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Abstract

A learning-based framework for action representation and recognition relying
on the description of an action by time series of optical flow motion features
is presented. In the learning step, the motion curves representing each action
are clustered using Gaussian mixture modeling (GMM). In the recognition
step, the optical flow curves of a probe sequence are also clustered using a
GMM, then each probe sequence is projected onto the training space and
the probe curves are matched to the learned curves using a non-metric sim-
ilarity function based on the longest common subsequence, which is robust
to noise and provides an intuitive notion of similarity between trajectories.
Also, canonical time warping is utilized to find an alignment between the
mean trajectories. Finally, the probe sequence is categorized to the learned
action with the maximum similarity using a nearest neighbor classification
scheme. We also present a variant of the method where the lengths of the
time series are reduced by dimensionality reduction in both training and
test phases, in order to smooth out the outliers, which are common in these
type of sequences. Experimental results on Weizmann, KTH, UCF Sports
and UCF YouTube action databases demonstrate the effectiveness of the
proposed method.
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1. Introduction

Action recognition is a preponderant and difficult task in computer vision.
Many applications, including video surveillance systems, human-computer
interaction, and robotics for human behavior characterization, require a mul-
tiple activity recognition system.

Our goal is to examine human activities from video sequences. However,
training an action recognition system with only the knowledge of the mo-
tion of the current subject it is on its own a challenging task. The main
problem is how we can ensure the continuity of the curves along time as
an action occurs uniformly or non-uniformly within a video sequence. Un-
like other approaches [1, 2], which use snippets of motion trajectories, our
approach uses the full length of motion curves by tracking the optical flow
features. Another question concerns the optimal model that one should adopt
for recognizing human actions with high accuracy. This is accomplished by a
statistical measure based on the data likelihood. The different lengths of the
video sequences and therefore the respective lengths of the motion curves is
another problem that is addressed. The large variance between benchmark
datasets shows how the algorithm may be generalized. All these problems
are discussed here and proper solutions are proposed. To this end, we have
conducted more experiments on several datasets [3, 4, 5, 6] that would help
us to understand how human activity recognition works.

In this paper, we address the problem of human action recognition by
representing an action with a set of clustered motion trajectories. Motion
curves are generated by optical flow features which are then clustered us-
ing a different Gaussian mixture [7] for each distinct action. The optical
flow curves of a probe sequence are also clustered using a Gaussian mixture
model (GMM) and they are matched to the learned curves using a similar-
ity function [8] relying on the longest common subsequence (LCSS) between
trajectories and the canonical time warping (CTW) [9]. Linear [7] and non
linear [10] dimensionality reduction methods may also be employed in order
to remove outliers from the motion curves and reduce their lengths. The
motion curve of a new probe video is projected onto the space of the training
sequences, and then the action label of the closest projection is selected ac-
cording to the learned feature vectors as the identity of the probe sequence.
The LCSS is robust to noise and provides an intuitive notion of similarity be-
tween trajectories. Since different actors perform the same action in different
manners and at different speeds, an advantage of the LCSS similarity is that
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it can handle with motion trajectories of varied lengths. On the other hand,
CTW, which is based on the dynamic time warping [11], allows the spatio-
temporal alignment between two human motion sequences. A preliminary
version of this work was presented in [12]. One of the main contributions
of this paper is that the training sequences do not need to have the same
length. When a new probe sequence comes, it is matched against all the
training sequences using the LCSS similarity measure. This measure pro-
vides a similarity between motion trajectories without enforcing one-to-one
matching. An optimal matching is performed using dynamic programming,
which detects similar pairs of curve segments [8].

Tracking of optical flow features along time allows us to collect time series
that preserve their continuity along time. It is true that correspondence is
missing. However, this is the main assumption in many works [13, 14, 15]. If
data association were used the resulting feature trajectories would have short
duration and would be incomplete, as the features disappear and reappear
due to occlusion, illumination, viewpoint changes and noise. In that case, a
combination of sparse approach of clustering trajectories with variant lengths
and tracking approaches should be used [16, 17]. This is not the central idea
in this paper, as the nature of the feature trajectories drastically changes.

There are three main contributions. First, human motion is represented
by a small set of trajectories which are the mean curves of the mixture com-
ponents along with their covariance matrices. The complexity of the model
is considered low, as it is determined by the Bayesian Information Criterion
(BIC), but any other model selection technique may be applied. Second, the
computational cost is lower since the use of dimensionality reduction allows
the algorithm to cope with trajectories of smaller lengths. Finally, the use
of the longest common subsequence index allows input curves of different
lengths to be compared reliably.

In the rest of the paper, the related work is presented in Section 2, while
the extraction of motion trajectories, the clustering and the curve matching
are presented in Section 3. In Section 4, we report results on the Weiz-
mann [3], the KTH [4], the UCF Sports [5] and the UCF YouTube [6] action
classification datasets. Finally, conclusions are drawn in Section 5.

2. Related Work

The problem of categorizing a human action remains a challenging task
that has attracted much research effort in the recent years. The surveys
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in [18] and [19] provide a good overview of the numerous papers on ac-
tion/activity recognition and analyze the semantics of human activity cate-
gorization. Several feature extraction methods for describing and recognizing
human actions have been proposed [13, 4, 20, 21, 14]. A major family of meth-
ods relies on optical flow which has proven to be an important cue. Efros et
al. [13] recognize human actions from low-resolution sports video sequences
using the nearest neighbor classifier, where humans are represented by win-
dows of height of 30 pixels. The approach of Fathi and Mori [14] is based
on mid-level motion features, which are also constructed directly from opti-
cal flow features. Moreover, Wang and Mori [15] employed motion features
as inputs to hidden conditional random fields and support vector machine
(SVM) classifiers. Real time classification and prediction of future actions is
proposed by Morris and Trivedi [22], where an activity vocabulary is learnt
through a three step procedure. Other optical flow-based methods which
gained popularity are presented in [23, 24, 25]. The main disadvantage of
using a global representation such as optical flow, is the sensitivity to noise
and partial occlusions.

