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Hierarchical Similarity Transformations
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Abstract— In this paper, we propose a method to estimate the
density of a data space represented by a geometric transformation
of an initial Gaussian mixture model. The geometric transfor-
mation is hierarchical, and it is decomposed into two steps.
At first, the initial model is assumed to undergo a global similarity
transformation modeled by translation, rotation, and scaling of
the model components. Then, to increase the degrees of freedom
of the model and allow it to capture fine data structures, each
individual mixture component may be transformed by another,
local similarity transformation, whose parameters are distinct
for each component of the mixture. In addition, to constrain
the order of magnitude of the local transformation (LT) with
respect to the global transformation (GT), zero-mean Gaussian
priors are imposed onto the local parameters. The estimation of
both GT and LT parameters is obtained through the expectation
maximization framework. Experiments on artificial data are
conducted to evaluate the proposed model, with varying data
dimensionality, number of model components, and transforma-
tion parameters. In addition, the method is evaluated using real
data from a speech recognition task. The obtained results show a
high model accuracy and demonstrate the potential application
of the proposed method to similar classification problems.

Index Terms— Expectation maximization (EM) algorithm,
Gaussian mixture model, registration of point sets, similarity
transformation.

I. INTRODUCTION

GAUSSIAN mixture models (GMMs) were extensively
studied with applications in many domains, such as

density estimation [1], clustering [2], [3], classification [4],
image registration [5], [6], and regression [7], [8]. There are
two main issues in the application of mixture models. The
first is the estimation of model parameters. Parameter estima-
tion is generally based on the maximum likelihood (ML) or
maximum a posteriori (MAP) expectation maximization (EM)
algorithm [9]–[11] or its variational extensions [12], [13].
The second issue is the choice of the number of mixture
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components. There are cases where the number of compo-
nents is known a priori, (e.g., some classification problems).
In the majority of applications, this number is, however,
unknown [14]–[16], [18].

In many domains, such as speaker adaptation [19], image
registration [5], and tracking [20], the following case of
parameter estimation is often encountered: an initial GMM
is considered, where the number of components and the
model parameters are already estimated from a training data
set and are considered known. The initial model is then
geometrically transformed and a new data set is generated.
To estimate the unknown transformation parameters, we may
consider to simply retrain the model using the new data
set as input. Without any restrictions or the imposition of
constraints, this approach could lead to a violation of the one-
to-one mapping between the components of the estimated and
the initial GMM [6]. A common approach is the imposition
application of constraints on the geometrically transformed
model parameters (Fig. 1) where the geometric transformation
is usually a similarity transformation consisting of rotation,
scaling, and translation.

In this paper, we propose a method to estimate the trans-
formation parameters between Gaussian mixtures, which is
based on the EM algorithm. At first, we consider the case
where a unique similarity transformation is applied to GMM
components. We call this type of transformation as global
transformation (GT). This is the case, for example, of the
motion of a moving camera capturing a still scene. In
[19], [21], this problem was discussed but the authors focused
on the special case where the transformation consisted only of
a scaling matrix and the covariance matrices of the Gaussian
components were diagonal. Moss and Hancock [22] also
addressed this constrained transformation problem but they
were limited to the image registration problem, thus they used
the 2-D mixture models. In this paper, we treat the genera
D-dimensional problem including (apart from scaling) rotation
and full covariance matrices.

The assumption made in [19], [21], and [22] of a unique
similarity transformation applied to all mixture components,
may hold for a number of problems. It could also be of
great interest to allow each component to have an individual
transformation and thus, to increase the degrees of freedom of
the model. A second contribution of this paper is to consider
another layer of transformations (apart from the GT) applied
to each individual component with distinct parameters for each
mixture component. We call them as local transformations

2162-237X © 2013 IEEE
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Fig. 1. (a) Transformation of a 2-D mixture model with two components. (b) Fourth iteration. (c) 35th iteration. (d) 44th iteration (convergence of the
method). Black circles: the first component of the initial population. Red triangles: the second one. Green squares: the first component of the transformed
population. Yellow rhombs: the second one. Black and red ellipses: the estimations of the first and second Gaussian components, respectively.

(LTs). In the moving camera example, if some objects are
also moving under different motion models, then to esti-
mate both motions we need to increase the flexibility of the
whole modeling. This modeling of LT could be considered
in analogy with probabilistic principal component analysis
(PCA) or factor analyzers where the data are described by
a linear subspace and the remaining variation is captured by a
spherical, diagonal, or full covariance [1]. Thus, we propose a
MAP-EM approach to estimate both global and local similarity
transformations.

The remainder of this paper is organized as follows. A
general description of the similarity transformations between
Gaussian mixtures is given in Section II. The presentation of
the GT and LT models along with the estimation of parameters
in a MAP-EM framework is accomplished in Section III. More
specifically, the GT model is presented in Section III-A and the
LT model is developed in Section III-B. The proposed mixture
registration method is evaluated in Section IV, using both arti-
ficial and real data. The artificial data are used to examine the
convergence of the method under different scenarios, including
varying data dimensionality, number of components, and type
of applied transformation. A real speech recognition data set
is also used to illustrate a machine learning application of the
proposed method. The obtained recognition accuracy using the
proposed method is compared with a supervised classification
(K-NN) and other possible GMM learning methods, such as
the standard ML model inference of the GMM parameters.
These results are presented and discussed in Section IV-B.
Finally, in Section V, we present our conclusions and possible
extensions of this paper.

II. SIMILARITY TRANSFORMATIONS OF GMMS

Assume an initial population X0 in a D-dimensional space
IRD , whose distribution is approximated by a GMM with
L components. If the elements of X0 are independent and
identically distributed, which is a common assumption in many
applications, such as image segmentation [23]–[25], then

P(X0) =
∏

x∈X0

L∑

i=1

πiN (x|μi ,�i ) (1)

where πi , μi , and �i are the mixing proportion, the mean
vector, and covariance matrix of the i th mixture component,

respectively. Furthermore, it holds that
∑L

i=1 πi = 1. Let X be
a new sample, which is generated according to the following:

X = AX0 + b (2)

where matrix A is the product of transformation matrices

A = S
P∏

i=1

Ri (φi ). (3)

In (3), S is a diagonal scaling matrix and Ri is a rotation
matrix representing a rotation by angle φi with respect to
the i th dimension. Both scaling and rotation matrices are
n-dimensional square matrices. The distribution of the new
sample X, under this transformation is as follows:

P(X) =
∏

x∈X

∑

i

πiN (x|Aμi + b, AT �i A). (4)

A more generic case of the above transformations, which is
frequently seen in practice, is when scaling is applied only to
the covariance matrices of the Gaussian distributions (the mean
vector remains unchanged). Thus, the scaling transformation
does not shrink or enlarge the whole distribution space but
rather the range of each component, and may be written as
follows:

P(X) =
∏

x∈X

∑

i

πiN (x|Aμi + b, AT S�i S A) (5)

and matrix A does not depend on scaling

A =
P∏

i=1

Ri . (6)

We should notice that the extension from the case in (6) to the
case described by (3) is trivial. Therefore, in what follows, we
focus on the transformation model described by (5). We also
denote the parameters describing the original GMM model
by M = {

πi ,μi ,�i
}L

i=1 and the transformation parameters
by � = {{φ1, . . . , φD}, {s1, . . . , sD}, {b1, . . . , bD}}. In the
following section, we describe the estimation of the transfor-
mation parameters described in (5).
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III. PARAMETER ESTIMATION

The transformation in (5) is applied to all mixture compo-
nents and it may be considered as a GT. We first examine
the parameter estimation problem for this case and then we
extend our results for the more generic case, where apart from
the GT, a separate, LT is applied to each component of the
GMM.

