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Overlapping Cell Nuclei Segmentation Using a
Spatially Adaptive Active Physical Model
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Abstract— A method for the segmentation of overlapping
nuclei is presented, which combines local characteristics of the
nuclei boundary and a priori knowledge about the expected shape
of the nuclei. A deformable model whose behavior is driven
by physical principles is trained on images containing a single
nuclei, and attributes of the shapes of the nuclei are expressed
in terms of modal analysis. Based on the estimated modal
distribution and driven by the image characteristics, we develop a
framework to detect and describe the unknown nuclei boundaries
in images containing two overlapping nuclei. The problem of the
estimation of an accurate nucleus boundary in the overlapping
areas is successfully addressed with the use of appropriate weight
parameters that control the contribution of the image force in
the total energy of the deformable model. The proposed method
was evaluated using 152 images of conventional Pap smears,
each containing two overlapping nuclei. Comparisons with other
segmentation methods indicate that our method produces more
accurate nuclei boundaries which are closer to the ground truth.

Index Terms— Active shape models, microscopic images, modal
analysis, overlapping nuclei segmentation, Pap smear images,
physically based deformable model, shape priors.

I. INTRODUCTION

ONE OF THE most interesting and challenging issues in
the automated analysis of microscopic images, is the

delineation of the overlapped cells or cells nuclei. The cell
overlapping areas in the microscopic slides are very common
phenomena, especially in the case of the well-known Pap
smear [1]. The Pap smear consists of a sample of cells taken
from the cervix and it is extensively used in gynecology as
a screening test in order to detect premalignant and malig-
nant processes. With this procedure, the cervical cells are
collected from the cervix with a special device and they are
then smeared onto a glass slide, which is examined under a
microscope in order to identify abnormalities in the structure
and morphology of cell nuclei. The segmentation of these
images has been studied by several researchers [2]–[9], as
the nucleus is the structural part of the cell that presents
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significant changes when the cell is affected by a disease.
As an example, we can mention that the nuclear border
abnormalities are highly correlated with the infection of cells
by the Human Pappiloma Virus (HPV) [10] and the shape
modifications of the nucleus are associated with the existence
of Cervical Intraepithelial Neoplasia (CIN) [11]. Furthermore,
features that are based on the nuclei shape have been used for
the discrimination of normal and abnormal cells [12]. Thus,
the accurate identification of the nucleus shape is important
for the correct interpretation of the Pap smear.

Usually, the existence of the different layers of the cervical
specimen in the slide results in areas, where the cells of
an upper layer partially obscure the cells lying underneath.
In real time microscopic examination this problem is com-
monly solved in most cases with the adjustment of the lens
focus, and the cells of different layers are clearly identified.
However, in static images acquired through a digital camera
adopted on a microscope, this is not possible and for this
reason efforts have been made by several researchers in order
to contribute to the automated segmentation of the overlapped
cells or overlapped nuclei in many cytological images.

More specifically, in terms of the general segmentation tech-
niques used for the separation of overlapped nuclei, the geo-
metric active contours are used in [13]. In this approach, each
cell is represented by its own level-set function and a coupling
constrain prevents neighboring contours from overlapping each
other. Furthermore, the distance transform in a binary image
containing the regions of the nuclei is calculated in [14] and
the topographic surface generated by the distance transform
is considered as a Gaussian mixture. The EM algorithm is
then applied for the determination of the parameters of each
nucleus cluster. The watershed transform has been extensively
used in several studies [15]–[18]. The main concern for these
methods is to overcome the oversegmentation and for this
purpose, special attention has been paid on the determination
of marking strategies and the selection of appropriate nuclei
and background markers.

The above methods were applied in different cytological
images such as fluorescence in situ hybridization (FISH)
images [15], [17] or microscopic images from several speci-
mens such as mammary invasive ductal carcinoma or cervical
images [14], [16]. In the first case, the separation line between
the clustered nuclei is obtained through the application of the
watershed transform. However, these cases are very sensitive
to the selection of appropriate markers, in order to identify
the correct location of each nucleus marker and a marker
for the overlapping area between the nuclei. Furthermore,
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in [13], [16] and [18], the partial nuclei boundaries lying
in the areas of overlap are estimated with ellipse fitting
algorithms.

In this paper, we present an alternative method for the
separation of overlapping nuclei which is based on the rep-
resentation of the nucleus shape by the vibrations of a spring-
mass system [19] and the statistical learning of the vibration
modes of the system in the framework of ASM [20]. More
specifically, through physics-based shape parameterization, the
elastic 2-D boundary modeling can be achieved by a closed
chain topology of virtual masses on the contour. Each node of
the model has a mass and it is connected with two neighboring
nodes through springs with the same stiffness and damping
parameters. The physics-based equations of motion govern the
deformation of the model [19], which reaches the equilibrium
when it is placed on the object’s boundary. Segmentation meth-
ods based on these models have been proposed for multimodal
brain image analysis [21], skeleton family generator [22] and
reconstruction of serially acquired slices for the determination
of volumes [23].

In addition, active shape models (ASM) are well-known
parametric deformable models which are based on the con-
struction of a statistical model of the global shape variation
from a training set of shapes. They have been extensively
used for the recognition and localization of objects that follow
the same geometric form of a sample of well known shapes,
such as face detection [24], biomedical image segmentation
[25] and handwritten character recognition [26]. Image seg-
mentation with ASM requires the representation of the shape
of the object of interest by a set of points. Based on this
representation, a deformable model is iteratively deformed to
fit to an instance of the object of interest in an unknown image.
The model is constrained by the Point Distribution Model
(PDM) [20], in order to vary only in ways that are learnt
in a training set of labeled examples.

Our work combines the segmentation of an image with
ASM [20] and the representation of an object using modal
analysis [19]. Thus, a physical model is adopted in the training
phase, in which the parameters to be learnt are the variations
of the modes of the model. The attributes of the nuclei shapes
are expressed in terms of modal analysis and in the training
phase the modal distribution is estimated. Therefore, a more
compact description of the shape model is obtained. Next, we
develop a framework for the deformation of an active physical
model similar to ASM, for the detection of an unknown new
nucleus in images containing two overlapped nuclei.

It must be noted that the idea of combining the physically-
based and the active shape models was first proposed in [27].
However, no closed form solution for the deformation of the
model was provided, and only admissible deformations in
the neighborhood of the initial position of the model were
acceptable, providing a heuristically obtained solution for the
deformation of the model.

