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Abstract

An algorithm for modeling a set of unordered two-dimensional points by line segments is presented. The points are
modeled by highly eccentric ellipses, and line segments are extracted by the major axes of these elongated ellipses.
At first, a single ellipse is fitted to points which is then iteratively split to a large number of highly eccentric ellipses to
cover the set of points. Then, a merge process follows in order to combine neighboring ellipses with almost collinear
major axes to reduce the complexity of the model. Experimental results on various databases show that the proposed
scheme is an efficient technique for modeling unordered sets of points and shapes by line segments. A computer
vision application of the method is also presented regarding the detection of retinal fundus image features, such as
end-points, junctions, and crossovers.
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1 Introduction
In many computer vision applications, at a mid-level pro-
cess, it is common to fit line segments in order to model
a set of unordered points so as to summarize higher
level features. For example, the detection of vanishing
points [1], the vectorization of raster images [2], and the
detection of road structures and parts [3] are among appli-
cations necessitating line segment description of image
structures. In many of the aforementioned problems, the
involved algorithms assume that they are provided with an
ordered point set and standard polygonal approximation
[4,5] is then applied. However, determining the order-
ing of point sets is not a trivial task, and in the method
described herein, we relax this assumption by making no
prior hypothesis about the ordering of the points.

In the above context, the Hough transform (HT) is a
widely used method for line fitting, and many variants
have been proposed to improve its efficiency [6,7]. One of
these variants is the randomized Hough transform (RHT)
[8,9] which randomly selects a number of pixels from
the input image and maps them into one point in the
parameter space which was shown to be less complex,
compared to the original algorithm, as far as time and
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storage issues are concerned. In [10], the probabilistic HT
was proposed whose basic idea is to apply a random sam-
pling of edge points to reduce computational complexity
and execution time. Further improvements were intro-
duced in [11]. A similar concept was proposed in [12],
where an orientation-based strategy was adopted to filter
out inappropriate edge pixels, before performing the stan-
dard HT line detection which improves the randomized
detection process. Also, the idea of fuzziness is integrated
in the main algorithm in [13] to model the uncertainty
imposed to the contour due to noise. Thus, a point can
contribute to more than one bin in the standard HT
process. A general comparison between probabilistic and
non-probabilistic HT variants can be found in [14].

The robust HT is introduced in [15] where both the
length and the end-points of the lines may be computed.
Moreover, the algorithm in [16] provides a method for
adopting a shape-dependent voting scheme for the cal-
culation of the histogram bins. Finally, a novel HT based
on the eliminating particle swarm optimization (EPSO) is
proposed in [17], to improve the execution time of the
algorithm. The problem parameters are considered to be
the particle positions and the EPSO algorithm searches
the optimum solution by eliminating the ‘weakest’ parti-
cles, to speed up the process.

Line segment fitting may also be used in a shape descrip-
tion process. The commonly used algorithm of Moore
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[18] was a first solution to shape following. However, this
algorithm is appropriate only for traversing curves with-
out intersections and produces models with high com-
plexity, although improvements of the main algorithm
have also been considered up to date [19]. Another com-
mon model fitting method is the RANSAC algorithm [20],
which despite the fact that it provides robust estimations,
it is appropriate for fitting only one model at a time. Other
approaches are the incremental line fitting [21] which is
sensitive to noise and, most importantly, needs sequen-
tial ordering of the points and probabilistic methods [22]
based on the Expectation-Maximization algorithm, gen-
erally necessitating the prior determination of the number
of model components.

In this paper, we propose a method to model a set
of unordered points by line segments. The result of the
method is a sequence of straight line segments model-
ing the points, which correspond to the major axes of
highly eccentric ellipses fitted on them. We call the pro-
cedure Direct Split-and-Merge algorithm or DSaM. The
points may correspond to the locations of edge pixels.
The basic idea relies on a split-and-merge process, where
the algorithm is initialized by one ellipse, representing the
mean and the covariance of the initial point set, which is
then split, through an iterative scheme, until a number of
small and elongated ellipses occurs. Then, a merge pro-
cess takes place to combine the resulting ellipses in order
to reduce the complexity of the representation. At the end,
the algorithm provides a relatively small number of elon-
gated ellipses fitted on the points. The proposed method
is general and may also model a set of points containing
inner structures, such as joints. Numerical experiments
on common shape databases are presented to underpin
the performance of the proposed method. Also, edgemaps
of natural images were used in our experiments to ver-
ify the efficiency of the method on real data. The number
of ellipses depends on the structure of points, and it is
determined by two parameters controlling both the split
and the merge processes. The extension of the method
to a three-dimensional (3D) case is trivial, as the elon-
gated ellipses may be transformed to 3D ellipsoids. In the
3D case, our rationale is to model the points by highly
eccentric ellipsoids, thus, instead of line segments, multi-
ple 2D planes fit to points. In that case, data from range
images could be modeled. A preliminary version of this
method was introduced in [23]. Note that our method is
not affected by degradations in the contour, and thus, it
is more reliable compared to the distance transform [24]
or the medial axis transformation [25], as it assumes more
relaxed initial conditions (a set of unordered points) com-
pared to conventional shape description methods, where
point traversal should be known a priori.