A. Global Transformations

As there is no closed form solution to the ML estimation
of the transformation parameters �, we recur to the EM
algorithm [9]. The goal of the EM algorithm is to maximize
at each step, the expected log likelihood of the complete data
with respect to model’s parameters

�k = arg max
�

IE
[
log p(X,�|�, M)|X,�k−1

]
(7)

where �k−1 is the previous estimation of parameters, M is
the initial model, and � is the collection of the corresponding
unobserved information, ωi , which states that sample x is
generated by the i th component.

The expected log likelihood is as follows:

L(�k |�k−1) = IE[log p(X,�|�, M)|X,�k−1]
=

∑

x∈X

∑

i

p(ωi |x,�k−1)[log p(x |ωi ,�)

+ log p(ωi |�)]
=

∑

x∈X

∑

i

p(ωi |x,�k−1) (8)

·
[
−1

2
log |�′

i |−
1

2
(x −μ′

i)
T (�′

i )
−1(x −μ′

i)

]

+
∑

x∈X

∑

i

p(ωi |x,�k−1) log p(ωi |�) (9)

where μ′
i = Aμi + b and �′

i = AT S�i S A. The last term in
(9) does not depend on the transformation parameters � and
may be omitted. The first term in (9), denoted as J, following
[19], may be written as follows:

J =
∑

i

π i (X)
[
2 log |A| + yT S−1�−1

i S−1 y

+tr
[
AS−1�−1

i S−1 AT �̂i [X]]
]

(10)

where y = (AT IEi [X] − μi − AT b) and π i (X) is

π i (X) =
∑

x∈X

hi (x) (11)

where

hi (x) ≡ p(ωi |x,�k−1) = πi P(x|μ′
i ,�

′
i )∑L

j=1 π j P(x|μ′
j ,�

′
j )

. (12)

IEi [X] and �̂i [X] are the sufficient statistics calculated in the
E-step of the EM algorithm. The derivation of E-step and
M-step, for the estimation of the parameter vector �, is
described in more detail in the following.

E-Step: In the E-step, we estimate the expected sufficient
statistics of the data, given the current estimation of parameter
vector �k−1 as follows:

IE j [X] =
∑N

i=1 xi p(x)i j∑N
i=1

∑L
k=1 p(x)ik

(13)

IE j [XXT ] =
∑N

i=1 xi xT
i p(x)i j

∑N
i=1

∑
k p(x)ik

(14)

�̂i [X] = IE j [XXT ] − IE j [X]IE j [X]T (15)

p(x)i j = P(xi |Aμ j + b, (S A)T � j S A).

M-Step: The update equations for all the transformation
parameters (translation vector, scale factors, and rotation
angles) are employed in the M-step.

Mixing Coefficients: The ML estimation of the mixture
proportions is given as follows:

πk
i = π i (X)

N
. (16)

Translation Vector: Taking the derivative of (10) with
respect to the translation vector b and setting the derivative
to zero, we obtain the following update equation:

b = C−1 D (17)

where C and D are defined as follows:

C =
[
∑

i

π i (X)�−1
i S−1 AT

]
(18)

D =
[
∑

i

π i (X)�−1
i S−1 AT (IEi [X] − Aμi )

]
. (19)

Scale Factors: Taking the derivative of (10) with respect to
s j and setting the derivative to zero, we obtain the following:

as2
j − bs j − c = 0 (20)

where a, b, and c are defined as follows:

a =
∑

i

π i (X)

N
= 1

b =
∑

i

π i (X)

N

{
xT

i j yi j + tr(AS1 j�i S2 j AT �̂i [X])
}

c =
∑

i

π i (X)

N

{
xT

i j xi j + tr(AS2 j�i S2 j AT �̂i [X])
}
.

In the above equations, xi j and yi j are defined as follows:

xi j = Li S1 j
[

AT (IEi [X] − b) − μi

]
(21)

yi j = Li S2 j
[

AT (IEi [X] − b) − μi

]
(22)

where Li is derived from the Cholesky decomposition of the
covariance matrix �−1

i as follows:

�−1
i = LT

i Li (23)
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and

S1k
i j =

⎧
⎨

⎩

0, if i = j = k
si , if i = j �= k
0, otherwise

(24)

S2k
i j =

{
1, if i = j = k
0, otherwise.

(25)

As c is always positive, (20) has one positive and one negative
solution and we select the positive one.

Rotation Angles: The derivation of the angle update formula
is more involved. For simplicity, (10) may be expressed by the
sum of two terms as follows:

J =
∑

i

π i (X)[Ja
i + Jb

i ] (26)

where

Ja
i = FT S−1S−1

i S−1F, (27)

Jb
i = tr(AS−1�−1

i S−1 AT �̂i [X]) (28)

and
F = (A−1IEi [X] − μi − A−1b)T. (29)

Now consider matrix A to be a product of elementary trans-
formations [26]

A = (R12 R13 · · · R1n)(R23 · · · R2n) · · · (RD−1,D) (30)

where Rij is a (n × n) matrix representing the rotation across
the plane produced by dimensions i and j . Then, Rij has the
following form:

i th col. j th col.
↑ ↑⎛

⎜⎜⎜⎜⎝

I 0 0 0 0
0 cos(φi j ) 0 − sin(φi j ) 0
0 0 I 0 0
0 sin(φi j ) 0 cos(φi j ) 0
0 0 0 0 I

⎞
⎟⎟⎟⎟⎠

→ i th row

→ j th row

(31)

where φi j is the rotation angle. Rij may be further decomposed
as follows:

Rij = (Ii j cos(φi j ) + Ji j sin(φi j ) + Kij ) (32)

where Ii j , Ji j , and Kij are defined in Appendix A. The partial
derivative of J in (26) with respect to φi j is given by (see
Appendix A for a more detailed derivation)

∂J

∂φi j
=

∑

i

πi (x)
[ [

(xT
i j xi j − yT

i j yi j )

+ tr(Ac
j�

−1
i (Ac

j )
T �̂i [X])

− tr(As
j�

−1
i (As

j )
T �̂i [X])

]
sin(2φi j )

+2[xT
i j yi j + tr(As

j S−1
i (Ac

j )
T �̂i [X])] cos(2φi j )

+2[xT
i j (zi j +wi )] sin(φi j )−2[ yT

i j (zi j +wi )] cos(φi j )
]
.

