segmentation level required, the use of learning with labeled data (i.e. number of training, validation and

testing folds) and the employed experimental setup (i.e. query list). In each case, the MAP measure is used

for performance assessment.

With respect to the GW database, Almazán et al. [43] partition the dataset into two sets at word990

level containing 75% and 25% of the words. The first set is used to learn the attributes representation

and the calibration, as well as for validation purposes, whereas the second set is used for testing purposes.

The experiments are repeated four times with different training and testing partitions and the results are

averaged. In the QBE case, each word of the test set is used as a query in a leave-one-out style. Moreover,

the query image is removed from the test set and queries without relevant occurrences are discarded. This995

setup is also used by Sudholt et al. [67], Krishnan et al. [42] and Wilkinson et al. [45]. In the QBS case,

Almazán et al. [43] use only words that also appear in the training set as queries. This setup is also used by
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Table 9: State-of-the-art performance for the GW database.

Reference Query Segmentation Learning Setup MAP

Almazán et al. [43] QBE Word 4-fold cross validation: All words in test set 0.929

2 training, 1 validation as queries

and 1 testing folds

Sudholt et al. [67] QBE Word Same as [43] Same as [43] 0.967

Krishnan et al. [42] QBE Word Same as [43] Same as [43] 0.944

Wilkinson et al. [45] QBE Word Same as [43] Same as [43] 0.980

Rodŕıguez-Serrano QBE Word 5-fold cross validation: All words in training 0.531

and Perronnin [66] 1 training, 1 validation set as queries

and 3 testing folds

Aldavert et al. [28] QBE Word N/A All words with ≥ 10 0.765

occurrences and ≤ 3

letters as queries

Kovalchuk et al. [61] QBE Word N/A Same as [28] 0.663

Almazán et al. [43] QBS Word 4-fold cross validation: All words in training 0.939

2 training, 1 validation set appearing in all 4

and 1 testing folds folds as queries

Sudholt et al. [67] QBS Word Same as [43] All words appearing 0.926

more than once in the

test set are used as queries

Krishnan et al. [42] QBS Word Same as [43] (QBS) Same as [67] (QBS) 0.928

Wilkinson et al. [45] QBS Word Same as [43] (QBS) Same as [67] (QBS) 0.936

Fischer et al. [140] QBS Line Same as [43] (QBS) Same as [43] (QBS) 0.600

Frinken et al. [21] QBS Line Same as [43] (QBS) Same as [43] (QBS) 0.840

Fischer et al. [46] QBS Line Same as [43] (QBS) Same as [43] (QBS), 0.738

excluding punctuation

marks from query list

Kovalchuk et al. [61] QBE Free N/A Same as [28], 50% 0.501

overlap

Rothacker et el. [33] QBE Free N/A All words as queries, 0.611

20% overlap

Almazán et al. [62] QBE Free N/A All words as queries, 0.688

20% overlap

Almazán et al. [62] QBE Free N/A All words as queries, 0.591

50% overlap

Rusiñol et al. [122] QBE Free N/A All words as queries, 0.613

50% overlap
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Table 10: State-of-the-art performance for the IAM database.

Reference Query Segmentation Learning Setup MAP

Almazán et al. [43] QBS Word 3-fold cross validation: All words in training 0.806

1 training, 1 validation set appearing in all 3

and 1 testing folds folds as queries

Sudholt et al. [67] QBS Word Same as [43] All words appearing 0.829

more than once in the

test set are used as queries

Krishnan et al. [42] QBS Word Same as [43] Same as [67] 0.915

Wilkinson et al. [45] QBS Word Same as [43] Same as [67] 0.894

Fischer et al. [140] QBS Line Same as [43] Same as [43] 0.360

Fischer et al. [46] QBS Line Same as [43] Same as [43] 0.550

Frinken et al. [21] QBS Line Same as [43] Same as [43] 0.780

Fischer et al. [46, 140] and Frinken et al. [21]. In [46] though, punctuation marks are treated as individual

words and they are excluded from the query list. This reduces the number of queries leading to an increased

performance. Sudholt et al. [67] use all words appearing more than once in the test set as queries. This is1000

also followed by [42, 45].