Moreover, we present some applications that could
benefit by our DSaM method. To that end, an efficient

algorithm for retinal image analysis based on the pro-
posed modeling framework is presented. More precisely,
the purpose is to parse the image representing the retinal
vessels and extract their characteristic points (end-points,
junctions, and crossovers).

The remainder of the paper is organized as follows:
In Section 2, the split-and-merge algorithm is presented.
Experimental results using various databases (MPEG7
[26], GatorBait100 [27], ETHZ [28], Brown [29]) that con-
tain either object silhouettes or collections of real images
are shown in Section 3. In the same section, a compari-
son of the proposed method with a variant of the Hough
transform, namely, the progressive probabilistic Hough
transform (PPHT) is demonstrated [30]. In Section 4, we
present an applications of our method: an algorithm for
retinal image analysis is presented along with its evalua-
tion using the DRIVE database [31-33].

2 Direct split-and-merge method
Let X = {xi|i = 1, . . . , N} be a set of points and E =
{εj|j = 1, . . . , K} be the set of line segments modeling the
points, where εi is the line describing the ith segment.

We define the modeling error � induced by the repre-
sentation of line segments:

�(X, E) =
N∑

i=1

K∑

j=1
δijd(xi, εj), (1)

where K is the number of line segments the model uses
to model the points, xi ∈ R

2, i = 1, . . . , N are the points,
d(xi, εj) is the perpendicular distance of point xi to line εj,
δij is an indicator function whose value is one if point xi
belongs to line segment εj and is zero otherwise.

In order to prevent overfitting, models having a large
number of line segments should be penalized. Therefore,
an optimal model would have both low value of � and low
complexity.

The computation of the ellipses, modeling the line
segments, is performed in two steps: an iterative split
process, where points are modeled by a number of line seg-
ments represented by the major axes of the corresponding
ellipses and an iterative merge process, where small line
segments are merged to reduce the model complexity.
The split process tries to minimize the modeling error
while the merge process decreases the model complexity,
i.e., the number of line segments compared to the total
number of points in the set.

What follows are the two steps presented in detail.

2.1 Split process
The ultimate goal of this step is to cover the point space
with line segments representing the long axes of elongated
ellipses and therefore, each point of the shape should be
assigned to an eccentric ellipse. A split criterion is defined,
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based on Gestalt theory [34], which models the linearity
and the connectivity the human brain uses when modeling
contours.

In order to split a set X, it should be either non-linear or
disconnected, or both. Linearity describes how close the
points are to a straight line, while disconnectivity mea-
sures how concentrated these points are. In the ideal case,
the covariance matrix of collinear 2D points should have
a very large eigenvalue and a zero eigenvalue. The eigen-
vector corresponding to the larger eigenvalue indicates
the direction of the line segment. If the linearity property
is relaxed, the less collinear the points become (i.e., they
diverge from the linear assumption) the larger the value of
the minimum eigenvalue is. Based on that observation, in
our method, linearity is described by the minimum eigen-
value of the covariance matrix of the points in X. Also, the
disconnectivity W of two sets of points X, Y is the smallest
distance between a point in X and a point in Y :

W (X, Y ) = min
x∈X
y∈Y

|x − y|. (2)

In the case of a single set, disconnectivity is the largest
distance between two successive points in that set. It may
be computed by projecting the points onto both axes
defined by the eigenvectors of the covariance matrix of
the set. Then, successive points are defined by scanning
along the axes and their distances are computed. Let Xi be
the projection of a set X onto the the eigenvector ei. The
disconnectivity of X is defined as

W (X) = max
j=1,...,N−1

i=1,...,d

|x j
i − x j+1

i |, (3)

where N is the number of points in X, d is the dimension
of X (here d = 2), and x j

i is the jth point of the sorted
set Xi. A large value of disconnectivity indicates a better
separation of the point sets. The projections onto all of
the eigenvectors should be examined as we do not know a
priori which direction to follow while splitting. Although
intuitively one would suggest to split along the direction
of the principal axis, we observed that in many cases that
approach was not the best. Also, let us note that as the
ordering of the points is not known a priori, their pro-
jection onto the eigenvectors of their covariance matrix,
provides a natural way of ordering.