(33)

where xi j = LT
i Ac

j (IEi [X]−b), yi j = LT
i As

j (IEi [X]−b), zi j =
LT

i Ak
j (IEi [X] − b) and wi = LT

i μi . Li is the lower triangular

matrix of the Cholesky decomposition of the covariance matrix
�−1

i and

Ac
j = RT

D−1 · · · I T
j · · · RT

2 RT
1 S−1 (34)

As
j = RT

D−1 · · · J T
j · · · RT

2 RT
1 S−1 (35)

Ak
j = RT

D−1 · · · K T
j · · · RT

2 RT
1 S−1. (36)

Setting (33) to zero, we obtain (see Appendix A)

a cos(2φ) + b sin(2φ) + c cos(φ) + d sin(φ) = 0 (37)

where

a =
∑

i

πi (X)
[
(xT

i j xi j − yT
i j yi j ) + tr(Ac

j�
−1
i (Ac

j )
T �̂i [X])

−tr(As
j�

−1
i (As

j )
T �̂i [X])

]

b = 2
∑

i

π i (X)[xT
i j yi j + tr(As

j�
−1
i (Ac

j )
T �̂i [X])]

c = 2
∑

i

πi (X)[xT
i j (zi j + wi )] sin(φ j )

d = −2
∑

i

π i (X)[ yT
i j (zi j + wi )] cos(φ j ).

To solve (37) for φ, we use a nonlinear optimization method
(Levenberg–Marquardt). It is, however, important to notice,
that in cases where angles are expected to be small, small
angle approximations lead to closed form solutions. For angles
up to 10° approximately, we could use the approximations
sin(x) ≈ x and cos(x) ≈ 1, resulting in the following:

φ = − c + a

2b + d
. (38)

B. Local Transformations

The assumption of a unique transformation applied to all
mixture model components, may hold for some problems, but
in many cases it could be a very strict constraint. To add more
flexibility to the model, we could allow each component to
have an individual LT as well. For clarity of presentation, we
will consider the 2-D case, but the following results may be
extended to larger dimensions. We start from the definition
of both GT and LT in rotation, scaling, and translation. The
rotation matrix R(G L)

j for a 2-D case can be written as follows:

R(G L)
j =

(
cos(φ + φ j ) − sin(φ + φ j )
sin(φ + φ j ) cos(φ + φ j )

)
(39)

where φ is the rotation applied to all components (global) and
φ j the rotation applied to the specific j th component (local).
Matrix R j can also be expressed as the product of a local and
a global rotation

R(G L)
j = R(G) · R(L)

j (40)

R(G) =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

R(L)
j =

(
cos(φ j ) − sin(φ j )
sin(φ j ) cos(φ j )

)
.

For the translation vector, we can write the following:

b(G L)
j = b(G) + b(L)

j (41)
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and for the scaling factors

S(G L)
j =

(
s(G)

1 · s(L)
1 j 0

0 s(G)
2 · s(L)

2 j

)
. (42)

The basic assumption for the LT parameters is that they
are in magnitude smaller than the global ones. Thus, a prior
distribution is imposed on each one of these parameters as
follows:

φ
(L)
j ∝ N (0, σ 2

φ ), s(L)
kj ∝ N (1, σ 2

s ), b ∝ N (0, σ 2
b I) (43)

where σ 2
φ , σ 2

s , and σ 2
b are the variances of the respective

distributions. The new set of transformation parameters and the
incorporation of the prior on the distribution of LTs lead to a
MAP-EM estimation for the optimization of the new complete
data log likelihood

J =
∑

i

π i (X)
[
2 log |A(G L)

i | + yT (S(G L)
i )−1�−1

i (S(G L)
i )−1 y

+ tr
[
A(G L)

i (S(G L)
i )−1�−1

i (S(G L)
i )−1(A(G L)

i )T �̂i [X]]
]

− log c1 +
P∑

j=1

λφ(φ
(L)
i j )2 − log c2 +

D∑

j=1

λs(1 − s(L)
i j )2

− log c3 + λbbT b (44)

with respect to both local and GT parameters. The constants
c1, c2, and c3 do not depend on the transformation parame-
ters, P is the number of angles in the transformation, D
is the dimensionality, λφ = 1/(2σ 2

φ ), λs = 1/(2σ 2
s ), and

λb = 1/(2σ 2
b ). Furthermore, y = [(A(G L)

i )T IEi [X] − μi −
(A(G L)

i )T b].
E-Step: The expectations IEi [X] and IEi [XXT ] calculated in

the E-step, are now given by

IE j [X] =
∑n

i=1 xi p̂(x)i j∑n
i=1

∑L
k=1 p̂(x)ik

(45)

IE j [XXT ] =
∑n

i=1 xi xT
i p̂(x)i j

∑n
i=1

∑L
k=1 p̂(x)ik

(46)

�i ≡ S(G L)
i A(G L)

i (47)

p̂(x)i j = P(xi |A(G L)
i μ j + b, �T

i � j �i ).

M-Step: The update equations for the GT parameters, are
similar to refUpdateMixing), (17), (20), and (37), presented
in Section III-A. The only difference lies on the definition of
matrices Ac

j , As
j , and Ak

j

Ac
j i = (R(G L)

P,i )T · · · I T
j (R(L)

j,i )T · · · (R(G L)
1,i )T (S(G L)

i )−1

As
j i = (R(G L)

P,i )T · · · J T
j (R(L)

j,i )T · · · (R(G L)
1,i )T (S(G L)

i )−1

Ak
j i = (R(G L)

P,i )T · · · K T
j (R(L)

j,i )T · · · (R(G L)
1,i )T (S(G L)

i )−1

where j is the j th rotation angle, whereas i is the i th
component.

Furthermore, in all the equations presented for the GT, we
should interchange the transformation parameters with the new
transformation containing both local and GT. We proceed with
the update equations of the LTs.

Translation Vector: Taking the derivative of the log likeli-
hood (44) with respect to the translation vector bL and setting
it to zero, we obtain the following update equation:

bL
i = (Ci + λb I )−1 Di (48)

where Ci and Di are defined as follows:

Ci =
[
�−1

i �−1
i

]
(49)

Di =
[
�−1

i �−1
i (IEi [X] − A(G L)

i μi − b(G))
]

(50)

where �i defined in (47). The difference between (48) and
(17), is the introduced term λb I . The larger the λb, the smaller
the norm of bL .

