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Abstract

In this paper, we present a framework for visual object tracking based on clustering trajectories

of image key points extracted from an image sequence. The main contribution of our method is that

the trajectories are automatically extracted from the image sequence and they are provided directly to

a model-based clustering approach. In most other methodologies, the latter constitutes a difficult part

since the resulting feature trajectories have a short duration, as the key points disappear and reappear

due to occlusion, illumination, viewpoint changes and noise. We present here a sparse, translation

invariant regression mixture model for clustering trajectories of variable length. The overall scheme

is converted into a Maximum A Posteriori approach, where the Expectation-Maximization (EM)

algorithm is used for estimating the model parameters. The proposed method detects the different

objects in the input image sequence by assigning each trajectory to a cluster, and simultaneously

provides their motion. Numerical results demonstrate the ability of the proposed method to offer

more accurate and robust solutions in comparison with other tracking approaches, such as the mean

shift tracker, the camshaft tracker and the Kalman filter.

Index Terms

Motion segmentation, visual feature tracking, trajectory clustering, sparse regression mod-

eling.

I. INTRODUCTION

Visual target tracking is a preponderant research area in computer vision with many applications

such as surveillance, targeting, action recognition from motion, motion-based video compression,
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teleconferencing, video indexing and traffic monitoring. Tracking is the procedure of making inference

about apparent motion given a sequence of images, where it is generally assumed that the appearance

model of the target (e.g. color, shape, salient feature descriptors etc.) is known a priori. Hence, using

a set of measurements from image frames the target’s position is estimated.

Tracking algorithms can be classified into two main categories [1], [2]. The first one is based

on filtering and data association. It assumes that the moving object has an internal state, where the

position of an object is estimated by combining the measurements with the model of the state evolution.

Kalman filter [3] belongs to such family which can be successfully applied when the assumptions made

about the model of the motion are adequately satisfied, including cases of occlusion. Alternatively,

particle filters [4], including the condensation algorithm [5], are more general tracking methods without

assuming any specific type of densities. Finally, there are methods relying on feature extraction and

tracking using optical flow techniques [6]. A general drawback of this family is that the type of

object’s motion must be known and modeled correctly.

On the other hand, there are approaches which are based on target representation and localization

and assume a probabilistic model for the object’s appearance in order to estimate its location. More

specifically, color or texture features of the object masked by an isotropic kernel are used to create

a histogram [1]. Then, the object’s position is estimated by minimizing a cost function between

the model’s histogram and candidate histograms of the next image. A characteristic method in this

category is the mean shift algorithm [1] and its extensions [7], [8], where the object is supposed to

be surrounded by an ellipse while the histogram is constructed from its internal pixel values. Also,

algorithms based on the minimization of the differential Earth mover’s distance [9], [10] belong to

this category.

The above methods track only one object at a time. Other methods that simultaneously track many

objects have also been proposed [11], [12]. In [13], multiple objects are tracked by using Graph

Cuts [14] over some observations (i.e. possible locations of the object) which are extracted. Another

approach is to employ level-sets to represent each object to be tracked [15], [16] which may also be

useful to handle the case of multiple object tracking [17], [18] by optimally grouping regions whose

pixels have similar feature signatures. An application in vehicle tracking is presented in [19] where

multiple vehicles are tracked by initially assigning each pixel either to background, or foreground

and applying next Kalman filter to estimate the vehicle position and associate each foreground pixel

with a single object. In cases of articulated objects (e.g. pedestrians) stereo depth information have

been used in order to acquire a 3D articulated structure per object and then estimate the 3D trajectory

of each object [20]. In any case, combining multiple object representations could make the tracking
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procedure more robust [21], [22].

Motion segmentation constitutes a significant application of tracking algorithms, which aims at

identifying moving objects in an image sequence. It can be seen either as the post-processing step

of a tracking algorithm, or as an assistive mechanism of the tracking algorithms by incorporating

knowledge to the number of individual motions or their parameters. It has been considered as an optical

flow estimation [23] where violations of brightness constancy and spatial smoothness assumptions are

addressed. In [24], an alternative scheme is used where small textured patches with uniform optical

flow are detected and clustered into layers, each one having an affine flow. Likewise in [25], image

features are clustered into groups and the number of groups is updated automatically over time in.

Trajectories of image key-points extracted from an image sequence have also been used for tracking.