The classification of a video sequence using local features in a spatio-
temporal environment has also been given much focus. Schuldt et al. [4]
represent local events in a video using space-time features, while an SVM
classifier is used to recognize an action. Gorelick et al. [26] consider ac-
tions as 3D space time silhouettes of moving humans. They take advantage
of the Poisson equation solution to efficiently describe an action by utiliz-
ing spectral clustering between sequences of features and applying nearest
neighbor classification to characterize an action. Niebles et al. [21] address
the problem of action recognition by creating a codebook of space-time in-
terest points. A hierarchical approach was followed by Jhuang et al. [20],
where an input video is analyzed into several feature descriptors depending
on their complexity. The final classification is performed by a multi-class
SVM classifier. Dollár et al. [27] proposed spatio-temporal features based
on cuboid descriptors. An action descriptor of histograms of interest points,
relying on [4] was presented in [28]. Random forests for action representation
have also been attracting widespread interest for action recognition [29, 30].
Furthermore, the key issue of how many frames are required to recognize
an action is addressed by Schindler and Van Gool [31]. However, mid-level
feature approaches depend on the number of interest points detected.

The problem of identifying multiple persons simultaneously and perform
action recognition is presented in [32]. The authors consider that a person
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has first been localized by performing background subtraction techniques.
Based on the Histograms of Oriented Gaussians [33] they detect a human,
whereas classification of actions are made by training a SVM classifier. Ac-
tion recognition using depth cameras are introduced in [34] and a new feature
called “local occupancy pattern” is also proposed. A novel multi-view activ-
ity recognition method is presented in [35]. Descriptors from different views
are connected together forming a new augmented feature that contains the
transition between the different views. A new type of feature called the
“Hankelet” is presented in [36]. This type of feature, which is formed by
short tracklets, along with a BoW approach is able to recognize actions un-
der different viewpoints, without requiring any camera calibration. Zhou and
Wang [37] have also proposed a new representation of local spatio-temporal
cuboids for action recognition. Low level features are encoded and classified
via a kernelized SVM classifier, whereas a classification score denotes the
confidence that a cuboid belongs to an atomic action. The new feature act
as complementary material to the low-level feature. The work of Sanchez-
Riera et al. [38] recognize human actions using stereo cameras. Based on the
technique of bag-of-words, each action is presented by a histogram of visual
words, whereas their approach is robust to background clutter.

Earlier approaches are based on describing actions by using dense trajec-
tories. The work of Wang et al. [39] is focused on tracking dense sample
point from video sequences using optical flow. Le et al. [40] discover the
action label in an unsupervised manner by learning features directly from
video data. A high-level representation of video sequences, called Action
Bank, is presented by Sadanand and Corso [41]. Each video is represented
as a set of action descriptors which are put in correspondence. The final
classification is performed by a SVM classifier. Yan and Luo [28] have also
proposed a new action descriptor based on spatial temporal interest points
(STIP) [42]. In order to avoid overfitting they have also proposed a novel
classification technique by combining the Adaboost and sparse representa-
tion algorithms. In [43], a visual feature using Gaussian mixture models
efficiently represents the spatio-temporal context distributions between the
interest point at several space and time scales. An action is represented by
a set of features extracted by the interest points over the video sequence.
Finally, a vocabulary based approach has been proposed by Kovashka and
Grauman [44]. The main idea is to find the neighboring features around the
detected interest points quantize them and form a vocabulary. Raptis et al.
[2] proposed a mid-level approach extracting that spatio-temporal features
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construct clusters of trajectories, which can be considered as candidates of
an action, and a graphical model is utilized to control these clusters.

Human action recognition using temporal templates has also been pro-
posed by Bobick and Davis [45]. An action was represented by a motion
template composed of a binary motion energy image (MEI) and a motion
history image (MHI). Recognition was accomplished by matching pairs of
MEI and MHI. A variation of the MEI idea was proposed by Ahmad and Lee
[46], where the silhouette energy image (SEI) was proposed. The authors
have also introduced several variability models to describe an action, and
action classification was carried out using a variety of classifiers. Moreover,
the proposed model is sensitive to illumination and background changes.

A major current focus in action recognition from still images or videos has
been made in the context of scene appearance [47, 48, 49]. More specifically,
Thurau and Hlavac [47] represented actions by histograms of pose primitives
and n-gram expressions are used for action classification. Also, Yang et al.
[48] combined actions and human poses together, treating poses as latent
variables, to deduce the action label of a still image in order to recognize an
action, while Maji et al. [49] introduced a representation of human poses
called the poselet activation vector, which is defined by the 3D orientation of
the head and torso and provides a robust representation of human pose and
appearance. Moreover, action categorization based on modeling the motion
of parts of the human body was presented by Tran et al. [50], where sparse
representation was used to model and recognize complex actions. In the
sense of template matching techniques Rodriguez et al. [5] introduced the
Maximum Average Correlation Height (MACH) filter which is a method for
capturing intra-class variability by synthesizing a single action MACH filter
for a given action class. However, these approaches are limited by the fact
that a human action is a continuous act in time and space and therefore, the
estimation of still human poses may lead to incorrectly inferences.

Social interactions are an important part of humans daily life. A funda-
mental component of human behavior is the ability to interact with other
people via their actions. Fathi et al. [51] models social interactions by es-
timating the location and the orientation of the faces of the persons taking
part in a social event, computing thus a line of sight for each face. This
information is used to infer the location where an individual person attend.
The type of interaction is recognized by assigning social roles in each per-
son. The authors are able to recognize three types of social interactions:
dialogue, discussion and monologue. Human behavior on sport datasets are
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introduced by Lan et al. [52]. The idea of social roles in conjunction with low-
level actions and high-level events model the behavior of humans in a scene.
Burgos-Artizzu et al. [53] discussed the social behavior of mice. Each video
sequence is segmented into periods of activities by constructing a temporal
context that combines spatio-temporal features. Kong et al. [54] proposed
a new high-level descriptor called “interactive phrases” in order to recog-
nize human interactions. This descriptor is a binary motion relationship
descriptor for recognizing complex human interactions. Interactive phrases
are treated as latent variables, while the recognition is performed in a SVM
framework.