Rodŕıguez-Serrano and Perronnin [66] split the dataset uniformly into five folds, one for training, one

for validating the parameters and three folds for testing their method. For each run, they compute the

MAP of the test queries, using the best validation parameters. This process is repeated for all 20 different

combinations of their setup and the results are averaged. Aldavert et al. [28] use as queries all dataset word1005

images which appear at least 10 times and contain three or more characters. The query images themselves

are also discarded from the retrieved results during evaluation. Kovalchuk et al. [61] employ the same

setup as [28] for word-based word spotting and further perform segmentation-free word spotting. In the

segmentation-free case, the query image is included in the retrieved areas when assessing the performance

and a retrieved region is considered as relevant if it overlaps more than 50% with the ground truth one.1010

In the segmentation-free paradigm, Rothacker et al. [33], Almazán et al. [62] and Rusiñol et al. [122]

use all word images as queries to retrieve candidate regions inside the document pages of the GW collection.

The overlap percentage criterion used in [33, 62] is set to 20%. In addition, Almazán et al. [62] also use a

50% overlap criterion in their reported results rendering their work directly comparable with that of Rusiñol

et al. [122].1015

The experimental setup employed in the IAM benchmark is common for most of the reported results.

There is an official partition for text line recognition which splits the pages into three different sets. The

first one is used for training and contains 6, 161 lines, the validation set contains 1, 840 lines and the test

set contains 1, 861 lines. These sets are writer independent, i.e., each writer contributed solely to one of

the three sets. Although stop words are excluded from queries, they still appear in the dataset and act1020

as distractors. The IAM dataset also contains a set of lines whose transcription is uncertain. These lines

are excluded from training and testing. Only words that appear in the training set are used as queries.

Almazán et al. [43] retrieve whole lines that are correct if they contain the query word, so as to compare

their approach with Fischer et al. [46, 140] and Frinken et al. [21]. To this end, all the words of each line are

grouped as a single entity and the distance between a query and a line is defined by the distance between1025

the query and the closest word in the line. We should note here that the results reported by Fischer et al.
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[140] in Tables 9 and 10 are evaluated in [21] through a common experimental setup which allows direct

comparison. Sudholt et al. [67], Krishnan et al. [42] and Wilkinson et al. [45] follow the same protocol as

Almazán et al. [43] for training while at query time they use all words appearing more than once in the test

set as queries.1030

6.4. Results discussion

Regarding the results presented in both competitions it is concluded that training-based methods can

achieve much higher performance than training-free approaches which mostly rely on knowledge about

geometric and structural properties of handwritten images without incorporating information obtained from

the respective transcriptions. In that sense, training-based methods are the best choice if training data are1035

available, to build efficient systems in terms of scalability and performance. However, training data obtained

from documents written in a particular language, render the system’s adaptivity dependent on a language

written in a corresponding script. This can be also confirmed by the work of Almazán et al. [146] who

perform training on GW and testing on Bentham. Segmentation-free word spotting methods should also be

given attention since they still have much room for improvement and they are part of a relatively new and1040

unexplored research topic. Actually, approaches that bypass the segmentation step present a clear advantage

in historical document collections where perfect word or line segmentations are hindered by various factors.

Therefore, future competitions in this field should focus on such aspects to finally help understanding the

relative capabilities and requirements of the different approaches to keyword spotting.