As it will be explained in the following paragraphs, our
method significantly differs from the aforementioned work in
many perspectives. First of all, we provide a closed form
solution for the deformation of the model, which does not
depend on trial and error based admissible configurations in

the shape of the model, but it is based on the dynamic change
of the generalized displacement, in order the model to be
attracted from the significant characteristics of the image and
also to be consistent with the learnt parameters. Thus, the
generalized displacements are updated through gradient based
optimization. Furthermore, the model converges to a position
close to the desired boundary, as it always provides admissible
solutions. This is possible even in the case of the overlapping
part of the nuclei where no significant edges are present, as the
contribution of the external energy in the model deformation
is mutable.

The method proposed herein is motivated by [21]. The main
difference is that in [21] the a priori knowledge was obtained
for one anatomical structure (the skull) and then, the other
structures (e.g. the brain) are estimated by least squares. In our
case, the a priori knowledge concerns the occluded parts of the
nuclei, whose estimation relies on an iterative gradient descent
method resulting naturally from the linear form of the model.
Moreover, there are two main differences of our method with
respect to standard ASM algorithm: first, the modal amplitudes
of the learnt model are used instead of the 2D landmark points
and second, the cost function to be minimized for the detection
of the nuclei boundaries is affected by the locally adaptive
image force, which is introduced in order to extract reliable
nuclei boundaries in the regions of overlap. An important
characteristic of the proposed method is that it provides a
smooth representation of the nucleus boundary by the physical
model, which entails in the reduction of the number of
parameters employed in the segmentation step. This is possible
since the number of the modal amplitudes that contain the most
important information about the shape of the model is small,
due to the principal components analysis step. Furthermore,
another significant characteristic is that the proposed model is
flexible and it converges fast in the position of the desired
boundary, due to the linear transformation adopted in the
deformation step. Finally, the method is evaluated using a
test set of 152 cytological images of conventional Pap smears,
which contain two overlapped nuclei each and it presents high
performance, as it is verified by the results.

II. METHODS

A. Training Phase

In this phase, the physical model is constructed and it is
applied on a training set of images containing a single nucleus.
This is necessary in order to learn the modal distribution
describing the shape of the nuclei. For this reason, images con-
taining only a single nucleus are processed, where the entire
nucleus border is visible. After the definition of the modal
distribution, the models are applied in images containing two
overlapping nuclei. The basic steps of the training phase are
described in detail in the following paragraphs.

1) Construction of the Physical Model: In order to obtain
a compact representation of the shape of the nuclei bound-
ary, we adopt the physical deformable model proposed by
Nastar and Ayache [19]. A physics based deformable model
is used, whose behaviour is controlled by the governing
equations of motion. More specifically, the physical model
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consists of N virtual masses located at points X(t) =
{x1(t), x2(t), . . . , xN (t)}. The motion of the physical model
towards the border of the object of interest is expressed by
a finite element formulation and is estimated by solving a
2N-dimensional differential matrix equation (for the horizon-
tal and vertical direction):

MÜx(t) + CU̇x (t) + KUx(t) = Fx(t)

MÜy(t) + CU̇y(t) + KUy(t) = Fy(t) (1)

where M, C and K are N × N matrices describing the mass,
the damping and the stiffness of the model. Moreover, Fx

and Fy are vectors containing the image force at the nodes
locations and Ux , U̇x , Üx and Uy , U̇y , Üy are the vectors of
displacement, velocity and acceleration of the model in the
horizontal and vertical direction respectively.

The above equations describe the equilibrium between inter-
nal and external forces of the system. The internal forces are
expressed by the definition of the virtual masses of the model
and the interaction between them, while the external forces
are usually defined as the intensity or the gradient of the
image at the pixels where the nodes of the model are located.
The system (1) can be solved by setting the initial values of
displacement and velocity equal to zero and then using an
explicit Euler scheme. However, instead of solving directly
the equilibrium equation (1), we can use a frequency based
technique called modal analysis, which describes the motion
of the model in terms of the free vibrations of the system.

More specifically, at a first step the following change of
basis is used [21]:

U = �Ũ (2)

where � is a square non-singular matrix and Ũ is the
vector of the generalized displacement. The columns of the
matrix are selected to be the eigenvectors of the generalized
eigenproblem:

Kφi = ω2
i Mφi (3)

where φi is the i -th mode and ωi its frequency. This is an
effective way for the expression of the displacement vector
U in terms of modal displacements, that is:

U = �Ũ =
N∑

i=1

ũi (t)φi (4)

where ũi is the amplitude of the i -th mode. It can be
shown [19] that matrices K, M and C are simultaneously
diagonalized by

�T M� = I

�T K� = �2 (5)

where I is the identity matrix and �2 is the diagonal matrix
whose elements are the eigenvalues ωi , i = 1, . . . , N .

Premultiplying (1) by �T and substituting the displacement
vector with its equivalent form in (2) leads to:

¨̃U + C̃ ˙̃U + �̃2Ũ = F̃ (6)

where C̃ = �T C� and F̃ = �T F. The above matrix-form
equation can be decoupled for each dimension into N scalar
equations of the form:

¨̃ui (t) + c̃i ˙̃ui (t) + ω̃2
i ũi (t) = f̃i (t). (7)

The solution of these equations at time t leads to the
calculation of the amplitudes ũi (t), i = 1, . . . , N and the
deformation of the model is estimated using the modal super-
position equation (4). At each time step, the new positions of
the nodes of the model X(t) are given by

X(t) = X(t0) + U(t) (8)

where X(t0) is the vector containing the initial spatial positions
of the model and U(t) is the nodal displacement vector.

In practice, the nodal displacements U(t) are approximated
by Û(t) using a fraction of the modes of vibration, which
present the highest amplitudes, that is:

Û(t) =
l∑

i=1

ũi (t)φi (9)

where l � N . For the choice of the number of modes l, the
total energy is calculated by:

E =
N∑

i=1

ũ2
i (10)

and we chose the first l amplitudes carrying a predefined
percentage of the total energy.