Scale Factors: Taking the derivative of the log likelihood
with respect to the scale s(L)

i j of the i th component at j th
dimension and setting the derivative to zero, we obtain the
following:

(s(L)
i j )2 − (b − λs)s

(L)
i j − (c + λs) = 0 (51)

where b and c are defined as follows:

b = yT
i j yi j + tr[A(G L)

i S1 j
i � j S2 j

i (A(G L)
i )T �̂i [X]] (52)

c = xT
i j xi j + tr[A(G L)

i S2 j
i � j S2 j

i (A(G L)
i )T �̂i [X]]. (53)

In the above equations, xi j and yi j are defined as follows:

xi j = Li S1 j
i

[
(A(G L)

i )T �i − μi

]
(54)

yi j = Li S2 j
i

[
(A(G L)

i )T �i − μi

]
(55)

�i = IEi [X] − bG L
i (56)

(S1k
p )i j =

{
sG L

kp , if i = j �= k
0, otherwise

(57)

(S2k
p )i j =

{
sG

kp, if i = j = k
0, otherwise.

(58)

Similar to (20) and (51) has two possible solutions for s(L)
i j ,

one negative and one positive and we again select the positive
one.

To clarify the impact of the term λs on the values obtained
for s(L)

i j , solving (51), consider λs >> 1, λs >> b, and
λs >> c. Then, we can neglect the quadratic term in (51)
and s(L)

i j ≈ 1.
Rotation Angles: In a derivation similar with the one for the

GT, we obtain an equation of the following form:

a cos(2φ
(L)
i j ) + b sin(2φ

(L)
i j ) + c cos(φ(L)

i j )

+ d sin(φ
(L)
i j ) + λφφ

(L)
i j = 0 (59)

where

a = [
(xT

i j xi j − yT
i j yi j ) + tr(Ac

j�
−1
i (Ac

j )
T �̂i [X])

+tr(As
j�

−1
i (As

j )
T �̂i [X])] (60)

b = 2[xT
i j yi j + tr(As

j S−1
i (Ac

j )
T �̂i [X])] (61)

c = 2[xT
i j (zi j + wi )] sin(φ j ) (62)

d = −2[ yT
i j (zi j + wi )] cos(φ j ) (63)
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Algorithm 1 Global/Local MAP-EM

while ‖�k − �k−1‖ < ε do
E-step: Calculate expected statistics from (45) and (46).
M-step:
Update all global rotations φ

(G)
i using the solution of (37).

Update all global scale coefficients s(G)
i using (20).

Update all local rotations φ
(L)
i j using the solution of (59).

Update all local scale coefficients s(L)
i j using the positive

solution of (51).
Update global translation b(G) using (17).
Update local translations b(L)

i using (48).
k = k + 1

end while

and

xi j = LT
i Ac

j (IEi [X] − bG L
i ) (64)

yi j = LT
i As

j (IEi [X] − bG L
i ) (65)

zi j = LT
i Ak

j (IEi [X] − bG L
i ) (66)

wi = LT
i μi . (67)

Comparing (59) with (37), the additional term λφφ
(L)
i j , forces

φ
(L)
i j to zero, for large values of λφ . Furthermore, we should

also notice that setting λb , λs , and λφ coefficients to zero in
(48), (51), and (59), we obtain equations of the same form
as (17), (20), and (37), respectively. The statistics used in the
former equations are, however, calculated regarding only the
specific component. The MAP-EM algorithm estimating both
GT and LT is given in Algorithm 1.

The variance in the prior distribution (43) of the transforma-
tion parameters is the parameter governing the freedom given
to the model. If the variance is large then the model diverges
from the initial assumption of a geometric transformation of
an initial population. Each component will probably converges
to the closest component of the new population. On the other
hand, using a very small initial variance, we restrict the model
and we are neglecting the LT parameters. A desired behavior
would be, if initially we restrict the LT parameters and pro-
gressively, while the GT converges to the actual solution, loose
the constraints and allow the learning of the local parameters
as well. This behavior can be achieved using a parameter λ
varying across iterations

λk = λ0 exp(−γ k) + λ′
0. (68)

Parameter γ controls the behavior of the algorithm, outlined
in Algorithm 1. If γ is large then the constraints are quickly
dropped and this algorithm is equivalent to an algorithm where
at each iteration we seek for both LT and GT parameters
without constraints. On the other hand, if γ is very small and
we also imply large constraints λ0 the algorithm initially fits
the global transformation, and after a number of iterations fits
the local parameters.

IV. RESULTS AND DISCUSSION

A. Experiments Using Artificial Data

A set of experiments is performed using artificial data to
investigate whether the proposed method is able to detect the
correct solution for different scenarios. To better understand
the method’s behavior, we present the estimation of the new
mixture, for a 2-D problem (for visualization purposes) having
two components (Fig. 1). Three different iteration steps of the
EM algorithm are presented: 1) the 4th step in Fig. 1; 2) the
35th step in Fig. 1; and 3) the 44th step in Fig. 1. From an
initially distant starting point, the algorithm correctly identifies
the correct solution.

At first, we examine the estimation of GT parameters
under: 1) different overlapping conditions and 2) different
rotation angles and number of components of the GMM. The
results are compared with those obtained using the standard
EM approach. Next, we compare the performance of the
simultaneous GT and LT approaches with the performance
of the GT and EM, in the presence of LTs.

1) Overlapping Components: As EM is a local optimization
method, the existence of many local maxima could have a
serious effect on the method performance. In the case of a
unique maximum, the algorithm is guaranteed to convergence
to this maximum. Thus, it is of great interest to study the
shape of the likelihood function, given the parameters of the
problem.

One of the factors affecting the number of local maxima
of the log-likelihood function is the sparsity of the mixture
components. This was verified theoretically in [27]–[29]. The
more dense the distribution, the larger the number of local
maxima in the search of the optimal transformation parame-
ters that fit the data. This factor is also investigated in our
experiments. A measure of overlapping is, however, necessary
to quantitatively relate component overlap and registration
accuracy. Therefore, we use the measure of the Gaussian
overlap introduced in [28]. Initially, γi j (x) is defined as
γi j (x) = (δi j − hi (x))h j (x) for i, j = {1, ..., L}, where δi j

is the Kronecker function and hi (x) is defined in (12). The
overlap measure of two mixture components is defined as
follows:

ei j (M) =
∫

Rd
|γi j (x)|P(x|M)dx for i, j = {1, ..., L}

(69)
where M is the GMM model considered and ei j (M) ≤ 1 as
|γi j (x)| ≤ 1. The maximum overlapping e(M), is defined as
follows:

e(M) = max
i j

{ei j (M)}. (70)

More details can be found in [28]. A number of experi-
ments are conducted to examine the impact of overlapping
mixture components on the estimation of the transformation
parameters. We examine 2-D, 3-D, 4-D, and 5-D problems.
The number of components is set to 2D−2 + 1, where D is
the dimensionality of the problem. To control the overlapping
between components, we produce a grid on the IRD dimen-
sional space, where each cell of the grid is located at distance
α from the nearest adjacent cell. Then, the mean of each
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(a) (b)

(c) (d)

Fig. 2. (a) Mean component error, (b) rotation error, and (c) percentage of correct solution identification as a function of overlapping parameter a for the
GT approach. (d) Percentage of correct solution identification using the standard EM algorithm as a function of overlapping parameter a.

component is assigned randomly to a specific cell’s centroid.
The covariance for the D-dimensional problem is a Toeplitz
matrix produced by considering the first D elements from
vector v = [1,−0.2,−0.1, 0, 0].