As for the performance achieved by the state-of-the-art methods presented in Tables 9 and 10, we can1045

distinguish the top results per each distinct category for the GW and IAM benchmarks. We particularly

consider the segmentation level as the main categorization factor between different approaches. In the GW

dataset, the top MAP obtained under the QBE scenario, for word-based spotting using training data is

reported by Wilkinson et al. [45] (0.980) superseding the result of the previous state-of-the-art method of

Almazán et al. [43] (0.929). Although comparisons with the reference systems are not fully straightforward,1050

the advantage of this method over other methods that do not rely on supervised learning is clear. In the

same direction, though under the learning-free paradigm, the results reported by Aldavert et al. [28] (0.765)

are quite promising. Among the QBS methods, the work of Almazán et al. [43] (0.939) as well as recent

NN-based models (for example, Wiliknson et al. [45], 0.936), all give excellent results that are numerically

very close to one another. Also, they give superior numerical results compared to the line-oriented methods1055

reported. Nonetheless, their approach requires the pages to be segmented at word level during training,

which is not the case for the three line-oriented approaches. In the segmentation-free case and under the

training-free and QBE paradigm, the best results are reported by Rusiñol et al. [122] (0.613). In the IAM

dataset, the top MAP is reported by the NN-based model of Krishnan et al. [42] (0.915) for QBS word

spotting. Other NN-based approaches come very close to this figure, confirming again the usefulness of1060

neural networks in word spotting.

There also exists a computational analysis for some of the state-of-the-art methods. More specifically,

for the IAM dataset, the QBS method of Almazán et al. [43] requires about 1 second to compare all 5, 000

queries against all 16, 000 dataset words on an 8-core Intel Xeon W3520 at 2.67GHz with 16Gb of RAM.

Actually, it involves only one matrix multiplication to compare all queries using the attributes embedded1065

with Common Subspace Regression (CSR), which is about 0.2 milliseconds per query. This is heavily

contrasted with the work of Frinken et al. [21] which needs a few milliseconds to compare a keyword with
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a single text line. In the segmentation-free framework, the work of Almazán et al. [62] requires less than

15 milliseconds on average to match a query image with a single document page. To our knowledge this

complexity does not correspond to their full system. It rather employs the Exemplar Word Spotting system1070

with product quantization (without re-ranking and query expansion) with a lower MAP (0.518) than that

reported in Table 9 for the GW dataset. The method of Kovalchuk et al. [61] on the other hand takes 33

milliseconds on average to match a query image with all the 20 pages of the GW collection obtaining 0.501

MAP.

7. Conclusion1075

In this survey, we presented a comprehensive study on word spotting for indexing documents available all

over the world, written in various scripts or fonts. After examining the nature of the documents used by the

research community, we described the intermediate steps of a word spotting system, namely, preprocessing,

feature extraction, representation and similarity measures which are used to retrieve instances of user inserted

queries. Subsequently, we overviewed a number of boosting techniques which enhance the outcome of the1080

image matching step. Evaluation standards applied for the performance assessment of a word spotting

system were also examined along with the need for a commonly established protocol to allow straightforward

comparison with the state of the art. Finally, we presented the results reported by the state of the art in the

most commonly used databases. In that sense, we aimed to fulfill one of the major purposes of this work

which is to provide solid background for new researchers who are interested in extending their knowledge in1085

the text understanding area.

In an attempt to compare different word spotting systems, we end up with the following conclusions. The

research community is moving towards scalable systems that could effectively deal with the large amount

of documents. At the same time, the general objective of a word spotting system is to reduce the user

interference as much as possible in terms of preprocessing, parameter tuning and relevance feedback. To this1090

end, learning-based systems which train on adequate annotated data might be more suitable than leaning-

free methods. Since most learning-based methods allow the user to cast arbitrary text queries without the

need for manually picking an example to trigger the search, they might yield a more preferable solution for

large scale indexing and retrieval. Generally, a learning-based method achieves higher performance than a

learning-free method, especially in documents which present writing style variability and are mainly written1095

in languages of a corresponding script. However, such a method will most likely fail if tested on languages

written in a substantially different script without retraining on newly annotated data. Training may also

result in overfitting to a particular writing style or font. Recent works are promising in this respect though

adaptiveness between completely different scripts is still a goal to be reached. In the case where it is difficult

to obtain labeled data, learning-free approaches provide a more practical solution. In that sense, we may1100

say that it always depends on the application field and the available resources.
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[126] M. Feldbach, K. Tönnies, Robust Line Detection in Historical Church Registers, Springer Berlin Heidelberg, 2001, pp.