An issue that must be clarified is the calculation of the
eigenvectors and eigenvalues of the generalized problem
of (3). From the classical theory of vibration of a crystal
lattice, it can be proved that the relationship between spatial
(k) and temporal (ω) frequencies is given by:

ω2(p) = 4K

M
sin2

(
k(p)α

2

)
. (11)

In (11), due to the periodicity of the closed chain:

k(p)α = 2πp

N
, p ∈ B(N ) (12)

where B(N ) is the Brillouin zone [19]:

B(N ) =
{ [− N

2 + 1, . . . , N
2

]
, for N even[− N−1

2 , . . . , N−1
2

]
, for N odd.

(13)

Combining (11) and (12) we can calculate the temporal
frequencies ω2

i , which correspond to the eigenvalues of the
problem in (3). The corresponding eigenvectors φ(p) are then
given by:

φ(p) =
[
..., cos

2πp

N
, ...

]T

. (14)

Thus, using (14), analytic forms for the eigenvectors are
obtained and the motion of the model can be easily expressed
in terms of frequency modes as described in (9).
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2) Training the Physical Model: Instead of describing the
object of interest by a set of N labeled landmark points as in
the standard ASM algorithm, we focus on the learning of the
generalized displacements Ũ of the model, in the images of
the training set, which contains a single nucleus each. This is
an equivalent representation, since the combination of (2) and
(8) results in the spatial coordinates of the shape.

In the training phase, the nuclei boundaries were manually
traced by an expert in all the images of the training set.
An issue that must be taken into account for the correct
training of the model is that the shapes in each image must be
registered. The boundaries of the nuclei are commonly smooth
and they do not present any specific characteristic point that
can be considered as landmark point, in order to use it for the
registration of the shapes. Thus, we are restricted to use the
characteristics of the elliptical appearance of the boundaries
for the registration of the shapes. The obtained shapes of the
nuclei are ellipsoidal, having a major and a minor axis, and
these characteristics are used for the registration of the shapes.
In our work, we register all the obtained shapes automatically,
in such a way that their major axis is placed on the same
horizontal line and their center of gravity coincide. Based on
this registered boundary, the distance transform was estimated
for every image. On the resulted image, a physical model
was initialized and deformed until convergence, in order to
detect the desired boundary. As a result, an accurate nucleus
boundary was obtained.

From the final shape of the model, the generalized displace-
ment vector Ũ was estimated and from the entire training set,
the mean Ũ was calculated, which entails in the representation
of the mean shape of the nucleus boundary. Furthermore, the
covariance matrix S of the vectors was also calculated. Using
principal component analysis (PCA), the eigenvectors ai of the
covariance matrix S are used for an equivalent representation
of the shape, that is

Ũ = Ũ + Ab (15)

where A is the matrix with columns the eigenvectors ai and
b is a vector containing the model coordinates in the basis of
the eigenvectors:

b = AT
(

Ũ − Ũ
)
. (16)

Taking into account the J eigenvectors which correspond to
the J largest eigenvalues of the covariance matrix, the shape
can be approximated by:

Ũ � Ũ + AJ bJ = Ũ + [a1 a2 · · · aJ ] [b1 b2 · · · bJ ]T (17)

where AJ and bJ are derived from A and b by using only the
J selected eigenvectors. Thus, using the mean vector Ũ and
(9), the mean shape of the nuclei is described and this will be
used as an initial template, in order to separate the overlapped
nuclei in the images of the test set.

B. Segmentation of Overlapping Nuclei Boundaries

This procedure includes the determination of the initial
positions of the two models in the image and the deformation
process that the models follow until convergence. A graphical

Fig. 1. Basic steps of the segmentation of the overlapping nuclei (see text
for details).

description of this step is depicted in Fig. 1 and the details
are described in the following paragraphs.

1) Initialization of the Model: The most important prereq-
uisite of our method in order to provide reliable results is the
accurate localization of the initial model. If the initial model is
not close to the real boundary, then the results would probably
be highly erroneous, as the model would converge in local
minima of the image, which do not correspond to the real
nucleus boundary. The mean nuclei boundary that has been
determined in the training phase stands as the initial model of
the nucleus boundary. As we are looking for two nuclei in the
images of the test set, the initial positions of two models must
be detected close to the real nuclei boundaries. For this reason,
each image is first preprocessed for the detection of the strong
nuclei edges, which will force the mean nuclei boundary to be
located near to the real one through chamfer matching [28].

More specifically, in the grayscale counterpart of the initial
image, we first reduce the noise by applying a Gaussian filter.
Then, using histogram equalization technique, the contrast
of the nuclei and the background is enhanced. In order to
avoid the inhomogeneities inside the nuclei areas, which are
commonly present due to uneven staining of the smear, we
proceed with the formation of homogenous minima intensity
valleys. This is feasible with the application of the H-minima
transform in the original image [29]. Thus a marker image is
constructed by the subtraction of a threshold value h from
every pixel of the complement of the initial image. Then
through the grayscale reconstruction process, we obtain an
image that contains the regional minima, whose depth is less
than h, suppressed. The result of this process is depicted in
Fig. 2(b), where a rough description of the positions of the two
overlapped nuclei is defined. In this image, the Canny edge
detector is applied (Fig. 2(c)), and some strong boundary edges
are detected. The distance transform g is then calculated.

In the resulting image we search for the best two matching
positions of the initial model (Fig. 2(d)). The measure of
correspondence between the edges and the model is the sum
of the pixel values at which the model is located. A perfect



4572 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 11, NOVEMBER 2012

(a) (b)

(c) (d)

Fig. 2. Initialization of the two models. (a) Initial image. (b) Image obtained
after the noise reduction, histogram equalization, and H-minima transform of
the grayscale counterpart of the initial image. (c) Result of the application of
the Canny edge detector in (b). (d) Initial placement of the learnt model on
each nucleus, after the chamfer matching. This figure is best viewed in color.

match would produce a zero value in this measure (as the
model would perfectly match in the edges of the image, in
which the value of the distance transform is zero). However,
as this is an extremely rare case in real images, we search for
the position of the model in the image that minimizes this sum.

It must be noted that in each image the nuclei size and
orientation may vary. Thus, the initial model is rotated by a
step of 1° angle and scaled by factors between 0.6 and 1.2 of
its original position and size. In this way, more accurate initial
approximations of the nuclei boundaries are detected. After the
detection of the initial position of the models, we proceed with
the deformation of the models in order to converge to the final
nuclei boundaries.