The disconectivity of a single set of points is also impor-
tant to be estimated in the split step, as there may exist
subsets that although they are linear, they are discon-
nected, as it is demonstrated in Figure 1.

The split of an ellipse should be performed along the
direction defined by an eigenvector of its covariance. In
order to select the split direction, the axis corresponding
to an eigenvector is considered as the discrimination bor-
der between the split line clusters and points belonging

Figure 1 An example of an instance of a split where a subset of
the points is linear but disconnected. If the disconnectivity of the
points was not considered a single line segment would summarize
these points.

to the same subplane are grouped together. Then, the dis-
connectivity of each line cluster is computed. Finally, the
direction with the largest disconnectivity is selected for
splitting (Figure 2).

Eventually, the adopted strategy that minimizes � and
prefers elongated ellipses can be expressed as follows:
split every ellipse whose minimum eigenvalue is greater
than a threshold T1 (linearity) and the maximum gap,
within the current segment is greater than a thresh-
old T2 (disconnectivity). The process is initialized with
one ellipse, corresponding to the covariance of the ini-
tial points set centered at the mean value of the point
locations. Thresholds T1 and T2 may be computed with a
heuristic algorithm, as explained in Section 3.1.

At iteration t + 1, a given ellipse, characterized by the
eigenvalues λt

1 and λt
2 of its covariance matrix �t (with

λt
1 ≥ λt

2), with center μt , is split to two new ellipses with
centers the two antipodal points on the major axis:

μt+1
1 = μt + √

λtet ,

μt+1
2 = μt − √

λtet ,
(4)

where et , λt are the eigenvector and the eigenvalue cor-
responding to the split direction along which split is
performed (Figure 2).

The points of the split ellipse are then reassigned to the
two new ellipses according to the nearest neighbor rule.
In this way, new ellipses occur, which are more elongated
as they have greater eccentricity and their minor axes are
closer to the contour (Figure 3). Moreover, this detailed
representation of the point set provides accurate modeling
of the joints, corners, and parts of the contour exhibiting
high curvature.

A variant of the method would be to compute the
covariance matrix of the points on the convex hull of the
point set, which provide more robustness to outliers.

2.2 Merge process
The role of the merge process is to reduce the com-
plexity of the model. In case there exist adjacent ellipses
whose major axes have similar orientations, it would be
beneficial to merge and replace them with a more elon-
gated ellipse. Therefore, in this step, ellipses are merged
using the following rule: merge two consecutive ellipses,
if the resulting ellipse has minimum eigenvalue smaller
than a threshold T1 (linearity) and the marginal width
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(a) (b)
Figure 2 Split process. (a) At iteration t + 1, the ellipse with center μt is split into two new ellipses e1 and e2, with centers μt+1

1 and μt+1
2 given by

(4). (b) The new centers are marked with a star (*). The reassignment of the points to the new centers is shown. Points of one category, assigned to
e1, are marked with a square, while points assigned to e2 are marked with a circle.

between the two line clusters is smaller than a threshold
T2 (disconnectivity).

Note that the threshold T1 could be set equal to the
threshold used in the split process, where the value of
parameter T1 specifies whether an ellipse has low eccen-
tricity and needs to be split. In the merge process, it indi-
cates whether two candidates for merging ellipses would
result in an ellipse with high eccentricity. One could use
the same threshold in both processes, assuming the same
significance. On the other hand, a relaxation of the merge
threshold could lead to a rougher model of the points,
smoothing out details like joints. In our experiments, the
merge threshold was selected to be the same with the split
threshold. The same applies for threshold T2 that indicates
whether two segments are close enough to be considered
as one line segment.

The overall description of the method is presented in
Algorithm 1.

(c) (d)

(a) (b)

Figure 3 Steps of the split-and-merge process. The process is
initialized with the mean and the covariance of the full set of points.
(a) Split into two ellipses. (b) Split into four ellipses. (c) End of split (35
ellipses). (d) The final merge result (23 ellipses). The figure is better
seen in color.