Grouping 3D trajectories is proposed in [26] using an agglomerative clustering algorithm where

occlusions are handled by multiple tracking hypotheses. Finite mixtures of Hidden Markov Models

(HMMs) were also employed in [27] where training is made using the EM algorithm. Zappela et

al. [28] assume that trajectories belonging to different objects lie in different subspaces, thus, the

segmentation can be obtained by grouping together all the trajectories that generate these subspaces.

The grouping is obtained by the eigenvectors of an affinity matrix which contains the pairwise

distances between trajectories computed in the corresponding subspaces. The number of motions

can be estimated based on the number of eigenvalues of the symmetric normalized Laplacian matrix.

In [29], a two stage procedure is proposed: Initially, an iterative clustering scheme is applied that

groups temporally overlapping trajectories with similar velocity direction and magnitude. Next, the

clusters created are merged each other covering larger time spans.

Furthermore, spectral clustering approaches were also proposed, such as in [30] where the motions

of the tracked feature points are modeled by linear subspaces, and the approach in [31] where missing

data from the trajectories are filled in by a matrix factorization method. Moreover, Yan et al. [32]

estimate a linear manifold for every trajectory and then spectral clustering is employed to separate

these subspaces. In [33], motion segmentation is accomplished by computing the shape interaction

matrices for different subspace dimensions and combine them to form an affinity matrix that is used

for spectral clustering.

Finally, many methods proposed independently rely on the separation of the image into layers.

For example, in [34], tracking is performed in two stages: at first foreground extracted blobs are

tracked using graph cut optimization and then pedestrians are associated with blobs and their motion

is estimated by a Kalman filter.

In this work, we present a novel framework for visual target tracking based on model-based
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clustering trajectories of key points (Fig. 1). The proposed method creates trajectories of image

features (e.g Harris corner [35]). However, key point tracking introduces an additional difficulty

since the resulting feature trajectories have a short duration, as the key points disappear and reappear

due to occlusion, illumination and viewpoint changes. Therefore, we are dealing with time-series

of variable length. Motion segmentation is then converted into a clustering problem of these input

trajectories, in a sense of grouping together feature trajectories that belong to the same object. For

this purpose, we use an efficient regression mixture model, which has three significant features: a)

Sparse properties over the regression coefficients, b) it is allowed to be translated in measurement

space and c) its noise covariance matrix is diagonal and not spherical as it is commonly used. The

above properties are incorporated through a Bayesian regression modeling framework, where the EM

algorithm can be applied for estimating the model parameters. Special care is given for initializing

the EM algorithm where an interpolating scheme is proposed based on executing successively the

k-means algorithm over the duration of trajectories. Experiments show the robustness of our method

to occlusions and highlight its ability to discover better the objects motion in comparison with the

state-of-the art mean shift algorithm [1].

A preliminary version of this work was presented in [36]. Here, we made a more extended evaluation

of the proposed method. The experimental results involve comparisons with more methods, the

evaluation of the method using image sequences of the Hopkins 155 dataset [37] and the analysis of

the algorithm using more features for the generation of trajectories.

The rest of the paper is organized as follows: the procedure of feature extraction and tracking

in order to create the trajectories is presented in section II. The trajectories clustering algorithm is

presented in section III, experimental results are shown in section IV and conclusions is drawn in

section V.

II. EXTRACTING TRAJECTORIES

Trajectories are constructed by tracking points in each frame of the image sequence. The main idea

is to extract some salient points from a given image and associate them with points from previous

images. To this end, we employ the so called Harris corners [35] and standard optical flow for the

data association step [38]. Let us notice that any other scale or affine invariant features [39], [40]

would also be appropriate. In this work we use Harris corner features due to their simplicity, as they

rely on the eigenvalues of the matrix of the second order derivatives of the image intensities.

Let T be the number of image frames and Y = {yi}i=1,...,N be a list of trajectories with N

being unknown beforehand. Each individual trajectory yi consists of a set of 2D points, the time of
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Fig. 1. Trajectories extracted from an image sequence. (a) The first frame of the image sequence showing four

robots and their mean trajectories. The group of robots perform a square-like movement. (b) The trajectories of

the features extracted from the image sequence. The two axes represent the horizontal and vertical coordinates.

(c) The horizontal trajectories along time. (d) The vertical trajectories along time. Notice that there is a large

number of short and incomplete trajectories because the features disappear and reappear during the image

sequence due to illumination changes and the distance of the object from the camera.

appearance of its corner point into the trajectory, (i.e. the number of the image frame) and the optical

flow vector of the last point in the list.