3. Action Representation and Recognition

Our goal is to analyze and interpret different classes of actions to build a
model for human activity categorization. Given a collection of figure-centric
sequences, we represent motion templates using optical flow [55] at each
frame. Assuming that a bounding box can be automatically obtained from
the image data, we define a rectangle region of interest (ROI) around the
human. A brief overview of our approach is depicted in Figure 1. In the
training mode, we assume that the video sequences contain only one actor
performing only one action per frame. However, in the recognition mode,
we allow more than one action per video frame. The optical flow vectors as
well as the motion descriptors [13] for each sequence are computed. These
motion descriptors are collected together to construct motion curves, which
are clustered using a mixture model to describe a unique action. Then, the
motion curves are clustered and each action is modeled by a set of clustered
motion curves. Action recognition is performed by matching the clusters of
motion curves of the probe sequence and the clustered curves in each training
sequence.

3.1. Motion Representation

The proposed approach employs optical flow features [55]. These motion
descriptors are commonly used in many recognition problems and they are
shown to be quite reliable despite the existence of noisy features. Within a
figure-centric scene, any human motion may be decomposed to the motion of
different body parts (e.g., head and limbs). We can easily localize the motion
by computing the optical flow vectors for the regions around the human torso.
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Figure 1: Overview of our approach.

Following the work of Efros et al. [13], we compute the motion descriptor
for the ROI as a four-dimensional vector Fi =

(
F+
xi
, F−

xi
, F+

yi
, F−

yi

)
∈ R4,

where i = 1, ..., N , with N being the number of pixels in the ROI. Also, the
matrix F refers to the blurred, motion compensated optical flow. We compute
the optical flow F, which has two components, the horizontal Fx, and the
vertical Fy, at each pixel. It is worth noting that the horizontal and vertical
components of the optical flow Fx and Fy are half-wave rectified into four
non-negative channels F+

x ,F−
x ,F+

y ,F−
y , so that Fx = F+

x −F−
x and Fy = F+

y −
F−
y . In the general case, optical flow is suffering from noisy measurements

and analyzing data under these circumstances will lead to unstable results.
To handle any motion artifacts due to camera movements, each half-wave
motion compensated flow is blurred with a Gaussian kernel. In this way,
the substantive motion information is preserved, while minor variations are
discarded. Thus, any incorrectly computed flows are removed. Since all
curves are considered normally distributed there is an intrinsic smoothing
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of the optical flow curves. Moreover, at a preprocessing step, we discard
flows whose amplitude is over 20% of the standard deviation of the mean
amplitude of all curves for each video.

3.2. Extraction of Motion Curves

A human action is represented by a set of primitive motion curves which
are constructed directly from the optical flow motion descriptors. The main
idea is to extract the salient features, which describe a relative motion from
each frame and associate them with the corresponding feature in the next
frame.

Consider T to be the number of image frames and C ={ci(t)}, t ∈ [0, T ],
is a set of motion curves for the set of pixels i = 1, ..., N of the ROI. Each
motion curve is described as a set of points corresponding to the optical flow
vector extracted in the ROI. Specifically, we describe the motion at each pixel
by the optical flow vector Fi =

(
F+
xi
, F−

xi
, F+

yi
, F−

yi

)
. A set of motion curves for

a specific action is depicted in Figure 1. Given the set of motion descriptors
for all frames, we construct the motion curves by following their optical
flow components in consecutive frames. If there is no pixel displacement we
consider a zero optical flow vector displacement for this pixel.

The set of motion curves describes completely the motion in the ROI.
Once the motion curves are created, pixels and therefore curves that belong
to the background are eliminated. We assume that the motion are normally
distributed, thus, we keep flows whose values are inside 6 standard devia-
tions of the amplitude distributions. In order to establish a correspondence
between the motion curves and the actual motion, we perform clustering of
the motion curves using a Gaussian mixture model. We estimate the charac-
teristic motion which is represented by the mean trajectory of each cluster.

3.3. Motion Curves Clustering

A motion curve is considered to be a 2D time signal:

cji(t) =
(
Fxji

(t), Fyji(t)
)
, t ∈ [0, T ], (1)

where the index i = 1, . . . , N represents the ith pixel, for the jth video se-
quence in the training set. To efficiently learn human action categories, each
action is represented by a GMM by clustering the motion curves in every
sequence of the training set. The pth action (p = 1, ..., A), in the jth video
sequence (j = 1, . . . , Sp), is modeled by a set of Kp

j mean curves learned by a
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GMM. The likelihood of the ith curve cpji(t) of the p
th action in the jth video

is given by:

p(cpji;π
p
j , µ

p
j ,Σ

p
j) =

Kp
j∑

k=1

πp
jkN (cpji(t);µ

p
jk,Σ

p
jk), t ∈ [0, T ], (2)

where πp
j = {πp

jk}
Kp

j

k=1 are the mixing coefficients, µp
j = {µp

jk}
Kp

j

k=1 is the set of

the mean curves and Σp
j = {Σp

jk}
Kp

j

k=1 is the set of covariance matrices. The

covariance matrix in equation (2) is a diagonal Σp
jk = diag(σ2p

jk,1, . . . , σ
2p
jk,T ).