Algorithm 1 Direct Split-and-Merge Algorithm
SPLIT PROCESS
input: The set of points X = {xi|i = 1, . . . , N}.
output: A set of ellipses {μj, �j}.
Initialize the algorithm by estimating the mean and
covariance of the point locations.
while there are ellipses to split do

Split every ellipse whose minor eigenvalue is greater
than T1 and its disconnectivity is greater than T2.

• Select the direction that provides the greatest
disconnectivity.

• Set the centers of the new ellipses according to (4).

end while
MERGE PROCESS
input: The ellipses from the split process εj = {μj, �j},
j = 1, . . . , M.
output: A reduced set of ellipses.
while there are ellipses to merge do

for all ellipses εi, i = 1, . . . , M do
if merging εi with εj provides an ellipse
whose minor eigenvalue is less than T1 and its
disconnectivity is less than T2 then

Accept merging.
Set εi to the ellipse that result from merging

end if
end for

end while

3 Experimental results and discussion
In this section we evaluate the efficiency of the introduced
algorithm. To that end, two categories of experiments
were conducted. The purpose was to investigate the per-
formance of the method both in shape data, but also
in real images. Thus, various well-known databases were
employed, that contain either object silhouettes or scenes
of real images. The GatorBait100 database [27] consists
of 38 shapes of different fishes grouped in 8 categories.
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Table 1 Short description of the databases used in our
experiments

Database # Categories # Shapes/scenes Description

GatorBait100 [27] 8 38 Fish silhouettes

MPEG7 [26] 70 1,400 Object silhouettes

Brown [29] 13 137 Object silhouettes

ETHZ [28] 5 257 Real scene images

The shapes of this database are not closed and contain
many junctions. The MPEG7 shape database [26] consists
of 1400 silhouettes of various objects clustered in 70 cat-
egories.The shape silhouette database used in [29], that
contains 137 silhouettes of various objects, clustered in 13
categories, was also used in our experiments. Finally, to
investigate the behavior of the proposed algorithm in real
scene images, the images (257) from the ETHZ image set
[28] were also used. Table 1 gives a brief description of
each database. In all cases, the edges were extracted and
the coordinates of the edge pixels were used to describe
the contour. The Canny edge detector [35] was used in all
cases.

3.1 Numerical evaluation
In this section, we present the resultsa of comparing the
DSaM method with the widely used implementation of
Kovesi [36]. Tables 2 and 3 summarize the numerical
results, while Table 4 demonstrates the execution time
for the experiments on MPEG7 [26], GatorBait100 [27],
Brown [29], and ETHZ [28] datasets. Some representative
images from those databases are given in Figure 4. As it
can be observed, in some cases, there exist inner struc-
tures and thus, the ordering of the points is not obvious.
Note that to share common parameters, in the Kovesi
[36] implementation, we used the disconnectivity thresh-
old of our method. The execution time for computing that
value is not included in the execution time of the Kovesi
implementation. The model complexity is computed by
the index:

MC = #ellipses
#points

. (5)

Lower values of MC imply lower complexity and therefore
a more compact representation.

The distortion is the measure of the quality of the fitting
and is computed as the average distance between a point
and its corresponding line segment, as computed by each
method. Please note that the average length of the diag-
onal of the bounding box of the various datasets is about
500 units (ranging from 300 units in Brown [29] to 700
units in ETHZ [28]).

In the proposed algorithm, there are two parameters
to be a priori specified, a threshold that determines
the elongation of an ellipse (T1) and a threshold
characterizing the disconnectivity of a set (T2).
Both parameters are used to decide whether to split
(in the split process) or merge (in the merge process).
A small value preserves the details, while a larger one
provides more coarse results. For our experiments, we
computed the values of the parameters as:

T1 = 1
N

N∑

i=1
λi (6)

T2 = 1
N

N∑

i=1
di, (7)

where N is the number of the points of the set, λi is
the smallest eigenvalue of the covariance matrix of points
{x | x ∈ Nα

xi , i = 1, . . . , N}, with Nα
x being the α- neighbor-

hood of x, and

di = min
y∈Nα

xi

||xi − y||, i = 1, . . . , N . (8)

Large values for α decrease the model complexity pro-
viding larger modeling error and details are not preserved.
In our experiments, we set α = �0.01 × N� for comput-
ing the values of T1 and T2. To make our implementation
more efficient, instead of taking all points into consider-
ation, we computed a random permutation of the indices
of points and used only the first 10% of them. Thus, in