The initial rotation angles are set randomly in the interval
[−π/4, π/4] and each dimension of the translation vector is
also randomly chosen in [−5, 5]. The scale matrix is always
the identity matrix, to maintain the same overlapping in the
transformed space. Furthermore, to have similar component
overlap e(M) for all the examined dimensions (2-D, 3-D, 4-D,
and 5-D), each component has 100 ·π(D−2)/(2) ·2D−2 samples,
where D is the dimensionality. This number of samples
gives a constant number of samples per volume for any
D-dimensional Gaussian distribution. A total of 200 realiza-
tions of the experiment for each dimensionality and for each
value of α are performed. The examined values of parameter
α are 0.5, 1, 1.5, 2, 3, 4, and 5. For α = 0.5, there is high
overlapping between components, whereas for α = 5, the
overlapping tends to zero. The measure used for evaluation is
the mean absolute error in the estimated rotation angles, scale,
and translation as well as the mean squared difference between
the estimated means of the components and the ground
truth.

In Fig. 2, the mean and standard deviation for the error in
the component’s mean (Fig. 2) and rotation angle (Fig. 2), are
shown. The average and standard deviation are calculated in
the cases, where the solution is correctly identified. A solution

is correct if each component of the estimated GMM is closest
to the corresponding component of the true GMM. If this
is the case, we claim that a solution is correctly identified.
The percentage of the times where the corrected solution are
identified, is also shown in Fig. 2. For comparison purposes,
the correct solution identification, using the standard EM
algorithm, is shown in Fig. 2. For a larger than 0.5, when
the components are well separated (given the specific covari-
ance matrix), the percentage of correct solution identification
increases drastically for the GT approach, especially for higher
order dimensions. The increase is significantly smaller for the
standard EM algorithm.

2) Rotation and Number of Components: For the cases of
2-D, 3-D, 4-D, and 5-D dimensional problems, we investigate
the impact of the rotation angle and the number of components
on the estimation of the correct solution. We choose only to
examine the rotation angle as its estimation is the hardest
one and seems to govern the correct solution identification,
compared with the rest of the transformation parameters.
The number of components is also a crucial parameter with
a twofold contradictory role. On the one hand, the larger
the number of components, the larger the number of points
available to estimate the transformation’s parameters are. On
the other hand, the larger the number of components, the larger
the degree of overlap is, considering that all components are
spread at a restricted space, making parameter estimation more
difficult. The initialization of GMM’s components is similar
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Percentage of correct identification and mean component error for 2-D, 3-D, 4-D, and 5-D problems for (a)–(d) GT/LT and (e)–(h) standard EM
algorithm.

to that described in the previous set of experiments. In all
cases, the parameter α is set to 3. The number of components
examined varies from 2 to 12. The rotation angles vary from
0 to π/2 with a step of π/12. In Fig. 3, the percentage
of correct identification in 200 realizations in all dimensions
for both GT and classical EM approaches, are presented. In
all problems, we observe that with an increased number of
components, resulting in a higher component overlapping, the
probability of correct solution identification is reduced. For
the cases where the solution was, however, correctly identified
the error in the parameters estimation is reduced. This is also
shown in Fig. 4 where the rotation error is averaged only
on the cases where the solution is correctly identified. The
results from the experiments with rotation angles set to π/4,
however similar are the results for any other angles, are shown
in Fig. 4.

Finally, GT approach outperforms the standard EM algo-
rithm for larger rotations, which is shown in Figs. 3 and 4. This
finding leads to the conclusion that the proposed method has
very good performance when many sparse (non overlapping)
components are present. It should be noticed that a very sparse
distribution of components leads to a performance degradation,
as large gaps in the distribution space are translated into
wide valleys in the likelihood function, which slows down the
convergence or even trap the EM algorithm in local maxima.

3) GT/LT Approaches: The convergence of the proposed
method for estimating both GT and LT is also examined. The
main question posed here is if using GT/LT approach, we can
correctly identify cases where simple GT fails. To examine
this issue, we follow the experimental setting described in
Section IV-A1, for 2-D, 3-D, 4-D, and 5-D problems. The
parameter α, which controls the degree of overlapping between

Fig. 4. Rotation error versus the number of components for 2-D, 3-D, 4-D,
and 5-D problems for GT approach and standard EM algorithm, averaged on
the cases where a correct solution is identified. The angle for all cases is π/4.
For the standard EM algorithm, where no correct solution is identified, points
are missing.

components, is set to 3 for all cases. In these experiments,
for each component mean μi , we, however, add a random
translation bi where bi j ∈ [−α/2, α/2] and random local
rotations where φi j ∼ N(0, 5) in degrees. This additional
translation and rotation are sufficient to drop the condition
of a unique GT on all components. The combination of GT
and LT can be considered as a GT with noise added to the
parameters of the transformation of the global model. For
each dimension, we repeat 200 realizations for different values
of γ (0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, and 10), which
determines the degree of freedom for the LT transformation
parameters, defined in (68). For each case, we test both GT
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Fig. 5. Percentage of correct solution identification for 2-D, 3-D, 4-D, and
5-D problems with EM, GT, and GT/LT approaches.

and GT/LT approaches, as well as the standard EM algorithm
for comparison purposes. In Fig. 5, the percentage of correct
solution identification for all dimensions and values of γ is
presented. GT/LT approach outperforms GT for a large range
of γ , whereas both methods provide clearly better results than
the standard EM. Furthermore, the gain of using the GT/LT
compared with GT and EM grows with the dimension and the
complexity of the problem.

B. Experiments Using Real Data

The performance of the proposed method is tested in two
speech recognition data sets consisting of individual speakers.
The features from one speaker are considered to be generated
from a distribution, which is a transformation of a common
phoneme generating distribution. The first data set is the
deterding data set [31] consisting of the steady-state portion
of 11 vowels in British English, spoken in the context of h*d.
The recorded speech samples are low-pass filtered at 4.7 KHz
before being digitized at 10 KHz with a 12-b resolution. With
the linear predictive analysis, 10 features are calculated. The
data set consists of 15 speakers, where eight speakers are
used for training and seven for testing. There were several
papers presented in the literature, which used the specific
data set [33], [34]. Their approaches were, however, based
on classifiers with no learning on each speaker. The second
data set is the phoneme data set [32] with 256 features
and five phonemes. For this data set, the first speaker is
used for training, and the rest seven speakers for testing.
For better understanding of the problem, both data sets are
visualized using the first two PCA components (Fig. 6).
It can be observed that the Phoneme data set seems well
separated. To decrease the distance between classes for the
phoneme problem, a random transformation is applied to each
speaker individually. The random transformation includes only
a rotation matrix with angles randomly drawn in [0, θ ], where
θ is set to 0°, 10°, or 20°.