140–147.

[127] G. Louloudis, B. Gatos, I. Pratikakis, C. Halatsis, Text line and word segmentation of handwritten documents, Pattern

Recognition 42 (12) (2009) 3169 – 3183.

[128] G. Seni, E. Cohen, External word segmentation of off-line handwritten text lines, Pattern Recognition 27 (1) (1994) 411395

– 52.

[129] T. Varga, H. Bunke, Tree structure for word extraction from handwritten text lines, in: Proceedings of the 8th Interna-

tional Conference on Document Analysis and Recognition (ICDAR), 2005, pp. 352–356.

[130] S. Banerjee, G. Harit, S. Chaudhury, Word image based latent semantic indexing for conceptual querying in document

image databases, in: Proceedings of the 9th International Conference on Document Analysis and Recognition (ICDAR),1400

Vol. 2, 2007, pp. 1208–1212.

[131] A. Bhardwaj, D. Jose, V. Govindaraju, Script independent word spotting in multilingual documents, in: Proceedings of

the 2nd Workshop on Cross Lingual Information Access (CLIA), 2008, pp. 48–54.

41



[132] P. Wang, V. Eglin, C. Garcia, C. Largeron, J. Llados, A. Fornes, A coarse-to-fine word spotting approach for historical

handwritten documents based on graph embedding and graph edit distance, in: Proceedings of the 22nd International1405

Conference on Pattern Recognition (ICPR), 2014, pp. 3074–3079.

[133] Z. Shi, S. Setlur, V. Govindaraju, A steerable directional local profile technique for extraction of handwritten Arabic

text lines, in: Proceedings of the 10th International Conference on Document Analysis and Recognition (ICDAR), 2009,

pp. 176–180.

[134] F. M. Wahl, K. Y. Wong, R. G. Casey, Block segmentation and text extraction in mixed text/image documents, Computer1410

Graphics and Image Processing 20 (4) (1982) 375 – 390.

[135] M. Kassis, J. El-Sana, Word spotting using radial descriptor, in: Proceedings of the 14th International Conference on

Frontiers in Handwriting Recognition (ICFHR), 2014, pp. 387–392.

[136] M. Khayyat, L. Lam, C. Y. Suen, F. Yin, C. L. Liu, Arabic handwritten text line extraction by applying an adaptive

mask to morphological dilation, in: Proceedings of the 10th IAPR International Workshop on Document Analysis Systems1415

(DAS), 2012, pp. 100–104.

[137] F. Yin, C.-L. Liu, Handwritten Chinese text line segmentation by clustering with distance metric learning, Pattern

Recognition 42 (12) (2009) 3146 – 3157.

[138] C.-L. Liu, M. Koga, H. Fujisawa, Lexicon-driven segmentation and recognition of handwritten character strings for

Japanese address reading, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (11) (2002) 1425–1437.1420

[139] P. Wang, V. Eglin, C. Garcia, C. Largeron, A. McKenna, A comprehensive representation model for handwriting dedicated

to word spotting, in: Proceedings of the 12th International Conference on Document Analysis and Recognition (ICDAR),

2013, pp. 450–454.

[140] A. Fischer, A. Keller, V. Frinken, H. Bunke, HMM-based word spotting in handwritten documents using subword models,

in: Proceedings of the 20th International Conference on Pattern Recognition (ICPR), 2010, pp. 3416–3419.1425

[141] A. Kumar, C. Jawahar, R. Manmatha, Efficient search in document image collections, in: Proceedings of the 9th Asian

Conference on Computer Vision (ACCV), Vol. 4843, 2007, pp. 586–595.
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