2) Deformation of the Models: Using the shape represen-
tation defined in (17), the algorithm fits the desired model
in the image, driven by the image characteristics and the
prior training. In each iteration, the changes in the generalized
displacements should be consistent with the learnt parameters,
and this is feasible by the minimization of a cost function
f (Ũ) = g(X0 +�Ũ), where g is the distance transform of the
image as it is defined in the initialization step and its argument
is the deformed shape with respect to (8) by omitting the
temporal dependency for simplicity. More specifically, in each
step, the algorithm selects the new generalized displacements
by the following optimization schemes:

min
Ũ

f (Ũ) = min
bi ,i=1,...,J

f
(

Ũ + [a1a2 · · · aJ ] [b1b2 · · · bJ ]T
)
.

(18)

The gradient descent scheme of (18) with the new variables
bi is given by:

bnew
i = bold

i − τ

(
aT

i
d f

dŨ

)
(19)

where τ is the time step and:

d f

dŨ
= d f

dX
dX

dŨ
= d f

dX
�. (20)

The term d f
dX = [∇g(x1, y1), . . . ,∇g(xN , yN )]T is actually

the gradient of the image force term, where g is again the
distance transform of the image as it is described above. In
terms of the original variable Ũ, the update rule (19) turns out
to be

Ũnew = Ũold − τ

J∑

i=1

(
aT

i
d f

dŨ

)
ai (21)

= Ũold − τ

J∑

i=1

(
aT

i
d f

dX
�

)
ai .

Notice that the initial value for Ũ is the mean shape obtained
with the training of ASM. Premultiplying (21) by � to the
left we get

�Ũnew = �Ũold − τ�

J∑

i=1

(
aT

i
d f

dX
�

)
ai . (22)

Regarding (19), we have

Unew = Uold − τ�

J∑

i=1

(
aT

i
d f

dX
�

)
ai . (23)

Finally, from (8), the local positions of the landmark points
are calculated by:

Xnew = X0 + Unew, (24)

where X0 is the initial position of the model in the image.
For the determination of a stopping criterion for the iterative

procedure of the deformation of the models, we observe
their shape in two sequential steps, and we consider that
they converge when no significant change is noticed. For this
reason, we calculate the Euclidean distance between the points
of the previous and the current state of the model. If the
difference in the Euclidean distance is smaller than a very
small value (in our experiments smaller than 10−3) then the
deformation of the models is stopped. This parameter is fixed
for every image of our data set.

3) Spatially Adaptive Image Force: The image force is
defined as the force due to the potential field created by the
image characteristics. The most common approach is to use
the image gradient magnitude as the external force, in order
to guide the deformable model in the areas of the image
where high gradients are located (which usually imply the
existence of strong edges of the objects of interest). However,
the limitation of the gradient image force becomes evident in
parts of the image with smooth intensity transitions, in which
the gradient magnitude is very low. In Pap smear images,
the staining procedure introduces variances in illumination
and dye concentration. In some cases the nuclei borders may
not be clearly distinguishable from the background, and these
locations present weak image gradient. If a deformable model
is initialized in such locations, it is not probable to guide it
toward an edge. Thus, the gradient-based force field has a
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limited capture range for the deformable model. The distance
potential force alleviates this issue for binary images.

As we can observe from (23) and (24), the deformation
of the model is also controlled by the image force term. The
degree of the influence of the image force term in the motion of
the deformable model can be modulated by setting appropriate
weight values w1, w2, . . . , wn at each image point that belongs
to the model, and the image force can be defined as d f

dX =
[w1∇g(x1, y1), . . . , wN ∇g(xN , yN )]T .

Thus, if the weights of this term have large values, the model
will deform mainly according to the image characteristics.
On the other hand, if the image force weight is small, the
model deformation would be driven by the learnt nuclei shape.
In images of overlapping nuclei, the edges of the isolated
part of the nuclei boundary must be taken into account, in
order to attract the model for the detection of the true nuclei
boundaries. In those points, high value of the image force term
is desirable. However, in the area of overlap, there is no edge
information and with the use of high weight values, the model
could be attracted from the boundary of the isolated part of the
neighbor nucleus, resulting in a high erroneous identification
of the real nucleus boundary. An immoderate example of the
influence of the values of the image force weights in the
deformation of the models is depicted in Fig. 3, where we
attempt to emphasize the influence of different weight values
in the final segmentation results. For this reason, we have
used extreme weight values and we let the deformable model
move without any restrictions, using (22) and (23). As we can
observe, the segmentation results are highly erroneous.

In order to avoid such phenomena, we use different values
for the weights in the image force term, depending on the
position of the point in the boundary. Thus, in each step of
the deformation of the two models, the area of overlap is
determined, and the points of the models lying in this area are
associated with small weight values compared with the weight
values in the non overlapping area, as it is explained in the
next paragraphs. Therefore, the influence of the image force in
the deformation of this part of the model is limited. However,
in the rest of the points of the model, we use large values
for the image term weights, and this results in the detection
of the actual nuclei boundaries in the non-overlapping area of
each nucleus. The PCA coordinates ai estimated by the non-
overlapping part of the model yield a set of modal amplitudes
which determine the behavior of the rest of the points based
on the learnt vibrations.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Study Group

In our experiments, for the construction of the training set
we have selected 300 images, which are used for the estimation
of the modal distribution of the physical model in the training
phase. Each of these images in the training set, contains a
single normal nucleus of conventional Pap smear.

Furthermore, the proposed method was tested in terms of the
accurate determination of the nuclei boundary on a test set of
152 images containing two overlapping nuclei each, yielding
304 nuclei in total. Thus, the training and the test set of images

(a) (b)

(c) (d)

Fig. 3. (a) Initial image. (b) Initial position of the two models. Results
obtained using (c) small and (d) large weight values for the image force of
one of the two nuclei. Notice that in (c), there exist small differences from
the initial position of the models. In (d), however, the model of one nucleus
converges in a position of high gradient of the image, resulting in the erroneous
identification of the boundary of the area containing both of the nuclei. This
figure is best viewed in color.

are independent. All of these images were acquired through
a CCD camera (Olympus DP71) adapted to an optical micro-
scope (Olympus BX51). We have used a 40× magnification
lens and the acquired images were stored in JPEG format. The
initial images obtained by the optical microscope have size
3072 × 4080 pixels. These images are then cropped manually
in order to construct the database of images containing the
overlapped nuclei and a small portion of the neighboring
background (such as in Fig. 2, 3, 6 and 7). The average size
of all the images in our database is 273 × 315 pixels.