For fitting the training model to a new speaker (test), we
apply the following procedure.

1) For the deterding data set, a simple normalization is
applied to the subjects of the training set, by translating
the samples to register them with the first subject’s

(a)

(b)

Fig. 6. Visualization of the mean feature vector for each phoneme class
of the (a) deterding and (b) phoneme data sets. Each point corresponds to a
different speaker after projecting the data onto a 2-D space using PCA.

data, which is considered as a reference subject for the
training set. For the phoneme data set, dimensionality
reduction with PCA is performed and then the random
transformation is applied.

2) A GMM model on the training set is learnt with the
number of components being equal to the number of
classes (phonemes).

3) The initial model is transformed to match each subject of
the test set. The compared methods are the GT, GT/LT,
and ML-EM approaches for GMM learning.

4) Each datum is classified based on its posterior
probability.

In Table I, which concerns the deterding data set, we present
the classification accuracy for each test subject and the overall
accuracy for each of the following examined classification
methods: 1) GMM without learning; 2) GMM with ML-EM
learning; 3) GMM with GT learning; 4) GMM with GT/LT
learning; and 5) K -NN (K = {3, 5, 7}). We observe that
the GT/LT approach gives the best vowel recognition results.
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TABLE I

CLASSIFICATION ACCURACY ON THE DETERDING DATA SET USING

DIFFERENT METHODS WITH AND WITHOUT LEARNING (γ = 0.001 FOR

GT/LT). FOR EACH SUBJECT, THE METHOD WITH THE HIGHEST

ACCURACY IS HIGHLIGHTED

Fig. 7. Classification accuracy for the phoneme data set for different rotations
(θ is the maximum angle) and data dimensions (after the application of PCA).

The GT approach fails for the specific data set, as the GT
assumption is not sufficient for the specific problem. K-NN
provides the same results, as those reported in [31], which are
similar to the simple GMM classification without learning. In
[33], [34], more advanced classification methods were applied
on the deterding data set, providing better results than KNN.
More specifically, the error rates on the test sets were 38.8%
and 38%, respectively, yielding classification accuracies of
61.2% and 62%, which are still inferior than those obtained
using the proposed methodology.

In Fig. 7, we present the overall accuracy of each method for
different dimensions obtained using PCA on the phoneme data
set of the 256 features and the random transformation added to
each speaker. From the results, it can be observed that whereas
for ML-EM and KNN there is a significant reduction in the
accuracy of the classification, both GT and GT/LT methods
sustain their accuracy.

V. CONCLUSION

In this paper, we addressed the problem of estimating the
transformation parameters of a GMM, with respect to an
original model. The method presented here was based on the
EM framework. We considered both the cases where a GT was
applied on all GMM’s components and the case where a LT
was also applied on each component. With a proper formu-
lation of the problem as a constrained optimization problem,

many global optimization techniques could be applied. In this
paper, we, however, focused on the application of the MAP-
EM as it was apparently very suitable for solving the specific
problem.

Initially, we examined our method for the GT case. A
set of experiments was performed to examine the impact of
GMM overlapping in the correct solution identification. We
verified that the larger the overlapping, the more difficult was
to identify the correct solution, regardless of the problem’s
dimension.

Next, we examined the impact of the rotation applied on the
GMM. Our experiments showed, as expected, that the larger
the rotation, the more difficult was to identify the correct
solution. We may, however, easily overcome this problem
using an EM approach with multiple starts and different
configurations for the initial rotation angles. The impact of
the number of components was also examined. Larger number
of components led to larger component overlapping and more
local minima, where EM can be trapped.

In addition, a set of experiments was performed to demon-
strate that the GT/LT approach was able to identify the correct
solution when the simple GT approach failed. The failure of
the GT approach was expected when the assumption of a
unique transformation on all components did not hold. Our
experiments, however, showed that the deviation of the applied
transformation from a global one was also important. GT/LT
was compared with GT and EM approaches and provided
better results for a wide range of the γ parameter, which
controlled the models deviation from the GT assumption.

Finally, the proposed method was applied on two real-
world problems of vowel recognition from different speakers,
demonstrating also its practical value. The GT/LT approach
was compared with the simple GT approach as well as with
other GMM learning methods (ML-EM) and classification
methods (K-NN). The GT/LT learning provided the best
results with significant difference from the other approaches
in the deterding data set where classes were not well sepa-
rated between speakers. The inferior performance of the GT
approach, compared with the GT/LT approach, may imply
that the assumption of a GT was not accurate for the specific
problem. Given a random transformation, the assumption of an
affine transformation may lead the GT, GT/LT approaches to
be trapped to a local minimum. This can also explain the few
cases where ML-EM outperformed GT and GT/LT methods.

For the phoneme data set, it was demonstrated that the
GT and GT/LT approaches clearly outperformed ML-EM and
KNN methods when an additional noise transformation was
added on each speaker, increasing the learning difficulty.

In the proposed methodology, a one-to-one mapping was
considered for the components of the initial and the resulting
model. For the identification of the initial model’s components,
there were methods that could provide an estimation of the
optimal number of components [16]. Cases were adaptation
was required of an initial model with N components to a new
distribution with M components where M < N or M > N
was not handled in this paper. In the case of M < N , a
possible solution was to allow the π coefficients tended to
zero. Handling unequal component numbers was considered
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as a very interesting extension of the proposed methodology
and planned as future work.

The computational cost of the GT, GT/LT approaches was
higher than the one of classic EM, as it involved an optimiza-
tion step. Considering diagonal or spherical covariance matrix,
the number of parameters was, however, significantly reduced
and the estimation of parameters was simplified eliminating
the optimization step and speeding up the procedure. We also
described the small rotation angles, where using the small
angle approximations of (37) can also speed up the method.
Those simplifications were also necessary when applying the
proposed methodology to very high-dimensional problems.
Other possible applications of our method are image regis-
tration or objects tracking in video from a moving camera.
A significant extension of our method, suitable for the latter
application, is the online estimation of the transformation para-
meters. This extension seems feasible for small rotation angles,
where small angle approximations of (37) were accurate, and
it is planned as future work.