Therefore, the log-likelihood of the pth action in the jth video can be written
as:

L(cpj) =

Np
j∏

i=1

ln

Kp
j∑

k=1

πp
jkN (cpji(t);µ

p
jk,Σ

p
jk), t ∈ [0, T ], (3)

where Np
j is the number of motion curves in the training set describing the

pth action in the jth video.
The GMM is trained using the Expectation-Maximization (EM) algo-

rithm [7], which provides a solution to the problem of estimating the model’s
parameters. The initialization of the EM algorithm is performed by the
K-means algorithm. We have examined several configurations for the ini-
tialization of K-means and we decided to employ K-means with 50 different
random initializations which were consistent and had no significant impact on
the final classification. However, the number of mixture components should
be determined. To select the number of the Gaussians Kp

j , for the jth train-

ing video sequence, representing the pth action, the Bayesian Information
criterion (BIC) [7] is used:

BIC(cpj) = L(cpj(t))−
1

2
MNp

j , t ∈ [0, T ], (4)

where M is the number of parameters of the GMM to be inferred. Thus,
when EM converges the cluster labels of the motion curves are obtained.
This is schematically depicted in Figure 1, where a set of motion trajectories,
representing a certain action (e.g., p), in a video sequence (e.g., labeled by
j) is clustered by a GMM into Kp

j = 2 curves for action representation.
Note that, a given action is generally represented by a varying number of
mean trajectories as the BIC criterion may result in a different number of
components in different sequences.
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Apart from the BIC criterion, there are other techniques for determining
the appropriateness of a model such as the Akaike Information Criterion
(AIC) [7].

AIC(cpj) = L(cpj(t))−M, t ∈ [0, T ], (5)

where M is the number of parameters of the GMM to be inferred. BIC is
independent of the prior, it can measure the efficiency of the parameterized
model in terms of predicting the data and it penalizes the complexity of the
model, where complexity refers to the number of parameters in the model.
It is also approximately equal to the minimum description length criterion
[7] but with negative sign, it can be used to choose the number of clusters
according to the intrinsic complexity present in a particular dataset and it
is closely related to other penalized likelihood criteria such as the AIC. BIC
tends to select highly parsimonious models, while AIC tends to include more
parameters [56, 57]. Complexity measures such as BIC and AIC have the
virtue of being easy to evaluate, but can also give misleading results.

3.4. Matching of Motion Curves

Once a new probe video is presented, where we must recognize the action
depicted, the optical flow is computed, motion trajectories are created and
clustered, and they are compared with the learned mean trajectories of the
training set. Recall that human actions are not uniform sequences in time,
since different individuals perform the same action in different manner and
at different speeds. This means that motion curves have varied lengths.
An optimal matching may be performed using dynamic programming which
detects similar pairs of curve segments. The longest common subsequence
(LCSS) [8] is robust to noise and provides a similarity measure between
motion trajectories since not all points need to be matched.

Let µ(t), t ∈ [0, T ] and ν(τ), τ ∈ [0, T
′
] be two curves of different lengths.

Then, we define the affinity between the two curves as:

α (µ(t), ν(τ)) =
LCSS (µ(t), ν(τ))

min(T, T ′)
, (6)

where the LCSS (µ(t), ν(τ)) (Eq. (7)) indicates the quality of the matching
between the curves µ(t) and ν(τ) and measures the number of the matching
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points between two curves of different lengths.

LCSS (µ(t), ν(τ)) =
0, if T = 0 or T

′
= 0,

1 + LCSS
(
µ(t)Tt−1, ν(τ)T

′
τ−1
)
, if |µ(t)− ν(τ)| < ε and |T − T

′| < δ

max
{
LCSS

(
µ(t)Tt−1, ν(τ)T

′
τ

)
, LCSS

(
µ(t)Tt , ν(τ)T

′
τ−1
)}

, otherwise

(7)

Note that the LCSS is a modification of the edit distance [11] and its value
is computed within a constant time window δ and a constant amplitude ε,

that control the matching thresholds. The terms µ(t)Tt and ν(τ)T
′
τ denote

the number of curve points up to time t and τ , accordingly. The idea is to
match segments of curves by performing time stretching so that segments
that lie close to each other (their temporal coordinates are within δ) can be
matched if their amplitudes differ at most by ε (Fig. 2). A characteristic
example of how two motion curves are matched is depicted in Figure 2.

Figure 2: The LCSS matching between two motions considering that they should be
within δ = 64 time steps in the horizontal axis and their amplitudes should differ at most
by ε = 0.086.

When a probe video sequence is presented, its motion trajectories z =
{z}Ni=1 are clustered using GMMs of various numbers of components using
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the EM algorithm. The BIC criterion is employed to determine the optimal
value of the number of Gaussians K, which represent the action in the probe
sequence. Thus, we have a set of K mean trajectories νk, k = 1, . . . , K
modeling the probe action, whose likelihood is given by:

L(z) =
N∏
i=1

ln
K∑
k=1

πkN (zi; νk,Σk), (8)

where Σk is the covariance matrix for the kth component.
Recognition of the action present in the probe video sequence is per-

formed by assigning the probe action to the action of the labeled sequence
which is most similar. As both the probe sequence and the jth labeled video
sequence of the pth action in the training set are represented by a number of

mean curves ν = {νi}Ki=1 and µp
j = {µp

jk}
Kp

j

k=1 respectively, the overall distance
between them is computed by:

d(µp
j , ν) =

Kp
j∑

k=1

K∑
ℓ=1

πp
jkπℓ

[
1− α

(
µp
jk(t), νℓ(τ)

)]
, (9)

where πp
jk and πℓ are the GMM mixing proportions for the labeled and probe

sequence, respectively, that is
∑

k π
p
jk = 1 and

∑
ℓ πℓ = 1. The probe se-

quence ν is categorized with respect to its minimum distance from an already
learned action:

[j∗, p∗] = argmin
j,p

d(µp
j , ν). (10)

The canonical time warping (CTW) [9] solves the problem of spatio-
temporal alignment of human motion between two time series. Based on
dynamic time warping, the algorithm in [11] finds the temporal alignment of
two subjects maximizing the spatial correlation between them. Given two
time series C1 = [c1(0), . . . , c1(T )] and C2 = [c2(0), . . . , c2(T