Initially, the list Y is empty. In every image frame, Harris corners are detected and the optical

flow vector at each corner is estimated [6]. Then, each corner found in the current image frame is

attributed to a trajectory that already exists, or a new trajectory is created having only one element,
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the corner under consideration. According to this scheme, three cases are possible:

• If any key point of the previous frame has an optical flow vector pointing out the key point

under consideration, then the current corner is attributed to an existing trajectory. In this case,

a trajectory follows the optical flow displacement vector, meaning that the corner is apparent in

consecutive frames.

• If there is no such key point in the previous frame, we apply a window around the last corner

which is similar to the current corner. If there are more than one similar corners then we choose

the closest one.

• Otherwise, a new trajectory is constructed containing only the corner under consideration.

In Fig. 2, an intuitive example is presented where three corners are considered for demonstration

purposes and five time instances are depicted. In the first frame, three corners are detected and three

trajectories are created. In the second frame, the same corners are detected and associated with existing

trajectories due to optical flow constraint. Next, one corner is detected and attributed to an existing

trajectory due to optical flow constraints while the other two key points are occluded. During the fourth

frame, the key point that was not occluded is also detected and attributed to an existing trajectory. One

of the other two corner points that reappear is attributed to a trajectory due to local window matching.

The other corner is not associated with any existing trajectory, so a new trajectory is created. In the

last frame, three corners are detected and associated with existing trajectories due to optical flow.

Thus, four trajectories have been created: two trajectories corresponding to the same key point and

two additional trajectories involving two distinct key points.

Fig. 2. Example of trajectories construction. The red dots represent the image key points and the green lines

represent their trajectories. The figure is better seen in color.

Once the list Y is created, the trajectories of the corner points that belong to the background

are eliminated. This is achieved by removing the trajectories having a small variance, according to

a predefined-threshold value, as well as the trajectories of small length (e.g. 1% of the number of

frames). The complete procedure is described in Algorithm 1.
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Algorithm 1 Trajectories construction algorithm
1: function CREATETRAJECTORIES(Im)

2: Input: an image sequence Im.

3: Output: a list of trajectories Y .

4: Y = ∅.

5: for every image {im(t)}t=1,...,T do

6: Detect corners {c(t)l }l=1,...,L(t) and estimate optical flow {f (t)
l }l=1,...,L(t) in each one.

7: for every corner {c(t)l }l=1,...,L(t) detected in im(t) do

8: if yi has its last corner clasti in the image t− 1 and its optical flow f last
i points to the

current corner, i.e. clasti + f last
i ≈ c

(t)
l then

9: Insert c(t)l into yi.

10: else if yi has its the window around its last corner clasti similar to the window around

thw current corner c(t)l then

11: Insert c(t)l into yi.

12: else

13: Insert a new trajectory yi with only c
(t)
l into Y .

14: end if

15: end for

16: end for

17: Eliminate trajectory yi with small variation in its corners coordinates.

18: end function

III. CLUSTERING TRAJECTORIES OF VARIABLE LENGTH

Suppose we have a set of trajectories of N tracked feature points over T frames obtained from the

previous procedure. The aim of tracking is to detect K independently moving objects in the scene

and simultaneously estimate their characteristic motion. This can be seen as a clustering problem.

A 2D trajectory yi = (y
(1)
i ,y

(2)
i ) consists of two directions: (1) horizontal and (2) vertical. It

is defined by a set of Ti points {(y(1)i1 , y
(2)
i1 ), . . . , (y

(1)
iTi

, y
(2)
iTi

)}, corresponding to Ti image positions

(ti1, . . . , tiTi
) of the image sequence. It is important to note that we deal with trajectories of variable

length Ti since occlusions or illumination changes may block the view of the objects in certain image

frames.

Linear regression model constitutes a powerful platform for modeling sequential data that can be

adopted in our case. In particular, we assume that a trajectory y
(j)
i of any direction j = {1, 2} can
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be modeled through the following functional form:

y
(j)
i = Φiw

(j) + d
(j)
i + e

(j)
i , (1)

where Φi is the design kernel matrix (common for both directions) of size Ti × T , and w =

(w1, . . . , wT ) is the vector of the T unknown regression coefficients.