B. Numerical Evaluation

For the evaluation of the performance of the method, the
boundaries of the nuclei in the entire test set were estimated
manually, after careful examination of an expert cytopathol-
ogist. The determination of the boundary of each nucleus in
the overlapping area was based on the exploitation of small
variances in the intensity of this area, which an expert could
identify. However, in many cases, there was no existence of
intensity variances, and the boundary of each nucleus was
manually drawn by the expert, following the expected shape
of the nucleus in the specific image. Based on the ground
truth, we have calculated the area of overlap in our data set,
and the overlapping area varies between 4.0% and 48.2% with
20.03 ± 11.32 (%) (mean ± std).

In order to evaluate the performance of the proposed
method, the Euclidean and Hausdorff distance of the final
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position of the model and the ground truth was calculated
in each image. The presented method underwent a twofold
evaluation: a) we have tested the influence of the use of
different weight values in the final segmentation compared
to the use of one single value and b) the results of the
method were compared to the results of different segmentation
methods, such as the standard ASM algorithm using different
weight values in the area of overlap (as it is proposed in
our method), the conventional technique of the ellipse fit-
ting in the overlapped nuclei boundary incorporated in our
method (instead of using different image force weight values),
the unsupervised segmentation of overlapped nuclei using
Bayesian classification [14] and the H-minima transform-
based marker extraction and contour parameterization method
for segmenting overlapped nuclei [16]. It must be noted that
the ellipse fitting technique is extensively used from several
researchers ([14], [16], [18]), in order to estimate the nucleus
boundary in the overlapping areas and it is based on the
hypothesis that the nuclei shape is generally ellipse-like. Thus,
in each step of the deformation of the model, the points of
the boundary of the nucleus of the non-overlapping area are
used for the calculation of the interpolated ellipse using the
direct least squares fitting of ellipses [30]. Then, the part of
the boundary in the overlapping area is completed using the
corresponding part of the interpolated ellipse and the link
points are smoothed (they are calculated as the average of
the previous and the next point of the model).

The choice of the weights in our work is based on a two
step procedure, which is performed in a portion of images
of the test set (50 images), and the selected weight values are
used for the entire set of the images containing the overlapped
nuclei. More specifically, at first, we use the same value for
the weights of overlapping and non-overlapping areas, and we
test the method for several different values for the weights.
The Hausdorff distance between the result of the proposed
method and the ground truth using a single value for the
image force term is depicted in Fig. 4. As we can see, the
best results were obtained for w1,...,n = 0.1 and the Hausdorff
distance for this weight is 24.29. However, with the use of
different weight values, the corresponding Hausdorff distance
is reduced, which indicates that the use of different weight
values renders the method more performing. Thus, in the next
step, having found that the best segmentation was obtained
with the weight value 0.1 (Fig. 4), we keep this value constant
for the external weights in non overlapping areas and we test
multiple values for the weights in the overlapping areas. This
is described in Fig. 5, which contains the segmentation results
of the method from several experiments, where we have used
different weight values for the overlapping areas, while the
weight value in non overlapping areas was fixed to 0.1. From
this image, we can observe that the best segmentation results
were obtained for w1,...,k = 0.001, where k is the number of
the points of the model lying in the overlapping areas.

The comparative results of the proposed method and the
other segmentation techniques are included in Table I. As we
can see, our method exhibits better performance, since both
the Euclidean and Hausdoff distances are smaller compared
with the other methods, and it does not exhibit large vari-

Fig. 4. Result of the proposed method using the same value for the image
force term, for all points of the model. Notice that best results are obtained
using a value of 0.1 and the corresponding Hausdorff distance is 24.29.

Fig. 5. Result of the proposed method using the same value wi = 0.1 for
the image force term in the points lying in the nonoverlapping area of the
nuclei, and multiple values w1,2,...,k for the k points of the model lying in
the overlapping area. Notice that best results are obtained using a value of
0.001 and the corresponding Hausdorff distance is 19.58.

TABLE I

RESULTS OF OVERLAPPED NUCLEI SEGMENTATION METHODS IN TERMS

OF EUCLIDEAN AND HAUSDORFF DISTANCES (MEAN ± STD)

Hausdorff Euclidean

Proposed method 19.91 ± 8.38 8.71 ± 3.45

Proposed method with ellipse fitting 20.88 ± 10.14 8.77 ± 3.82

ASM 21.76 ± 11.30 9.91 ± 4.01

H-minima [16] 22.98 ± 11.76 10.96 ± 4.30

Bayesian classification [14] 24.59 ± 12.44 11.13 ± 4.50

ations, as the standard deviation is small. This implies that
the proposed model is closer to the manually traced nuclei
boundaries, and as a result it is more accurate than the other
approaches. Furthermore, based on the experimental results
and the overlapping percentage of our image data set (as it
was described in the above paragraphs), we can conclude that
our method can successfully segment nuclei that present grade
of overlap lower than 50%.

Several examples of the segmentation results of our method
are depicted in Fig. 6. The segmentation results in images
of Fig. 7(a) of our method and several methods proposed
in the literature are depicted in Fig. 8. As we can see, the
use of the ellipse fitting algorithm for the overlapped parts
of the nuclei in our method produces some rugged points in
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(a) (b)

Fig. 6. Segmentation results for the proposed method. (a) Ground truth and
(b) segmentation. This figure is best viewed in color.

(a)

(b)

(c)

Fig. 7. (a) Representative images containing overlapped nuclei. (b) Edge
images resulted after the application of the Canny edge detector (initialization
step). The point A in the first image indicates some falsely detected edges in
the inner area of the nucleus. The points A and B in the second image indicate
the existence of discontinuities. (c) Corresponding distance transform.

the nuclei boundaries, and the boundaries of the overlapping
areas are not well detected, as they do not follow an elliptical
form in the overlapping areas. Furthermore, the standard ASM
algorithm produces noisy results and this indicates that the
representation of the shape of the nuclei by the vibrations
of a spring-mass system instead of landmark points, assures
a smooth representation of the shape, and as a result more
accurate boundaries for the nuclei.