′
)] canonical time

warping minimizes the following energy function:

Jctw(WC1 ,WC2 ,VC1 ,VC2) = ∥VT
C1C1W

T
C1 −VT

C2C2W
T
C2∥

2
F , (11)

where WC1 and WC2 are binary selection matrices that need to be inferred to
align C1 and C2, and VC1 , VC2 parameterize the spatial warping by projecting
sequences into the same coordinate system.
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Dimensionality reduction methods [10] may be employed in order to re-
duce the dimension of the motion curves and to enforce them to be of equal
length. In the experiments, Principal Complements Analysis (PCA) [58]
was chosen as a simple linear method but any other non-linear technique
[10] could also be applied. When PCA is employed the time ordering is
suppressed and trajectories are then transformed into feature vectors. In
that case, the Bhattacharyya distance [11] is (among others) an appropriate
matching measure.

Let v1 and v2, be two feature vectors following Gaussian distributions,
with means µ1 and µ2 and covariance matrices Σ1 and Σ2, respectively. The
Bhattacharyya distance has the form :

dB(v
p
1j, v2) =

1

8
(µ1 − µ2)

T

(
Σ1 −Σ2

2

)−1

(µ1 − µ2) +
1

2
ln

(
Σ1−Σ2

2

2
√
|Σ1||Σ2|

)
.

(12)
To perform the match, one can project a probe video feature vector

v2 = {v2i}Ki=1 onto the subspace of the training feature vectors v
p
1j = {vp1jk}

Kp
j

k=1

and assume the label of the closest projection of the training feature vector.
For Gaussian mixture models, we define the Bhattacharyya distance as:

dGMM(vp1j, v2) =

Kp
j∑

k=1

K∑
ℓ=1

πp
jkπℓdB(v

p
1jk, v2ℓ), (13)

where πp
jk and πℓ are the GMM mixing proportions for the labeled and probe

sequence, respectively. This is common in GMM modeling [59]. The probe
feature vector v2 is categorized with respect to the minimum distance from
an already learned action:

[j∗, p∗] = argmin
j,p

dGMM(vp1j, v2). (14)

The overall approach for learning an action and categorizing a probe are
summarized in Algorithm 1 and Algorithm 2, respectively. The steps inside
the parenthesis indicate the extra steps when PCA is employed.

4. Experimental Results

In what follows, we refer to our mixtures of trajectories action recogni-
tion method by the acronym TMAR. We evaluated the proposed method
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Algorithm 1 Action learning

Input: Training video sequences

Output: GMMs summarizing each action in each sequence

• For each action

– For each video sequence representing the action

∗ Compute the optical flow at each pixel and generate half-wave
rectified features [13].

∗ Construct the motion curves by concatenating the optical flow
features.

∗ (Perform dimensionality reduction of the motion curves.)

∗ Cluster the motion curves by training GMMs with varying
number of components and select the model maximizing the
BIC criterion [7].

on action recognition by conducting a set of experiments over publicly avail-
able datasets. First, we applied the algorithm to the Weizmann human
action dataset [3]. The Weizmann dataset is a collection of 90 low-resolution
videos, which consists of 10 different actions (i.e., run, walk, skip, jumping
jack, jump forward, jump in place, gallop sideways, wave with two hands,
wave with one hand, and bend), performed by nine different people. The
videos were acquired with a static camera and contain uncluttered back-
ground. Nevertheless, the dataset provides a good evaluation context for
testing the performance of the proposed algorithm, due to the periodicity
of the actions. Figure 3 illustrates some sample frames from the Weizmann
dataset.

To test the proposed method on action recognition we adopted the leave-
one-out scheme. We learned the model parameters from the videos of eight
subjects and tested the recognition results on the remaining video sequences.
The procedure was repeated for all sets of video sequences and the final result
is the average of the individual results. The optimal number of mixture
components Kp

j for the jth video sequence, j = 1, . . . , Sp of the pth action
p = 1, . . . , A is found by employing the BIC criterion. The value of BIC was
computed for Kp

j = 1 to the square root of the maximum number of motion
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Algorithm 2 Action categorization

Input: A probe video sequence to be categorized and the GMMs summa-
rizing the actions in the training sequences

Output: Action label

• Compute the optical flow at each pixel of the probe sequence and gen-
erate half-wave rectified features [13].

• Construct the motion curves by concatenating the optical flow features.

• (Project the motion curves to the reduced training curve space.)

• Cluster the motion curves by training GMMs with varying number of
components and select the model maximizing the BIC criterion [7].

• Compute the distances between the GMM of the probe sequence and
each GMM of the learnt actions.

• Classify the probe sequence using a nearest neighbor classifier.

Figure 3: Sample frames from video sequences of the Weizmann dataset [3].

curves.
As shown in Table 1, the average correct classification of the algorithm on

this dataset is 98.8%, while it reaches 100% when the proposed method with
PCA is utilized. However, the average correct classification falls to 92.2%,
when the CTW is utilized. In the same table, the results of [3, 60, 21, 25, 23,
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20, 14] are taken from the original papers. Notice that all motion curves are
reduced to a length that explains the 90% of the eigenvalue sum, which results
in a reduced curve length of 50 time instances with respect to the original
3.000 time instances. Note that better results are achieved with respect to
four out of seven state-of-the-art methods for the standard method, whereas
for the TMAR(PCA) the highest performance on this dataset is achieved.
The proposed method provided only one erroneous categorization as one
jump-in-place (pjump) action was incorrectly categorized as run. It appears
that in this case the number of Gaussian components Kp

j computed by the
BIC criterion was not optimal. Figure 4 depicts the confusion matrices for
the TMAR(LCSS), TMAR(CTW) and TMAR(PCA) approaches.