Table 2 Modeling error � (1)

Method Mean Std Median Min Max

MPEG7 [26] (70 shapes) DSaM 0.489 0.093 0.509 0.080 0.773

Kovesi 2.796 3.977 1.736 0.533 46.984

GatorBait100 [27] (38 shapes) DSaM 0.454 0.033 0.452 0.383 0.509

Kovesi 2.215 0.862 1.981 1.477 6.473

Brown [29] (137 shapes) DSaM 0.492 0.119 0.514 0.105 0.894

Kovesi 2.871 6.192 1.095 0.617 33.632

ETHZ [28] (255 scenes) DSaM 0.494 0.061 0.503 0.257 0.635

Kovesi 2.299 1.340 1.914 1.056 12.655
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Table 3 Model complexity MC (5)

Method Mean (%) Std (%) Median (%) Min (%) Max (%)

MPEG7 [26] (70 shapes) DSaM 3.954 0.013 3.788 0.269 11.429

Kovesi 3.624 0.017 3.406 0.269 12.442

GatorBait100 [27] (38 shapes) DSaM 3.280 0.004 3.172 2.732 4.541

Kovesi 2.524 0.005 2.378 1.961 3.904

Brown [29] (7 scenes) DSaM 5.792 0.016 6.186 0.921 10.145

Kovesi 6.586 0.022 6.911 0.335 10.821

ETHZ [28] (16 scenes) DSaM 5.342 0.014 5.195 2.436 8.427

Kovesi 5.402 0.018 5.205 1.601 11.040

high density datasets, like in the ETHZ database [28], the
values of the thresholds could be estimated quickly.

In general, the DSaM method and the Kovesi imple-
mentation produce models with similar complexity, a fact
that is obvious, since they employ the same thresholds.
However, the DSaM method provides much more accu-
rate results w.r.t distortion (Tables 2 and 3). Concerning
the execution time of the methods, one may observe that
for simple datasets, like the object silhouettes [26,29],
both methods are quite fast. However, for more complex
datasets, like the ETHZ [28], DSaM is much faster (up
to about eight times) than the Kovesi implementation,
since these datasets, contain a lot of points and Kovesi
implementation has to check them all, one by one.

As our method models the line segments with ellipses,
we tried to fit line segments by exploiting various modifi-
cations of a typical Gaussian Mixture Model (GMM) [37],
for example, using an incremental GMM, or imposing
constraints in the update step of the covariance matrices
(decomposing the covariance matrices with SVD, replac-
ing the corresponding minimum eigenvalue with a very
small value, threshold T1, and then recomputing the
covariance matrix). All these variants failed to produce an
efficient result. Moreover, the execution time was quite
high (ten times compared to those of DSaM). Thus, we
opted for excluding the results from this presentation.

Finally, we conducted experiments to verify the robust-
ness of the method against the presence of noise that
degrades the contour of an object. To that end, we used
three patterns (see Figure 5a,b,c) which were randomly
repeated to create new images. A representative image is
given in Figure 6. As a ground truth for the number of line
segments, we used 4 for the square, 3 for triangle, and 10
for the star.

Table 4 Average execution time (in seconds)

Method MPEG7 GatorBait100 Brown ETHZ

DSaM 0.7 5.8 0.1 10.1

Kovesi 1.9 21.1 0.1 78.6

The set of unordered points was produced by simple
edge detection. Then, zero mean Gaussian noise with
varying standard deviation was added in order to get sev-
eral configurations of signal-to-noise ratio (SNR). A repre-
sentative result of a degraded contour is given in Figure 5d.
Note that no ordering of points may be established in
that case and thus polygon approximation may not be
performed. To make the experiment independent from
the noise configuration, each experiment was repeated 20
times. The algorithm assumes that a form of binary data
(e.g., an edge map) is provided. Degradation by noise is
performed after the edge extraction in order to exam-
ine the behavior of the algorithm to the detection of line
segments. If the noise was added to the original image,
the edges would be erroneous and we would not have a
standard baseline for evaluating the algorithm.