It must be noted that in our work, we have trained the
ASM having as training shapes the nuclei boundaries obtained
with the convergence of the physical model in the training
set, and not with independently distributed points as it is
the standard procedure. By these means, the ASM method
is unbiased with respect to the manual tracing of the nuclei
and the comparison of the two methods may be performed on
the same basis. Besides, these shapes can be considered as
an accurate representation of the nuclei boundaries, since the
mean Euclidean distance of the final position of the physical

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8. Segmentation results. (a) Ground truth in the initial image. The
segmentation results for (b) proposed method, (c) ellipse fitting algorithm,
(d) standard ASM algorithm, (e) H-minima marker extraction [16], and
(f) Bayesian [14]. Notice that in (c), elliptical parts produced by the ellipse
fitting algorithm for the nucleus boundary in the overlapping areas miss
the true boundary of the nuclei, as it does not follow the specific elliptical
distribution in these areas. Furthermore, the nuclei boundary presents some
noisy parts as the transition from the overlapping to the nonoverlapping part
of the boundary is not smooth. Moreover, the results produced by the standard
ASM algorithm in (d) are highly erroneous. In (e), ellipses produced by the
H-minima marker extraction method proposed in [16] are rough approxima-
tions of the true nucleus boundary. Finally, in (f), nuclei boundaries marked
with white present rugged points. This figure is best viewed in color.

model and the ground truth is 1.68 pixels in the images of
the training set. For this reason, the main eigenvectors for the
ASM model do not exhibit significant differences from the
main eigenvectors of the physical model. However, the noisy
results of the ASM method are due to the minimization proce-
dure, in which the ASM is more sensitive to the image force.
This can be observed in Fig. 8(d), where the discontinuities
in the detected edges [Fig. 7(b), second image, points A and
B] produce rugged segments of points in the convergence of
ASM. Furthermore, the detected edges in the inner area of
the nucleus [Fig. 7(b), first image, point A] seem to interfere
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to the convergence of the model, which fails to identify the
actual nuclei borders. The reason for this effect is that in the
standard ASM algorithm, the image force term d f

dX has a direct
influence on the new variables (the projection of the points of
the model on the eigenvector space), which are then multiplied
by the eigenvectors to obtain the new position of the model.
On the other hand, in our case, the new variables (the projec-
tion of the generalized displacements on the eigenvector space)
change according to d f

dŨ
in (19), or equivalently according to

d f
dX� in (23). Thus, the new position of the model depends
on the specific product, which provides a smooth image force
term. In this way, the model is not affected by the potential
noise contained in the image force.

For the methods proposed in [14] and [16] the results
are not quite accurate, and this is a consequence of several
reasons. In [16] the outcome is actually the ellipse obtained
by the detected nuclei boundary points produced by adaptive
thresholding. As we can observe in Fig. 8(e), the estimated
ellipses provide a rough approximation of the actual nuclei
boundaries and additional processing is required for the detec-
tion of more refined nuclei borders. The method in [16] may
be considered similar to the initialization step of our algorithm;
however, there are several differences with our method. More
specifically, in the initialization step, we use the H-minima
transform for the construction of smooth intensity valleys and
the reduction of the noise in the image, in contrast to [16], in
which the H-minima transform is used in a marker extraction
scheme. For this reason we have used only one threshold value
for h (Table II) and we do not test many threshold values as
it is proposed in [16]. Furthermore, the edges of the image
are detected with the Canny edge detector, in order to obtain
a binary image, without the use of global thresholding or the
watershed transform as in [16]. In the binary image we try
all possible similarity transformations, in order to achieve a
reliable initial position of our model, which is known through
the training step. By the time we locate the model in its initial
position, we continue with the minimization process and the
gradient descent method is independent of these parameters.

Furthermore, in [14] the boundaries of the non-overlapping
area of the nuclei are obtained after morphological operations
and adaptive thresholding. Although this procedure is fast, it
does not always succeed in the detection of accurate bound-
aries. As we can see in Fig. 8 (f, first image, white traced
nucleus), the nucleus boundary that was erroneously detected
in the bottom of the non-overlapping area, results in the
estimation of an ellipse for the overlapping area that does not
correspond to the expected nuclei boundaries. Furthermore,
in Fig. 8 (f, second image, white traced nucleus) we can
observe that the inhomogeneity in the image intensity results
in the wrong detection of the nucleus boundary in the non-
overlapping area (near the bottom, right hand corner of the
image). Therefore, we may conclude that in images with noise
and artifacts (like Pap smear images), adaptive thresholding
techniques do not provide accurate detection even for the non-
overlapping boundaries of the nuclei and further processing is
required.

Moreover, as a measure of the computational efficiency of
the segmentation method, we present in Table III the mean

TABLE II

PARAMETER VALUES USED IN THE EXPERIMENTS

Parameter Value

h (H-minima transform) 20

Stiffness K 5

Mass M 1

Damping c̃i , i = 1, . . . , N 1

Radius of the initial model 85

Model points 120

Initial time step τ0 0.001

Weights of image force (overlapping area) 0.001

Weights of image force (non overlapping area) 0.1

Number of modes ũi 14

Number of eigenvectors ai 4

TABLE III

EXECUTION TIME (MEAN ± STD)

Segmentation method Time (sec)

Proposed method 17.73 ± 0.82

Proposed method with ellipse fitting 45.37 ± 3.39

Standard ASM 27.01 ± 2.65

H-minima [16] 2.94 ± 0.69

Bayesian classification [14] 4.62 ± 1.32

times for the processing of each image (including the initial-
ization and the deformation of the two models), developed in
MATLAB using a Pentium 2.0 GHz with 3 GB RAM. As we
can observe, the computational burden that the ellipse fitting
algorithm introduces in each step of the deformation of the
model, results in an increase of the processing time of each
image. Furthermore, the reduction of the learnt parameters,
as it is described in (17), renders our method superior to the
standard ASM algorithm. In the cases of non iterative pro-
cedures, in which an ellipse fitting algorithm is implemented
such as in [14] and [16] the required processing times are
clearly shorter than in the rest of the methods. In both of
these methods, the estimation of a suitable ellipse that fits the
points in the non overlapping area is calculated once, and no
iteration is performed. In contrast, the computational cost of
the ellipse fitting algorithm in our method is bigger, because
the ellipse is calculated in every iteration of the algorithm.
The iterative procedure that we propose for the convergence
of the model, although it requires more computational time, is
necessary for the refinement of the nuclei borders in both the
overlapping and non-overlapping areas, which is not achieved
by the non-iterative methods. This can be easily verified by
the comparative results in Table I, where we can observe that
the non-iterative methods have lower performance than the
proposed method.