In order to examine the behavior and the consistency of the method to
the BIC criterion, we have also applied the algorithm without using BIC
but having a predetermined number of Gaussian components for both the
training and the test steps. Therefore, we fixed the number of Gaussians
Kp

j to values varying from one to the square root of the maximum number
of the motion curves and executed the algorithm. More specifically, for the
proposed method, when the LCSS metric is employed, for Kp

j = 1, Kp
j = 2

and Kp
j = 3 recognition rates of 100% are attained and performance begins

to decrease for Kp
j ≥ 4. This is not surprising since the majority of the

mixture components provided by the BIC criterion is equal to two. In the
case where CTW alignment is employed, the average recognition accuracy
begins to fall for Kp

j ≥ 2. When PCA is employed the recognition is perfect
and begins to degrease for Kp

j ≥ 6. In Figure 5, the recognition accuracy for
this dataset with respect to the number of Gaussian components is depicted.
As the number of curves representing each action is relatively small (30–
60 curves per action), a large number of Gaussian components may lead to
model overfitting.

We have further assessed the performance rate of our method by con-
ducting experiments on the KTH dataset [4]. This dataset consists of 2.391
sequences and contains six types of human actions such as walking, jog-
ging, running, boxing, hand waving, and hand clapping. These actions are
repeatedly performed by 25 different people in four different environments:
outdoors (s1), outdoors with scale variation (s2), outdoors with different
clothes (s3), and indoors (s4). The video sequences were acquired using a
static camera and include a uniform background. The average length of the
video sequences is four seconds, while they were downsampled to a spatial
resolution of 160 × 120 pixels. Figure 6 depicts sample snapshots from the
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(a) TMAR(LCSS), accuracy = 98.8% (b) TMAR(CTW), accuracy = 92.2%

(c) TMAR(PCA), accuracy = 100%

Figure 4: Confusion matrices of the classification results for the Weizmann dataset for (a)
the proposed method denoted by TMAR(LCSS), (b) the the proposed method using the
CTW alignment, denoted by TMAR(CTW), and (c) the proposed method using PCA,
denoted by TMAR(PCA), for the estimation of the number of components using the BIC
criterion.

KTH dataset.
We tested the action recognition performance of the proposed method

by using a leave-one-out cross validation approach. Accordingly, the model
from the videos of 24 subjects was learned while the algorithm was tested on
the remaining subjects and averaged the recognition results. The confusion
matrices over the KTH dataset for this leave-one-out approach are shown
in Figure 7. A recognition rate of 96.7% was achieved when only the BIC
criterion was employed in conjunction with the LCSS metric, 93.8% when the
CTW alignment is employed, and 98.3% using PCA. In addition, comparison
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Figure 5: The recognition accuracy with respect to the number of Gaussian components
for the Weizmann dataset.

Table 1: Recognition accuracy over the Weizmann dataset.

Method Year Accuracy (%)

Blank et al. [3] 2005 100.0
Chaudhry et al. [25] 2009 95 .7
Fathi and Mori [14] 2008 100.0
Jhuang et al. [20] 2007 98 .8
Lin et al. [23] 2009 100.0
Niebles et al. [21] 2008 90 .0
Seo and Milanfar [60] 2011 97 .5
TMAR(LCSS-BIC) 2013 98 .8
TMAR(CTW-BIC) 2013 92 .2
TMAR(PCA-BIC) 2013 100.0

of the proposed method with other state-of-the-art methods is reported in
Table 2. The results of [4, 20, 14, 21, 23, 60, 15, 43, 40, 50, 28, 41] are obtained
from the original papers. Note that, the TMAR approach provides the more
accurate recognition rates. The TMAR(LCSS) approach attains high action
classification accuracy as the BIC criterion determines the optimal value of
Gaussians Kp

j for this dataset. Figure 8 depicts the accuracy rate for the
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Figure 6: Sample frames from video sequences of the KTH dataset [4].

Table 2: Recognition results over the KTH dataset.

Method Year Accuracy (%)

Schuldt et al. [4] 2004 71.7
Jhuang et al. [20] 2007 90.5
Fathi and Mori [14] 2008 90.5
Niebles et al. [21] 2008 83.3
Lin et al. [23] 2009 95.8
Seo and Milanfar [60] 2011 95.1
Wang et al. [15] 2011 94.2
Wu et al. [43] 2011 94.5
Le et al. [40] 2011 93.9
Tran et al. [50] 2012 97.8
Yan and Luo [28] 2012 93.9
Sadanand and Corso [41] 2012 98.2
TMAR(LCSS-BIC) 2013 96.7
TMAR(CTW-BIC) 2013 93.8
TMAR(PCA-BIC) 2013 98.3

TMAR(LCSS), TMAR(CTW) and TMAR(PCA) approaches with respect
to the number of mixture components. As the number of Gaussians is Kp

j ≥
3 for the TMAR(LCSS), Kp

j ≥ 5 for the TMAR(CTW) and Kp
j ≥ 4 for

the TMAR(PCA) the accuracy rate drastically falls. This fact indicates
the dependency of the recognition accuracy over the number of Gaussian
components as an action is represented by few motion curves.

We have also applied our algorithm to the UCF Sports dataset [5]. This
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(a) TMAR(LCSS), accuracy = 96.7% (b) TMAR(CTW), accuracy = 93.8%

(c) TMAR(PCA), accuracy = 98.3%

Figure 7: Confusion matrices of the classification results for the KTH dataset for (a) the
proposed method denoted by TMAR(LCSS), (b) the the proposed method using the CTW
alignment, denoted by TMAR(CTW), and (c) the proposed method using PCA, denoted
by TMAR(PCA), for the estimation of the number of components using the BIC criterion.

dataset consists of nine main actions such as diving, golf-swinging, kicking,
lifting, horse riding, running, skating, swinging and walking. The dataset
contains approximately 200 video sequences at a resolution of 720 × 480
pixels, which are captured in natural environment with a wide range of scenes
and viewpoints. Figure 9 depicts some sample frames from the UCF Sports
dataset.