In Figure 7, we present the results of the experiments.
The error is expressed as the absolute difference between

(b)(a)

(d)(c)
Figure 4 Some representative images of the databases we used
in our experiments. Please note that in some cases inner structures
exist. This does not permit to extract an ordering of the points
(a) MPEG7 [26], (b) Gatorbait [27], (c) Brown [29], and (d) ETHZ [28].
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(b)

(d)

(a)

(c)
Figure 5 Images used to create the artificial dataset and a
representative result of a degraded contour. (a, b, c) The
primitive images used to create the artificial dataset for experiments
with Gaussian additive noise. (d) Contour degraded by additive
Gaussian noise of 18 dB.

the real number of segments and the one computed by our
method. It can be observed that while the magnitude of
the noise decreases, the error is also decreased. The dif-
ference between true and estimated number of segments
is generally small, 3 on average with low variance (±2 seg-
ments), compared to the total number of line segments, 90
line segments on average, corresponding to 3% deviation

Figure 6 A representative test image produced by randomly
repeating the patterns of Figure 5a,b,c.

between true and estimated measurement. Thus, it could
be claimed that the proposed method exhibits a consistent
and efficient performance even if the contour is corrupted.

3.2 Comparison with the Hough transform
Since the proposed algorithm fits line segments to a
set of points, we also tested it against the commonly
used Hough Transform (HT). However, since the stan-
dard HT is appropriate for fitting lines and not line seg-
ments, we applied the Progressive Probabilistic Hough
Transform (PPHT), as proposed in [30] and implemented
in the OpenCV library [38]. The implementation of PPHT
imposes three parameters: (1) a threshold, indicating the
minimum number of points in a bin, in the line parame-
ter space, in order to consider that the line is represented
by a sufficient number of points, (2) the minimum length
of a line segment, and (3) the maximum gap between
line segments lying on the same axis. In our experi-
ments, we fixed the last two parameters (after a trial
and error procedure keeping those parameters that best
fit the examined points) and varied the threshold. The
obtained results for the PPHT exhibited significant irreg-
ularities such as a large number of overlapping lines
for the same segment. Also, the corners of the shapes
were not correctly captured. Representative experiments
on the MPEG7 dataset [26] are shown in Figure 8a,b,c
while the solution of our DSaM algorithm is illustrated in
Figure 8(d).

The PPHT is based on a histogram which correlates the
accuracy of the result with the number of bins used. Also,
a threshold must be established to eliminate lines with
small participation in the final result. A small number of
bins may lead to an underestimation of the number of
segments, while a large number of bins increases the com-
plexity of the model. As far as the threshold is concerned,
its value may have similar effects in the final model. A
large value may drop some segments, while a small value
may be responsible for a large number of lines fitted, anal-
ogous to a GMM with one component per point. A more
important drawback of the PPHT is that many overlapping
lines may model the same line segment. Figure 8 presents
solutions of PPHT for a given set of points and various
parameters values.

4 Retinal fundus image feature characterization
In this section, we introduce an application of the pro-
posed method. Note however that this is only an indicative
presentation, as one could also use our algorithm for
solving other problems that need the modeling of line seg-
ments, such as the extraction of road layers from raster
maps [39], where the standard Hough Transform is used
to detect lines in some part of their algorithm. Another
application is the detection of the vanishing point in an
indoor scene [40].
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Figure 7 Experimental results using the datasets of Figure 6. They demonstrate the performance of our method in presence of Gaussian
additive noise in terms of model complexity error. The vertical axis represents the absolute error between the real number of segments and the one
computed by our method.

(a) (b)

(c) (d)
Figure 8 Representative experiments on the MPEG7 dataset and
the solution of our DSaM. (a,b,c) Results of the PPHT algorithm to a
set of points representing the shape of a bone (MPEG7 dataset) y
varying the minimum number of points in a bin (namely, 5, 15, and
25). Only a small fraction of the lines is drawn for visualization
purposes. Note the overlapping lines. (d) The result of our method.
The figure is better seen in color.

A methodology that extracts features from the retinal
fundus image and characterizes them will be presented.
The goal is to detect the intersection points between the
vessels, as they could provide useful information to an
automatic diagnosis system.

The detection and characterization of various topo-
logical features of the retinal vessels are an important
step in retinal image processing algorithms within an
autonomous diagnosis system. A deviation from com-
mon topological feature patterns may be an indicator of
anomaly. A comprehensive study may be found in [41]. In
a typical retinal vessel structure, more than 100 junctions
may be present [32], a fact that makes the manual char-
acterization a tedious and time-consuming task. Typical
retinal features are presented in Figure 9.

For our algorithm, three types of features are detected:
end-points (points at the extremities of the vessels),
interior-points (points along a vessel), junctions (a new
vessel is a branch of a longer one - T-junctions or a ves-
sel is split into two or more new vessels - bifurcation) and
crossovers (one vessel passes over another). Please note
that further processing is needed to distinguish between a
crossover and a bifurcation.