The parameters of the steps of the method were selected
after several tests (Table II). Thus, the threshold h in the
H-minima transform in the initialization of the models is set
to 20. For the calculation of modal vibrations in (11), we
selected K = 5 and M = 1. Furthermore, in (7), the value
for all c̃i , i = 1, . . . , N was set to 1. For the initialization of
the physical model, a circle of radius 85 pixels and 120 points
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in its circumference was used centered at the centroid of the
registered manually traced shape.

It must be noted that the change of the weight values for
a large number of points in a single step may lead to a
large displacement of the deformable model, as the additive
value of the image force term in (23) would be large. In our
implementation we have eliminated this effect with a variable
time step, which is calculated in each iteration. Thus, given an
initial time step τ0 = 0.001, the time step in (23) is calculated
as τt = τ0(1 − O P R), where O P R is the overlapping points
ratio, which is defined as the percentage of the points of the
physical model lying in the overlapping area. By these means,
a weighted sum of the contribution of the points in the non-
overlapping and in the overlapping area is obtained which
ensures the stability of the algorithm, as the deformation of
the model is smooth and it avoids abrupt changes.

From (9), we have calculated that the first 14 modes ũi

contain more than 99% of the total energy in each image
of the training set. Thus, only 14 parameters (instead of 120
landmark points) are sufficient for the accurate representation
of the desired shape. Furthermore, after the application of
PCA in these learnt parameters, only 4 eigenvectors which
correspond to the highest eigenvalues lead to an almost exact
shape representation, as they represent the 99.9% of the total
energy. This clarifies that the proposed segmentation method
provides a more compact shape representation which results
in the reduction of the parameters to be learnt.

C. Relation Between the Weight Values and the Overlapping
Percentage

In order to investigate the influence of the selected weight
values compared to the degree of overlapping, we have per-
formed an experiment on a synthetic image, constructed from
two individual images of the training set, each one containing
a single nucleus. In these images, we have selected the area of
each nucleus based on the ground truth. Then, in a new image,
the areas of the nuclei were incrementally overlapped, and we
have compared the segmentation results of our method with
respect to the degree of overlapping of the nucleus area and
the selected value weights. To this end, we have calculated the
Hausdorff distance of the obtained boundary of one nucleus
of interest, whose area overlapping was ranging from 10% to
90% (Fig. 9). The gray level value of the area of overlap
of the examined nucleus is set to 95% of the initial gray
level. The rest of the nuclei areas contained the same intensity
value as in the original images and the background was set
to the mean value of both images. It must be noted that, in
the synthetic image, we considered that the initialization step
produced acceptable initial positions for the models.

The method was applied in this image for the drawing
of conclusions about the influence of different rates between
the weight values of overlapping and non overlapping areas,
and how they affect the segmentation results with respect to
the degree of overlap. Thus, the weight value for the points
lying in the non-overlapping area was fixed to 0.1 for all the
images. Then, the method was applied using different values
for the weights of the nodes belonging to the overlapping
areas. These weights were set to 2, 5, 10, 20, 100, 200 and

(a) (b) (c)

Fig. 9. Construction of a synthetic image. The area overlapped by the upper
nucleus is (a) 10%, (b) 50%, and (c) 90%.

1000 times lower than the value of the weights of the nodes
in the non overlapping areas. Furthermore an experiment with
equal weight values of the overlapping and non-overlapping
areas (set to 0.1) was also performed. The degree of overlap
of the nucleus of interest in the synthetic images varied from
10% to 90%. As we can see from Fig. 10, the choice of equal
value for the weights produces worse results for almost all
the cases of overlapping. Furthermore, values lower than 100
times of the non-overlapping weight value have the same result
in the Hausdorff distance. In general, we can conclude that for
overlapping percentage greater than 45% the best results were
obtained using a weight value for the overlapping areas which
is half than the weight value for the non overlapping areas. For
smaller overlapping rates, the best results are obtained using a
weight value of overlapping areas which is at least five times
smaller than the weight value for the non overlapping areas. It
must be noted, that the Hausdorff distance for this experiment
is generally small, as the image of overlapping nuclei is, in a
way, ideal, since it does not contain any noise or background
artifacts.

D. Robustness to Noise

The synthetic images described above were also used for the
evaluation of the performance of our method in the presence
of noise. Since the convergence of the models depends on the
existence of edges, we created an inhomogeneous background
in the synthetic images, in order to present edges that are due
to noise rather than the existence of a nucleus border. For this
reason, in the Canny edge detector we have tested the values
of {0.001, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30} for the maximum
threshold, and the values for the minimum threshold are
automatically computed as 0.4 times lower than the maximum
threshold. The corresponding signal-to-noise ratios for these
thresholds are {−20.50, −18.59, −14.1, −9.39, −5.25, −2.05,
−0.27} in dB. It must be noted that we define the signal-
to-noise ratio as the number of pixels of the ground truth
boundary to the number of pixels of the spurious edges. An
example of this experiment in an image presenting 30% of
overlapping degree is depicted in Fig. 11.

Furthermore, in order to quantify the edge pixels that are
close to the real boundaries and have significant influence
to the deformation of the model, we have also calculated an
index which expresses the sum of the distance of noise edges
from the ground truth and it is given as Dedges = ∑

1/d2
i ,
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Fig. 10. Hausdorff distance in the synthetic image with respect to the nuclei
overlapping percentage. The curves correspond to the segmentation obtained
using the specific rates of the weight values of the nonoverlapping areas to
the weight values of the overlapping areas.

(a)

(b)

Fig. 11. (a) Edge images obtained with the use of different threshold values
in the Canny edge detector. (b) Corresponding results after the application of
our method.

where di is the smallest distance of the pixel from the ground
truth boundary. Thus, edge pixels that are near to the ground
truth have larger contribution to this index. In Fig. 12, we can
observe that this index grows disproportionately to the SNR,
demonstrating that a large number of noise edges are close to
the ground truth in high levels of noise.

For the evaluation of the performance of the method for each
amount of noise, the Hausdorff distance was calculated and
the results in terms of the mean and the standard deviation for
all the overlapping degrees with respect to the signal-to-noise
ratio are depicted in Fig. 13. As we can see, the maximum
value of Hausdorff distance is 10.17 and corresponds to
SNR = −20.5, which indicates that the method produces
acceptable results, even in the presence of severe noise.