To test the proposed method on action recognition we also adopted the
leave-one-out scheme. In Figure 10 are depicted the confusion matrices
for the TMAR(LCSS), TMAR(CTW) and the TMAR(PCA) approaches.
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Figure 8: The recognition accuracy with respect to the number of Gaussian components
for the KTH dataset.

Figure 9: Sample frames from video sequences of the UCF Sports dataset [5].

TMAR(LCSS) achieves 94.6% recognition accuracy with optimal number of
components (BIC criterion) and 90.1% when the CTW alignment is em-
ployed. We also achieve the highest recognition accuracy of 95.1% when the
proposed method uses PCA. In Figure 11, the dependency of the recognition
accuracy with respect to the number of the Gaussian components is shown.
Note that, for all three approaches as the number of components increases
the recognition accuracy decreases, which may occur due to model overfit-
ting. In the case where Kp

j = 3 all three approaches reach the highest peek
of the graph. For Kp

j ≥ 4 the recognition acuuracy begins to decrease. Table
3, shows the comparison between our TMAR approach, the baseline method
using the BIC criterion in conjunction with ths LCSS metric and the CTW
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alignment, the proposed method with PCA and previous approaches on the
UCF Sports dataset. The results of [5, 44, 15, 43, 40, 50, 28, 41] are ob-
tained from the original papers. As it can be observed, the TMAR(PCA)
approach preforms better than all the other methods, while TMAR(LCSS)
performs better for seven out of eight of the other methods. On the other
hand, TMAR(CTW) has the less desirable performance as it outreaches four
out of eight of the other methods on the same dataset.

(a) TMAR(LCSS), accuracy = 94.6% (b) TMAR(CTW), accuracy = 90.1%

(c) TMAR(PCA), accuracy = 95.1%

Figure 10: Confusion matrices of the classification results for the UCF Sports dataset for
(a) the proposed method denoted by TMAR(LCSS), (b) the the proposed method using
the CTW alignment, denoted by TMAR(CTW), and (c) the proposed method using PCA,
denoted by TMAR(PCA), for the estimation of the number of components using the BIC
criterion.

Finally, we have put our algorithm to test with the UCF YouTube dataset
[6]. The UCF YouTube human action data set contains 11 action categories
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Figure 11: The recognition accuracy with respect to the number of Gaussian components
for the UCF Sports dataset.

Table 3: Recognition results over the UCF Sport dataset.

Method Year Accuracy (%)

Rodriguez et al. [5] 2008 69.2
Kovaska and Grauman [44] 2010 87.3
Wang et al. [15] 2011 88.2
Wu et al. [43] 2011 91.3
Le et al. [40] 2011 86.5
Tran et al. [50] 2012 91.6
Yan and Luo [28] 2012 90.7
Sadanand and Corso [41] 2012 95.0
TMAR(LCSS-BIC) 2013 94.6
TMAR(CTW-BIC) 2013 90.1
TMAR(PCA-BIC) 2013 95.1

such as basketball shooting, biking, diving, golf swinging, horse riding, soccer
juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking,
and walking with a dog. This data set includes actions with large variation
in camera motion, object appearance and pose and scale. It also contains
viewpoint and illumination changes, and spotty background. The video se-
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quences are grouped into 25 groups of at least four actions each for each
category, whereas the videos in the same group may share common charac-
teristics such as similar background or actor. Representative frames of this
data set are shown in Figure 12.

Figure 12: Sample frames from video sequences of the UCF YouTube action dataset [6].

In order to assess our method we have used the leave-one-out cross vali-
dation scheme. In Figure 13 the confusion matrices for the TMAR(LCSS),
TMAR(CTW) and TMAR(PCA) approaches are shown. We achieve a recog-
nition rate of 91.7% when the LCSS metric is employed and having estimated
the Gaussian components using the BIC criterion. We also achieve 91.3%
when the CTW alignment is employed and 93.2% when using PCA. In Ta-
ble 4, comparisons with other state-of-the-art methods for this dataset are
reported. The results of [6, 39, 40, 61] were copied from the original papers.
As it can be seen, our algorithm achieves the highest recognition accuracy
amongst all the others.

The performance of the proposed method with respect to the number of
the Gaussian components is depicted in Figure 14. For TMAR(LCSS) the
recognition accuracy begins to decrease for Kp

j ≥ 1 and exhibits the worst
performance than the other two approaches. The TMAR(CTW) approach
decreases for Kp

j ≥ 2 while TMAR(PCA) reaches its peak for Kp
j = 4 and

then it begins to decrease. Note that, the best approach tends to be, attained
by TMAR(PCA) which reaches a recognition accuracy of 91%.

In the recognition step, in our implementation of the LCSS (7) the pa-
rameters δ and ϵ were optimized using 10-fold cross validation for all four
datasets. These parameters need to be determined for each data set sepa-
rately since each data set perform different types of actions. However, after
we have determined the parameters no further action needs to be taken. To
classify a new unknown sequence, we have already learned the parameters
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(a) TMAR(LCSS), accuracy = 91.7% (b) TMAR(CTW), accuracy = 91.3%

(c) TMAR(PCA), accuracy = 93.2%

Figure 13: Confusion matrices of the classification results for the UCF YouTube dataset
for (a) the proposed method denoted by TMAR(LCSS), (b) the the proposed method
using the CTW alignment, denoted by TMAR(CTW), and (c) the proposed method using
PCA, denoted by TMAR(PCA), for the estimation of the number of components using
the BIC criterion.

from the learning step and thus we are able to recognize the new action.
For the Weizmann dataset, for all actions, parameter δ was determined to
be 1% of the trajectories’ lengths, and parameter ε was determined as the
smallest standard deviation of the two trajectories to be compared. For the
other datasets, Table 5, Table 6 and 7 show the optimal values per action as
they have resulted after the cross validation process. Note that, the values
in Table 5 for both δ and ε are consistently small. However, the handclap-
ping and walking actions have larger values for ε parameter than the other
actions, which may be due to the large vertical movement of the subject
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Figure 14: The recognition accuracy with respect to the number of Gaussian components
for the UCF YouTube dataset.