APPENDIX

MAXIMIZATION OF (10)

We introduce the following matrices:

I (n×n)
i j (k, l) =

⎧
⎨

⎩

1, k = i and l = i
1, k = j and l = j
0, otherwise

(71)

J (n×n)
i j (k, l) =

⎧
⎨

⎩

−1, k = i and l = j
1, k = j and l = i
0, otherwise

(72)

K (n×n)
i j (k, l) =

{
1, k = l and k �= i and l �= j
0, otherwise.

(73)

The log likelihood may be split as the sum of two terms as
follows:

J =
∑

i

π i (X)[Ja
i + Jb

i ] (74)

where J b
i and J a

i are given by (27) and (28), respectively.
J a

i can be written in an expanded form as

Ja
i = xT

i j xi j cos(φ j )
2 + yT

i j yi j sin(φ j )
2

+2xT
i j yi j cos(φ j ) sin(φ j )

+2xT
i j (zi j + wi ) cos(φ j )

+2 yT
i j (zi j + wi ) sin(φ j ). (75)

Taking the derivative of J a
i with respect to φ j , we obtain the

following:

∂Ja
i

∂φ j
= 2[(xT

i j xi j − yT
i j yi j )] cos(φ j ) sin(φ j )

+2xT
i j yi j sin(φ j )

2 − 2xT
i j yi j cos(φ j )

2

+2xT
i j (zi j + wi ) sin(φ j ) − 2 yT

i j (zi j + wi ) cos(φ j )

= (xT
i j xi j − yT

i j yi j )] sin(2φ j ) + 2xT
i j yi j cos(2φ j )

+2xT
i j (zi j + wi ) sin(φ j )

−2 yT
i j (zi j + wi ) cos(φ j ). (76)

The term Jb
i can be written in expanded form as follows:

Jb
i = tr(AS−1

i (A)T �̂i j [X])
= tr(Ac

j S−1
i (Ac

j )
T �̂i j [X]) cos(φ j )

2

+tr(As
j S−1

i (As
j )

T �̂i j [X]) sin(φ j )
2

+2tr(As
j S−1

i (Ac
j )

T �̂i j [X]) cos(φ j ) sin(φ j )

+2tr(Ac
j S−1

i (Ak
j )

T �̂i j [X]) cos(φ j )

+2tr(As
j S−1

i (Ak
j )

T �̂i j [X]) sin(φ j ). (77)

Then, we consider the derivative of Jb
i with respect to φ j

∂Jb
i

∂φ j
= (tr(Ac

j S−1
i (Ac

j )
T �̂i j [X]) sin(2φ j )

−tr(As
j S−1

i (As
j )

T �̂i j [X]) sin(2φ j )

+2tr(As
j S−1

i (Ac
j )

T �̂i j [X]) cos(2φ j )

+2tr(Ac
j S−1

i (Ak
j )

T �̂i j [X]) sin(φ j )

−2tr(As
j S−1

i (Ak
j )

T �̂i j [X]) cos(φ j ). (78)

The last two terms containing matrix Ak
j , which is defined by

(36), give zero in the diagonal, thus we obtain the following:

∂Jb

∂φ j
=

[
tr(Ac

j S−1
i (Ac

j )
T �̂i j [X])

− tr(As
j S−1

i (As
j )

T �̂i j [X])
]

sin(2φ j )

+ 2tr(As
j S−1

i (Ac
j )

T �̂i j [X]) cos(2φ j ). (79)

Combining (76) and (79) with (74), we finally obtain the
following:

∂J

∂φi
=

∑

i

ni [[(xT
i j xi j − yT

i j yi j )

+tr(Ac
j S−1

i (Ac
j )

T �̂i j [X])
−tr(As

j S−1
i (As

j )
T �̂i j [X])] sin(2φ j )

+2[xT
i j yi j + tr(As

j S−1
i (Ac

j )
T �̂i j [X])] cos(2φ j )

+2[xT
i j (zi j + wi )] sin(φ j )

−2[ yT
i j (zi j + wi )] cos(φ j ). (80)

Setting (80) equal to zero, an equation of the following form
is obtained:

a cos(2φ) + b sin(2φ) + c cos(φ) + d sin(φ) = 0 (81)

where a, b, c, and d are defined in (38), respectively.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer-Verlag, 2006.

[2] M. Aitkin, “Likelihood and Bayesian analysis of mixtures,” Stat. Model.,
vol. 1, no. 4, pp. 287–304, 2001.

[3] L. A. Goodman, “Exploratory latent structure analysis using both
identifiable and unidentifiable models,” Biometrika, vol. 61, no. 2,
pp. 215–231, 1974.

[4] G. McLachlan and D. Peel, Finite Mixture Models. New York, NY, USA:
Wiley, 2000.

[5] D. Gerogiannis, C. Nikou, and A. Likas, “The mixtures of Student’s
t-distributions as a robust framework for rigid registration,” Image Vis.
Comput., vol. 27, no. 9, pp. 1285–1294, 2009.



RIGAS et al.: HIERARCHICAL SIMILARITY TRANSFORMATIONS BETWEEN GAUSSIAN MIXTURES 1835

[6] B. Jian and B. C. Vemuri, “A robust algorithm for point set registration
using mixture of Gaussian,” in Proc. 10th IEEE Int. Conf. Comput. Vis.,
vol. 2. Oct. 2005, pp. 1246–1251.

[7] M. Aitkin, “A general maximum likelihood analysis of overdispersion
in generalized linear models,” Stat. Comput., vol. 6, no. 3, pp. 251–262,
1996.

[8] S. S. Brandt, “Maximum likelihood robust regression by mixture
models,” J. Math. Imag. Vis., vol. 25, no. 1, pp. 25–48, 2006.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Royal Stat. Soc. Ser. B,
vol. 39, no. 1, pp. 1–38, 1977.

[10] C. Fraley and A. Raftery, “Bayesian regularization for normal mixture
estimation and model-based clustering,” J. Classification, vol. 24, no. 2,
pp. 155–181, 2007.

[11] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verifica-
tion using adapted Gaussian mixture models,” Digital Signal Process.,
vol. 10, nos. 1–3, pp. 19–41, 2000.

[12] Q. Huang, J. Yang, and Y. Zhou, “Variational Bayesian method
for speech enhancement,” Neurocomputing, vol. 70, nos. 16–18,
pp. 3063–3067, 2007.

[13] W. Shinji, S. Atsushi, and N. Atsushi, “Automatic determination of
acoustic model topology using variational Bayesian estimation and
clustering for large vocabulary continuous speech recognition,” IEEE
Trans. Audio, Speech, Lang. Process., vol. 14, no. 3, pp. 855–872,
May 2006.

[14] M. Jordan and J. Liu, “The BYY annealing learning algorithm for
Gaussian mixture with automated model selection,” Pattern Recognit.,
vol. 40, no. 7, pp. 2029–2037, 2007.

[15] N. Vlassis and A. Likas, “A greedy EM algorithm for Gaussian mixture
learning,” Neural Process. Lett., vol. 15, no. 1, pp. 77–87, 2002.