E. Robustness to Initial Condition

As it was already mentioned, a critical condition for the
accurate definition of the nuclei boundaries through the con-
vergence of the two models, is the initialization of the models
close to the area of the real boundaries. In our method,
this is accomplished with an exhaustive search described in
section II-B.1, which aims at the detection of the most
probable positions of the two rotated and scaled mean models
in the image. In order to investigate the influence of a different

Fig. 12. Total distance of the edge pixels from the ground truth in terms of
the mean and the standard deviation for all of the overlapping degrees with
respect to the signal-to-noise ratio.

Fig. 13. Segmentation results in terms of the mean and the standard deviation
of the Hausdorff distance for all of the overlapping degrees with respect to
the signal-to-noise ratio.

initial position of the models, we have used a method proposed
by Thévenaz et al. called “the ovuscule” [31] in all of the
images of our database. This method results in the definition
of two ellipses in the image, which are considered as initial
approximations of the boundaries of the nuclei.

More specifically, in the grayscale counterpart of the initial
image, we performed global thresholding [32] and computed
the distance transform. Then, the ovuscules were initialized as
circles centered at the two maxima of the image, which were
separated by a distance of at least 73 pixels, as this is the mean
radius of the nuclei in the training set (Fig. 14(a)). After the
optimization process, the resulted ovuscules (Fig. 14(b)) were
considered as the initial models in the image. As we can see
in Fig. 15, the initialization of the models differs both in ori-
entation and size for the two nuclei. The proposed method was
applied in a second step. The Hausdorff and Euclidean distance
of the obtained nuclei boundaries with this configuration were
calculated as 19.98 ± 8.36 and 8.75 ± 3.46 respectively.

Regarding Table I, we can conclude that the segmentation
results in terms of the ground truth are approximately similar.
This implies that the proposed method is robust to different
initializations, given that the two models are initialized in an
area sufficiently close to the ground truth. On the other hand,
the processing time required in this experiment was measured
10.11 ± 0.63 sec, and from Table III it is clear that the use of
the ovuscules has a remarkable positive effect on the required
processing time of the method. This is an expected result as
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(a) (b)

Fig. 14. (a) Initialization of the two ovuscules [31] in the image obtained
after global thresholding and the computation of the distance transform.
(b) Ellipses obtained by the ovuscules. The inner ellipses are considered as
the initial positions of the models of our method.

(a) (b)

Fig. 15. Different initializations of the two models using (a) proposed method
and (b) ovuscules.

the time for the initialization of the models is reduced, since
we avoid the exhaustive search, which is time demanding, and
the ovuscules converge to their final position very fast.

F. Experiments in Images With Several Number of Nuclei

Our method can identify the boundary of a single nucleus
in an image, and also it can be extended to be able to segment
three or more overlapped nuclei. In the case of one nucleus,
we initialize a single model, and then we let the model deform
with all its nodes having the same weight value, as there is
no overlapping. We have applied the method in 200 images
containing a single nucleus. It must be noted that these images
were not used for the training. The performance of the method
in terms of the Hausdorff distance was 10.13 ± 2.31 pixels,
which implies that the method can successfully detect the
boundaries of single nuclei with high precision. Representative
results are depicted in Fig. 16.

Furthermore, we performed several experiments in images
containing three and four overlapping nuclei. The main steps
for the application of the method remain the same as the mod-
els deform independently. The only differences with respect
to two nuclei are (a) the initialization of the models in the
image and (b) the detection of the overlapping area. In the first
case, the process which is described in section II.B.1 could be
followed, but instead of two models, we search for the suitable
positions of a number of models equal to the number of the
nuclei in the image. In the second case, for each model, the
area of overlap could be defined as the union of the areas
of all the models. Thus, the weights of the specific model
would be defined accordingly. Following these steps, we tested
our method in 11 images containing three overlapped nuclei
and the Haussdorf distance was 15.62 ± 4.31. The same
experiment was performed in 5 images of four overlapping
nuclei and the corresponding distance was 18.19 ± 3.58.

(a) (b) (c)

Fig. 16. (a)–(c) Results of the proposed method for the identification of the
boundary of a single nucleus in an image.

(a) (b)

Fig. 17. Results of the proposed method in images containing (a) three and
(b) four overlapping nuclei.

Several examples of the performance of our method in these
images are depicted in Fig. 17.

As it is verified by the results, the method is able to
recognize the correct nuclei boundaries and presents high per-
formance with regard to Hausdorff distance from the ground
truth. However, as the number of the images of multiple nuclei
that the method was applied is limited, we consider these
results as promising though preliminary, and we intent to select
a larger number of multiple nuclei images in order to estimate
the general behavior of our method.

IV. CONCLUSION

We have developed a segmentation method combining the
physically based model, which provides a compact representa-
tion of the shape of the object of interest, and the active shape
model, which takes advantage of the a-priori knowledge of
the expected shape. The introduction of variable weights in the
contribution of the image force in the deformation of the model
results in the correct identification of the part of the nuclei
boundary that lies in the overlapping areas. The method has
been tested in terms of the accurate segmentation of the nuclei
borders in images from Pap smear slides, and as it was verified
by the results it presents a high performance. Thus, the method
produces more accurate nuclei boundaries which are closer to
the ground truth, compared to the standard ASM algorithm
and the segmentation obtained by two methods proposed for
the segmentation of overlapped nuclei. The main advantage of
the proposed method is that it provides a flexible way for the
simultaneous recognition of the isolated and the overlapped
nucleus boundary. This avoids the development of an addi-
tional algorithm for the detection of the nuclei boundaries
in occluded areas, such as the ellipse fitting algorithm. The
proposed method in its current form is automated when the
number of the nuclei is known in the images. In the case
where the images contain unknown number of nuclei, then
an initial step of counting the existed nuclei is necessary,
as in [16].
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As a future work, the method could be easily extended to
an automated cell image segmentation system for the analy-
sis of images obtained directly from an optical microscope.
This is feasible since the automated detection of the nuclei
positions in such images has been successfully addressed in
[8] and [9], and the automated construction of subimages
similar to those in our test set is possible. Finally, we intend
to examine in a more extended data set the efficiency of
our method in images containing three or more overlapped
nuclei.
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