To investigate the accuracy of the proposed algorithm,
experiments were conducted on the DRIVE database [31],
which includes 40 retinal images along with their manual
extraction of the vessels. The ground truth used in [32],
[33] was also employed. In our experiments, the man-
ual segmentations were employed, as the scope of our
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Figure 9 The different features that the proposed algorithm can
detect. The yellow point is an end-point, the orange point is an
interior-point, and the green point is a crossover. All the other points
are junctions (a T-junction is shown in red, and a bifurcation is shown
in blue). The image is better viewed in color.

algorithm is to detect junctions, crossovers, and end-points.
The reader should refer to [42] or [43] for a detailed ves-
sel extraction algorithm, which is a preprocessing step of
the whole chain. At first, a Canny edge detector [35] is
applied to extract the borders of the vessels and then a

(a) (b)

(c) (d)
Figure 10 The original image, manual segmentation, data used
in our retinal parsing algorithm, and confidence regions. (a) The
original retinal image. (b) The manual segmentation of the vessels in
(a). (c) Result of thinning the image in (b). (d) The confidence regions
depicted as circles with a radius equal to 1% of the diagonal of the
bounding box of the original set. The figure is better seen in color.

thinning algorithm [44] is used, to extract the center line
of the vessels. In Figure 10a, the original image is shown.
Figure 10b presents the manual segmentation, while the
data used in our retinal parsing algorithm are shown in
Figure 10c.

Once the center line of each vessel is extracted, the
method presented in Section 2 is applied in order to
extract the corresponding line segments and assign each
point to its corresponding line segment. For each line
segment, its extreme points are the points that have the
largest distance from the corresponding extreme points of
the same line cluster.

In Figure 11, the points x (summarizing the vessel struc-
ture) are depicted with red and black color, while the cor-
responding extreme points y are presented with green and
blue dots. A rule is defined to characterize a point as end-
point or junction or crossover. Let C(x) be the index of the
line cluster point where x belongs to. In Figure 11, two line
clusters are shown (C(x) = 1 and C(x) = 2). To define the
neighborhood of extreme points, a neighborhood radius
threshold is defined as

Tn = w ∗ d̄, (9)

where d̄ is the mean distance between all the nearest
neighbors and w is a constant that is learned, as explained
later in this section. Thus, for an extreme point y, the
neighborhood N (y) is the set of the points x such that

Figure 11 An instance of the point characterization algorithm.
Points x (in red and black) correspond to the thinned lines of the
extracted vessels. Green and blue points are the extreme points y
computed by our DSaM algorithm. The yellow circle demonstrates the
neighborhood of that point (N (y)). Red and black points lying in that
circle are considered as neighbors of that extreme point. In that case,
those points belong either to line cluster with index 1 or to line cluster
with index 2. Thus, CN (y) = 2. The orange point corresponds to the
nearest neighbor of y among the points of neighbor line cluster (black
points). d is the minimum distance between the aforementioned
nearest neighbor and the extreme points of its line cluster.



Gerogiannis et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:11 Page 10 of 12
http://asp.eurasipjournals.com/content/2014/1/11

||x − y|| ≤ Tn. Note that y ∈ N (y). In order to character-
ize point y, we define CN (y) as the number of distinct line
clusters that points x ∈ N (y) belong to.

In the example shown in Figure 11, the studied extreme
point y is the green one, while its neighborhood N (y) is
defined by a circle centered at y with radius Tn. Red and
black points lying within that circle are the neighbors of
y. Those points belong either to line cluster 1 or to line
cluster 2 and thus CN (y) = 2. If all neighbors of y belong
to the same line cluster with that of y, then y would be
an end-point (CN (y) = 1). In case where CN (y) > 2, y
would be a junction or a crossover. The algorithm in its
current form does not discriminate between them.

A special case occurs when CN (y) = 2, where the
studied point y is either an interior-point or a junction
(T-junction). In that case, further elaboration is needed
to characterize the extreme point by examining whether
N (y) contains an extreme point or not. Thus, if y belongs
also to the neighborhood of y′, with y′ denoting the
neighbor of y, then y is an interior-point, otherwise it
is a junction (T-junction). Please note that the neigh-
boring relationship we are describing in that section is
not reflective. For example in Figure 11, the green point,
which is one of the extreme points of cluster 1, is neigh-
bor to cluster 2 (as there are some points of cluster
2 within the yellow circle that defines the neighbor-
hood of the green point). However, none of the extreme
points of cluster 2 contain a point from cluster 1 in their
neighborhood, and thus, cluster 1 is not neighboring to
cluster 2.