At first, we assume that the input space consists of the time instances (t1, . . . , tT ) which correspond

to the T frames of the image sequence. Having that in mind, equation (1) is the standard linear

regression model [41] with a global translation term added, where y
(j)
i is a vector of length Ti

containing the values of the i-th observation of the horizontal (j = 1) and vertical (j = 2) directions.

The i-th design matrix Φi is generated by keeping the Ti rows of the global design matrix Φ that

correspond to time instances (ti1, . . . , tiTi
), where the i-th key point exists. The global matrix Φ is

a kernel matrix of size T × T with elements calculated by a kernel function, i.e. Φ(k, l) = k(tk, tl),

where tk, tl ∈ {t1, . . . , tT } . In our work, we considered the mexican hat wavelet kernel k(tk, tl) =
2√

3σπ
1
4

(
1− (tl−tk)2

σ2

)
e

−(tl−tk)2

2σ2 , though any other kernel function could be used (e.g. Gaussian).

Also, in the above equation, we assume a translation scalar term d
(j)
i that allows for the entire

trajectory to be translated globally [42], see Fig. 3. Incorporating such term results in a regression

model that allows for arbitrary translations in measurement space. In our case, the features are

distributed around the edges of the objects and the trajectories of the key points are translated in

order to be aligned with the trajectory of the center of gravity of the object. Finally, the error term

e
(j)
i in the above formulation is a Ti-dimensional vector that is assumed to be zero-mean Gaussian

and independent over time:

ei ∼ N (0,Σi), (2)

with a diagonal covariance matrix Σ
(j)
i = diag(σ2(j)

ti1 , . . . , σ2(j)

tiTi
). More specifically, Σi is a block

matrix of a T × T diagonal covariance matrix that corresponds to the noise variance of T frames.

Under these assumptions, the conditional density of a trajectory is also Gaussian:

p(y
(j)
i |w(j),Σ

(j)
i , d

(j)
i ) = N (Φiw

(j) + d
(j)
i ,Σ

(j)
i ) . (3)

Moreover, we consider the scalar d(j)i to be a zero-mean Gaussian variable with variance u(j):

d
(j)
i ∼ N (0, u(j)). (4)

Thus, we can further integrate out di to obtain the marginal density for y(j)
i which is also Gaussian:

p(y
(j)
i |θ) =

∫
p(y

(j)
i |w(j),Σ

(j)
i , d

(j)
i )p(d

(j)
i )dd

(j)
i = N (Φiw

(j),Σ
(j)
i + u(j)1) , (5)
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(a) (b)

Fig. 3. The effect of the translation parameter. (a) A set of trajectories. (b) Alignment of the trajectories.

where 1 is a matrix of 1’s of size Ti × Ti. The marginal density is implicitly conditioned on the

parameters θ = {w, u,Σ}.

In our study we consider that every object k can be described by a unique functional regression

model, as given by the set parameters θk = {θ(1)
k ,θ

(2)
k }, where θ

(j)
k = {w(j)

k , u
(j)
k ,Σ

(j)
k }, that fits to

all trajectories belong to this object. Therefore, the objective is to dividing the set of N trajectories

into K clusters. This can be described by the following regression mixture model:

p(yi|Θ) =

K∑
k=1

πkp(yi|θk) =

K∑
k=1

πkp(y
(1)
i |θ(1)

k )p(y
(2)
i |θ(2)

k ) , (6)

where we have assumed independence between that trajectories of both directions (y
(1)
i ,y

(2)
i ). In

addition, πk are the mixing weights satisfying the constraints πk ≥ 0 and
∑K

k=1 πk = 1, while Θ is

the set of all the unknown mixture parameters, Θ = {πk,θk}Kk=1.

An important issue, when dealing with regression models is how to determine their order. Models

of small order can lead to under-fitting, while larger order lead to curve over-fitting. Both cases may

cause to serious deterioration of the clustering performance. Sparse modeling [43] offers a significant

solution to this problem by employing models having initially many degrees of freedom than could

uniquely be adapted given data. Sparse Bayesian regression can be achieved through a hierarchical

prior definition over regression coefficients w
(j)
k = (w

(j)
k1 , . . . , w

(j)
kT )