Table 4: Recognition results over the UCF YouTube dataset.

Method Year Accuracy (%)

Liu et al. [6] 2009 71.2
Ikizler-Cinbis and Sclaroff [61] 2010 75.2
Le et al. [40] 2011 75.8
Wang et al. [39] 2011 84.2
TMAR(LCSS-BIC) 2013 94.6
TMAR(CTW-BIC) 2013 90.1
TMAR(PCA-BIC) 2013 95.1

between consecutive frames. On the other hand, the actions in the UCF
Sport dataset holds large movements from one frame to the other for both
horizontal and vertical axes, which is the main reason why the actions show
large variances between the values of δ and ε (Table 6). Finally, the actions
in the UCF YouTube dataset have a uniform distributed representation of
the parameters δ and ε, since the parameter δ is determined as the 10% of
the mean trajectories length for the most of the actions and the mean of
the parameter ε is varies in the 15% of the standard deviation of the two
trajectories to be compared.
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Table 5: Parameters δ and ε for the KTH dataset estimated using cross validation.

Action
TMAR(LCSS)

δ ε
boxing 10−3 10−4

handclapping 10−2 10−2

handwaving 3× 10−1 10
jogging 5× 10−3 3× 10−1

running 3× 10−2 5× 10−2

walking 1 12

Table 6: Parameters δ and ε for the UCF Sports dataset estimated using cross validation.

Action
TMAR(LCSS)

δ ε
diving 1 2.1
golf 2.01 6.1
kicking 10 15
lifting 11 10
riding 0.1 15
run 0.1 12
skateboarding 1.4 13
swing 0.6 20
walk 0.1 10

The average percentage of matched curves for the TMAR(LCSS) and
TMAR(CTW) approach in the case where the BIC criterion is employed
to determine the number of Gaussian components for all four dataset is
depicted in Figure 15. As it can be observed, the TMAR(LCSS) method
appears to match a larger part of curves for the same dataset than the
TMAR(CTW) approach, which is the reason why TMAR(LCSS) performs
better than TMAR(CTW).

Labeling a new video sequence does not require any exhaustive search
in order to determine the number of the Gaussian components. Exhaus-
tive search is performed once in the learning step while in the testing step
classification is performed using the predetermined number of components.
In Figure 16, the execution times using the BIC criterion are depicted in
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Table 7: Parameters δ and ε for the UCF Youtube dataset estimated using cross validation.

Action
TMAR(LCSS)
δ ε

shooting 20 20
biking 10 10
diving 10 15
golf 20 10
riding 10 5
juggle 10 15
swing 10 5
tennis 10 10
jumping 10 5
spiking 10 30
walk dog 10 20

order to determine the number of the Gaussian components, for all three
cases, when using the LCSS metric, the CTW alignment and PCA, for all
four datasets. For the Weizmann dataset, when PCA is used, the execu-
tion time drastically falls bellow one second per action. On the other hand,
TMAR(LCSS) requires the highest execution time, which needs six seconds
to recognize the action pjump. Note that, the use of PCA speeds up the exe-
cution time for recognizing a single action in all datasets since feature vectors
of smaller lengths are being used. In the KTH dataset, TMAR(CTW) re-
quires the highest execution time (needs nine seconds to recognize two out
of six actions) and while TMAR(LCSS) takes less than six seconds for one
action. However, in UCF Sport dataset TMAR(LCSS) and TMAR(CTW)
both have the same upper bound of eight seconds to recognize an action.
Finally, in UCF YouTube dataset, the average execution time to recognize
an action ranges from two to nine seconds when TMAR(LCSS) approach is
used. In the case where TMAR(PCA) is used the upper bound to recognize
an action is five seconds in UCF Sports and UCF YouTube datasets, while
in Weizmann and in KTH is less than a second. This makes the algorithm
capable to adapt to any real video sequence and recognize an action really
fast.
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(a) Weizmann dataset (b) KTH dataset

(c) UCF Sports dataset (d) UCF YouTube dataset

Figure 15: Average percentage of matched curves for TMAR(LCSS) and TMAR(CTW),
when the BIC criterion is used, for (a) Weizmann, (b) KTH, (c) UCF Sports and (d) UCF
YouTube datasets, respectively.

5. Conclusion

In this paper, we presented an action recognition approach, where actions
are represented by a set of motion curves generated by a probabilistic model.
The performance of the extracted motion curves is interpreted by comput-
ing similarities between the motion trajectories, followed by a classification
scheme. The large size of motion curves was reduced via PCA and after
noise removal a reference database of feature vectors is obtained. Although
a perfect recognition performance is accomplished with a fixed number of
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(a) Weizmann dataset (b) KTH dataset

(c) UCF Sports dataset (d) UCF YouTube dataset

Figure 16: Execution times per action in seconds for TMAR(LCSS), TMAR(CTW) and
TMAR(PCA), when the BIC criterion is used, for (a) Weizmann, (b) KTH, (c) UCF
Sports and (d) UCF YouTube datasets, respectively.

Gaussian mixtures, there are still some open issues in feature representation.
Our results classifying activities in four publicly available datasets show

that the use of PCA have a significant impact on the performance of the
recognition process, while it semantically speeds up the behavior of the pro-
posed algorithm. We demonstrated the effectiveness of the optimal recog-
nition model by using the BIC criterion to determine the number of the
Gaussian components. Finally, our algorithm is free of any constraints in
the trajectories lengths. Although the proposed method yielded encouraging
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results in standard action recognition datasets, it is requirement of a chal-
lenging task of performing motion detection, background subtraction, and
action recognition in natural and cluttered environments.
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