[16] C. Constantinopoulos and A. Likas, “Unsupervised learning of Gaussian
mixtures based on variational component splitting,” IEEE Trans. Neural
Netw., vol. 18, no. 3, pp. 745–755, May 2007.

[17] K. Blekas, A. Likas, N. P. Galatsanos, and I. E. Lagaris, “A spatially
constrained mixture model for image segmentation,” IEEE Trans. Neural
Netw., vol. 16, no. 2, pp. 494–498, Mar. 2005.

[18] A. Penalver, F. Escolano, and J. Saez, “Color image segmentation
through unsupervised Gaussian mixture models,” Adv. Artif. Intell.
IBERAMIA-SBIA, LNCS 4140, pp. 149–158, Jan. 2006.

[19] V. Digalakis, D. Rtischev, L. Neumeyer, and E. Sa, “Speaker adaptation
using constrained estimation of Gaussian mixtures,” IEEE Trans. Speech
Audio Process., vol. 3, no. 5, pp. 357–366, Sep. 1995.

[20] G. Xiong, C. Feng, and L. Ji, “Dynamical Gaussian mixture model for
tracking elliptical living objects,” Pattern Recognit. Lett., vol. 27, no. 7,
pp. 838–842, 2006.

[21] E. Sa, V. Digalakis, and L. Neumeyer, “Speaker adaptation using
combined transformation and Bayesian methods,” IEEE Trans. Speech
Audio Process., vol. 4, no. 4, pp. 294–300, May 1995.

[22] S. Moss and E. R. Hancock, “Cartographic matching with millimetre
radar images,” in Proc. IEEE Workshop Appl. Comput. Vis., Dec. 1996,
pp. 70–76.

[23] C. Nikou, A. C. Likas, and N. P. Galatsanos, “A Bayesian framework
for image segmentation with spatially varying mixtures,” IEEE Trans.
Image Process., vol. 19, no. 9, pp. 2278–2289, Sep. 2010.

[24] G. Sfikas, C. Nikou, N. Galatsanos, and C. Heinrich, “Spatially varying
mixtures incorporating line processes for image segmentation,” J. Math.
Imag. Vis., vol. 36, no. 2, pp. 91–110, 2010.

[25] G. Sfikas, C. Nikou, N. Galatsanos, and C. Heinrich,“Majorization-
minimization mixture model determination in image segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011,
pp. 2169–2176.

[26] R. Yang and J. O. Bergers, “Estimation of a covariance matrix using the
Reference Prior,” Annu. Stat. vol. 22, no. 3, pp. 1195–1211, 1994.

[27] L. Xu and M. I. Jordan, “On convergence properties of the EM
algorithm for Gaussian mixtures,” Neural Comput., vol. 8, pp. 129–151,
Jan. 1995.

[28] M. Jordan and S. Fu, “On the correct convergence of the EM algo-
rithm for Gaussian mixtures,” Pattern Recognit., vol. 38, no. 12,
pp. 2602–2611, 2005.

[29] M. Jordan, L. Xu, and M. I. Jordan, “Asymptotic convergence rate of the
EM algorithm for Gaussian mixtures,” Neural Comput., vol. 12, no. 12,
pp. 2881–2907, 2000.

[30] J. L. Gauvain, C. H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov Chains,” IEEE
Trans. Speech Audio Process., vol. 2, no. 2, pp. 291–298, Apr. 1994.

[31] D. H. Deterding, “Speaker normalization for automatic speech recogni-
tion,” Ph.D. dissertation, Dept. Int. Graduate School, Univ. Trento, Italy,
1990.

[32] T. Hastie, A. Buja, and R. Tibshirani, “Penalized discriminant analysis,”
Anna. Stat., vol. 23, no. 1, pp. 73–102, 1995.

[33] M. I. Layton and M. J. F. Gales, “Maximum margin training of gen-
erative kernels,” Tech. Rep., Dept. Eng., Cambridge Univ., Cambridge,
U.K., 2004.

[34] D. J. Miller and H. S. Uyar, “Combined learning and use for a mixture
model equivalent to the RBF classifier,” Neural Comput., vol. 10, no. 2,
pp. 281–293, 1998.

George Rigas was born in Pella, Greece, in 1981.
He received the bachelor’s and M.Sc. degrees in
computer science from the Department of Computer
Science, University of Ioannina, Ioannina, Greece, in
2003 and 2005, respectively, and the Ph.D. degree
in computer science from the same department in
2009.

He has been a Post-Doctoral Researcher with
the Unit of Medical Technology and Intelligent
Information Systems, University of Ioannina, since
2010. His current research interests include signal

processing, machine learning, and pattern recognition.

Christophoros Nikou (S’97–M’05–SM’11)
received the Diploma degree in electrical
engineering from the Aristotle University of
Thessaloniki, Thessaloniki, Greece, in 1994, and
the D.E.A. and Ph.D. degrees in image processing
and computer vision from Louis Pasteur University,
Strasbourg, France, in 1995 and 1999, respectively.

He was a Senior Researcher with the Department
of Informatics, Aristotle University of Thessaloniki,
in 2001. From 2002 to 2004, he was a Research
Engineer and Project Manager with Compucon

S.A., Thessaloniki. He was a Lecturer with the Department of Computer
Science, University of Ioannina, Ioannina, Greece, from 2004 to 2009,
where he has been an Assistant Professor since 2009. His current research
interests include image processing and computer vision and their application
to medical imaging.

Dr. Nikou is an Associate Editor for the EURASIP Journal on Advances
in Signal Processing. He is a member of EURASIP.

Yorgos Goletsis (M’03) received the Diploma
degree in electrical engineering and the Ph.D. degree
in operations research from the National Technical
University of Athens, Athens, Greece.

He is a Lecturer with the Department of Eco-
nomics, University of Ioannina, Ioannina, Greece.
His current research interests include operations
research, decision support systems, multicriteria
analysis, quantitative analysis, data mining, artificial
intelligence, and project evaluation.

Dimitrios I. Fotiadis (M’01–SM’07) was born in
Ioannina, Greece, in 1961. He received the Diploma
degree in chemical engineering from the National
Technical University of Athens, Athens, Greece, in
1985, and the Ph.D. degree in chemical engineering
from the University of Minnesota, Minneapolis, MN,
USA, in 1990.

He was with the Department of Computer Science,
University of Ioannina, Ioannina, Greece, from 1995
to 2008, where he is currently a Professor with the
Department of Materials Science and Technology,

the Director of the Unit of Medical Technology and Intelligent Information
Systems, and the President of the Science and Technology Park of Epirus.
He is with the Biomedical Research Institute, Foundation for Research and
Technology-Hellas, Ioannina. His current research interests include biomedical
technology, biomechanics, scientific computing, and intelligent information
systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