T . In particular, we assume first

that coefficients follows a zero-mean Gaussian distribution:

p(w
(j)
k |α(j)

k ) = N (w
(j)
k |0,A−1(j)

k ) =

T∏
l=1

N (w
(j)
kl |0, α

−1(j)

kl ) (7)

where A
(j)
k is a diagonal matrix containing the T elements of precisions α

(j)
k = (α

(j)
k1 , . . . , α

(j)
kT )

T .
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We impose next a Gamma prior on these hyperparameters:

p(α
(j)
k ) =

T∏
l=1

Gamma(α
(j)
kl |a, b) ∝

T∏
l=1

α
(j)a−1

kl exp(−bα
(j)
kl ) , (8)

where a and b denote parameters that are a priori set to values near zero. The above two-stage

hierarchical prior is actually a Student’s t-distribution [43]. This is a heavy tailed prior distribution

that enforces most of the values α
(j)
kl to be large, thus the corresponding w

(j)
kl are set to zero and

eliminated from the model. In this way, the complexity of the regression model is controlled in an

automatic and elegant way and over-fitting is avoided.

Now, the clustering procedure has been converted into a maximum a posteriori (MAP) estimation

approach, in a sense of estimating the mixture model parameters that maximize the MAP log-likelihood

function given by:

L(Θ) =

N∑
i=1

log{
K∑
k=1

πkp(yi|θk)}+
K∑
k=1

2∑
j=1

{log p(w(j)
k |α(j)

k ) + log p(α
(j)
k )} . (9)

The model can be trained using the Expectation - Maximization (EM) algorithm [44] that iteratively

performs two main stages: The E-step where the expected values of the hidden variables are calculated.

In our case, this includes the cluster labels of trajectories as given by the posterior probabilities:

zik = P (k|yi) =
πkp(yi|θk)∑
k′ πk′p(yi|θk′)

, (10)

as well as the mean value of the translations d
(j)
ik at any direction. The latter is obtained by using the

fact that the posterior density of translations is also Gaussian:

p(d
(j)
ik |y(j)

i , k) ∝ p(y
(j)
i |θ(j)

k )p(d
(j)
ik ) = N (d̂

(j)
ik , V

(j)
ik ), (11)

where

d̂
(j)
ik = V

(j)
ik

(
y
(j)
i − Φiw

(j)
k

)T
Σ−1(j)

ik 1i and V
(j)
ik =

(
1Ti Σ

−1(j)

ik 1i +
1

u
(j)
k

)−1

, (12)

where 1i is a Ti-length vector of 1’s.

During the M-step, the maximization of the expected value of the complete log-likelihood function

(referred as Q-function in the machine learning bibliography [42]) is performed:

Q(θt, θt−1) =

N∑
i=1

K∑
k=1

zik

log πk +

2∑
j=1

−1

2
log |Σ(j)

k | −

(
y
(j)
i − µ

(j)
k

)T
Σ
(j)
k

(
y
(j)
i − µ

(j)
k

)
2


+

K∑
k=1

2∑
j=1

−1

2
log |A(j)

k | −
w

(j)T

k A
(j)
k w

(j)
k

2
+

K∑
k=1

2∑
j=1

T∑
l=1

logα
(j)a−1

kl − bα
(j)
kl . (13)
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Maximizing (13) with respect to the model parameters leads to the following update rules [42], [45]:

π̂k =

∑N
i=1 zik
N

, (14)

ŵ
(j)
k =

[
N∑
i=1

zikΦ
T
i Σ

−1(j)

ik Φi +A
(j)
k

]−1 N∑
i=1

zikΦ
T
i Σ

−1(j)

ik (y
(j)
i − d̂

(j)
ik ) , (15)

α
(j)
kl =

1 + 2a

ŵ2(j)

kl + 2b
, ∀ l = 1, . . . , T , (16)

σ̂2(j)

kl =

∑N
i=1 zik

{(
y
(j)
il − [Φiŵ

(j)
k ]l − d̂

(j)
ik

)2
+ V

(j)
ik

}
∑N

i=1 zik
, ∀ l = 1, . . . , T . (17)

û
(j)
k =

∑N
i=1 zik

(
d̂2

(j)

ik + V
(j)
ik

)
∑N

i=1 zik
. (18)

where [.]l indicates the l-th component of the Ti-dimensional vector that corresponds to time location

til.

After convergence of the EM algorithm, two kinds of information are available: At first, the cluster

labels of the trajectories are obtained according to the maximum posterior probability value (Eq. 10).