In our example in Figure 11, this means that one of
the two blue points would be inside the yellow circle.
In case that N (y) contains no extreme point, as shown
in Figure 11, then we compute the minimum distance
(denoted by d in Figure 11) between the nearest neighbor
(orange point in Figure 11) of y among the points of the
other neighboring line cluster (black points in Figure 11)
and the corresponding extreme points (blue points in
Figure 11). If d ≤ d̄, then y is a (junction) (T-junction),
otherwise it is an interior-point.

A detailed description of the rules used to characterize
an extreme point y is presented in Algorithm 2.

Note that since the ground truth refers to the original
vessels and not to their center lines, which is the input of
our method, we determined a value Tconf that defines a
confidence region around a ground truth point. A com-
puted point is considered to match a ground truth point
if it lies in its confidence region. In our experiments, Tconf
is defined as a percentage (1%) of the length of the diag-
onal of the bounding box of points x. Figure 10d shows
the confidence regions depicted as circles with a radius
equal to Tconf. To establish a robust value for constant
w ((9)), the precision and recall rates were computed
for values of w between 1.8 and 4.0 with a step of 0.8.
Then, the F measure (harmonic mean) was calculated
as

F = 2
PR

R + P
, (10)

Figure 12 The F measure, Equation (10), for various values of parameter w in Equation (9). The black square indicates the point that
corresponds to the maximum value of F measure. This value (F = 0.95) occurs for w = 2.9 and provides a precision rate of 91.59% and a recall rate
of 98.58%. More details are given in Section 4.
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Algorithm 2 Rules for vessel features characterization
input: An extreme point y computed by the DSaM
algorithm and the corresponding set of vessel skeleton
points x ∈ N (y).
output: The label of y.
if CN (y) = 1 then

y is an end-point.
else if CN (y) = 2 then

y is either a junction or an interior-point.

• Q = {x ∈ N (y)|C(x) 
= C(y)}
• z = arg min

x∈Q{|x − y|}
• d = |y − z|.
•
• if d ≤ d̄ then

if the line cluster of points of Q is equal to
C(y) then

y is an interior-point
else

y is a junction (T-junction).
end if

• else
y is a junction (T-junction).

• end if

else if CN (y) > 2 then
y is a junction (bifurcation) or a crossover.

end if

where P is the precision and R is the recall:

P = TP
TP + FP

, (11)

R = TP
TP + FN

, (12)

where TP is the number of true positives, that is, the
number of relevant items retrieved, FP is the number
of false positives, that is, the number of irrelevant items
retrieved and FN is the number of false negatives, that is,
the number of relevant items not retrieved.

Figure 12 shows the plot of F measure for various val-
ues of parameter w in Equation (9). In our experiments,
the F measure takes its maximum value for w = 2.9.
The corresponding point is depicted with a black square
in Figure 12. In that case, the corresponding precision is
equal to 91.59% while the recall is 98.58%. The value of
d̄ computed from our experimental data is approximately
equal to

√
2, which leads to Tn = 4.10, Equation (9),

corresponding to a neighborhood radius equal to 4 pixels.
The mean execution time was 109 s for the extraction of

the line segments and 12 s for the extraction and charac-
terization of features using Matlab on a typical Dual Core
2 × 2.50 GHz machine with 2.0 GB RAM.

5 Conclusion
The problem of fitting several lines in order to describe
a set of 2D unordered points is crucial in several com-
puter vision applications. To that end, a split-and-merge
algorithm was presented in this paper that iteratively fits
a number of elongated ellipses to 2D points (DSaM). The
points are represented by the major axes of the ellipses,
while the minor axes account for possible perturbations
from the linear modeling. Furthermore, a merge pro-
cess combines neighboring ellipses with collinear major
axes in order to reduce their number and consequently
the complexity of the solution. An important aspect of the
algorithm is that it does not require an ordering of the
points and accurately handles contours or edge chains that
contain joints and multiple structures.

The proposed method depends on two thresholds that
control the flexibility of the model. Robust estimation
of those parameters, in an adaptive scheme is an issue
that need further elaboration and is a subject of ongo-
ing research along with the application to other problems
of methods [28,45,46] that could directly benefit from an
effective solution to this problem.

Endnote
aMatlab code available at http://www.cs.uoi.gr/~

dgerogia
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