Moreover, the motion of objects are obtained from the predicted mean trajectories per cluster, i.e.

µk = (µ
(1)
k ,µ

(2)
k ) = (Φw

(1)
k ,Φw

(2)
k ).

A. Initialization Strategy

A fundamental issue when applying the EM algorithm, is its strong dependence on the initialization

of the model parameters due to its local nature. Improper initialization may lead to reaching poor

local maxima of the log-likelihood, a fact that may affect significantly the performance of the method.

A natural way for initialization is by randomly selecting K samples from the set of input trajectories,

one for each cluster. Then, we can obtain the least-squares solution for initializing the regression

coefficients. In addition, the noise variance Σk is initialized by a small percentage of the total variance

of all trajectories equally for each clusters, while we set the mixing weights πk equal to 1/K. Finally,

one step of the EM algorithm is executed for further refining these parameters and calculating the MAP

log-likelihood function. Several such different trials are executed and the solution with the maximum

MAP likelihood function is selected for initializing model parameters.

However, the above scheme cannot be easily applied to our approach due to the large variability

in length (Ti) of the input trajectories which brings a practical difficulty in obtaining the least-

squared solution. For this reason, we have followed a more robust initialization scheme based on

the interpolation among successive time steps. More specifically, starting from the first time step we

perform periodically (e.g. at every 5T% frames) the k-means clustering over the points (y
(1)
it , y

(2)
it ).
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Then, the resulting K centers are associated with those of the previous time according to the minimum

distance criterion. Finally, a linear interpolation (per cluster) is performed and thus the resulting K

curves are used for initializing the parameters of the K clusters. It must be noted that in cases where

there is a large number of features representing the background, the initialization may diverge from

the desired solution since the existence of a significant amount of outliers affects the k-means solution.

Even if during our experiments we have not faced with any such problem, treating with this situation

still remains a future plan of study. An example of the proposed process is given in Fig. 4 adopted

from an experimental data set, where both the initial interpolated trajectories (Fig. 4c) and the final

clustering solution are shown (Fig. 4d).

IV. EXPERIMENTAL RESULTS

We have evaluated the performance of our approach using both simulated and real examples. Demon-

stration videos are available at http://www.cs.uoi.gr/∼vkaravas/motion segmentation and tracking.

Some implementation details of our method are the following: At first, we have normalized spatial

and temporal coordinates into the interval [0, 1] while the extracted trajectories either with length less

than 1% of the number of frames T , or with variance less than 0.01 were not taken into account.

We have selected the mexican hat wavelet kernel k(tk, tl) = 2√
3σπ

1
4

(
1− (tl−tk)2

σ2

)
e

−(tl−tk)2

2σ2 for the

design kernel matrix Φ, where the scalar parameter took the value of σ = 0.3. Experiments have

shown that the performance of our approach is not very sensitive to this parameter, since we took

similar results for values in the range of [0.1, 0.5].

Comparison has been made with the mean shift algorithm [1], the camshift algorithm [46] and the

Kalman filter [3], which are established algorithms in visual tracking. For the mean shift algorithm,

the images were represented in the RGB color space using histograms of 16 bins for each component.

For the camshift algorithm, the hue component of HSV color space was used to construct a 16-bin

histogram. For the Kalman filter, camshift was used in order to provide measurements (the position

and the size of the object). For initializing all these algorithms, we have manually selected the position

and the size of each object in the first frame of the image sequence. Then, the objects are tracked,

using a distinct tracker per each target. The centers of the ellipses surrounding the targets are used to

construct the mean trajectory of each object. This comparison favors these algorithms in cases where

the features are not uniformly distributed around the object, as the center estimated by the features

may vary from the geometric center of the object (Fig. 5).
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Fig. 4. The overall progress of our method applied to an experimental image sequence of 250 images with

k = 4 objects with different motions. (a) Real trajectories, (b) input trajectories, (c) initial estimation of mean

trajectories using the proposed technique, (d) the estimated trajectories after EM convergence.

A. Experiments with simulated data sets

The first series of experiments involves seven (7) simulated image sequences with spheres moving

in predefined directions as shown in Fig. 6 and Fig. 7. Each image sequence contains 130 frames of

size 512× 512. The value of N varies from 1500 to 2000 trajectories per case, with average length

around T = 60 frames each trajectory. In the first five problems, no occlusions are simulated (all

objects are visible in every frame). In the rest two problems, occlusion is happened, where in Sim6 a

sphere disappears while in Sim7 a sphere disappears and reappears.

13



Fig. 5. Features are not uniformly distributed over the object and the center of gravity of the key points does

not coincide with the center of gravity of the object. The small dots represent the features and the big dot

represents their barycenter. The figure is better visualized in color.

Since we are aware of the ground truth, the performance of all tracking approaches was evaluated

using two criteria:

• The mean squared error (MSE) measured in pixels, between the ground truth r and the estimated

mean trajectories µ as given by

MSE =
1

K · T

K∑
k=1

2∑
j=1

||r(j)k − µ
(j)
k ||2 .

• The accuracy (ACC) that counts the percentage of correctly classified trajectories. It must be

noted that the input trajectories created by our method have been also chosen to evaluate the

mean shift algorithm, the camshift algorithm and the Kalman filter tracker. In particular, we

assign every input trajectory to an object according to the smallest distance with the predicted

mean trajectory.

The depicted results are presented in Table I. As it is obvious, we took comparable results in the

first thee approaches Sim1, Sim2 and Sim3. However, in the fourth problem (Sim4), our approach

and mean shift successfully track the objects, while camshift and the Kalman filter are failed. This

is happened in the case of camshift due to the fact that the objects are overlapping in the initial

frame, and after some iterations the result is an ellipse with its center located at the center of the

image and whose size is increased in order to contain all the objects inside it. Moreover, Kalman filter

fails because it uses camshift to obtain the measurements. On the other hand, mean shift tracks the

objects due to the fact that in this implementation we decided not to integrate a scale change, as in

camshift. In problem Sim5, camshift and Kalman filter fail again, because two objects (the one with

14



Simulated datasets (A)

Sim1 Sim2 Sim3 Sim4
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motion
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filter

Fig. 6. Comparative results with four artificial datasets. For each problem we give the true objects motion, the

created input trajectories and the estimated motion by all approaches.

the green trajectory and the one with the blue trajectory in Fig. 7) pass near each other and camshift

makes the target ellipse bigger in order to include both objects. In problem Sim6 one object suddenly

disappears (the one with the red trajectory in Fig. 7). Finally, in problem Sim7 the object disappears
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Simulated datasets (B)

Sim5 Sim6 Sim7
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Input
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Our
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filter

Fig. 7. Comparative results with three artificial datasets. For each problem we give the true objects motion,

the created input trajectories and the estimated motion by all approaches.

and reappears in another position after some time. Mean shift fails to track the sphere that disappears

and reappears and tracks the object only as long as it is visible. Camshift and Kalman filter, as they

take into account scale changes, increase the size of the ellipse and track a nearby object. On the other
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TABLE I

THE PERFORMANCE OF THE COMPARED METHODS IN TERMS OF CLASSIFICATION ACCURACY (ACC) AND MEAN

SQUARED ERROR (MSE).

Problem Our approach Mean shift Camshift Kalman

MSE ACC MSE ACC MSE ACC MSE ACC

Sim1 69 100% 121 100% 4 96% 0 100%

Sim2 10 99% 114 100% 55 100% 54 100%

Sim3 10 96% 114 99% 202 95% 224 95%

Sim4 15 97% 130 99% lost lost lost lost

Sim5 20 100% 118 100% lost lost lost lost

Sim6 29 100% 74 100% lost lost lost lost

Sim7 41 99% lost lost lost lost lost lost

hand, the proposed method correctly associates the two separated trajectories of the sphere. Finally,

it must be noted that in the case of both problems Sim6 and Sim7, the frames in which a sphere is

not visible are not taken into account for computing the MSE criterion.

B. Experiments with real data sets

We have also evaluated our motion segmentation approach using five (5) real datasets shown in

Fig. 8 containing images of size 512 × 512. All of these videos were created in our laboratory and

they may be downloaded at http://www.cs.uoi.gr/∼vkaravas/motion segmentation and tracking. The

first three of them (Real1-3) show mobile robots moving in various directions: In Real1 (T = 250),

the robots are moving towards the borders of the image forming the vertices of a square. In Real2

(T = 680), the robots are moving around the center of the image forming a circle, and finally in

Real3 (T = 500), the robots are moving forward and backward. The rest two datasets (Real4-5) show

two persons walking, and so occlusion take place as one person gets behind the other. In particular,

in Real4 (T = 485) two persons are moving from one side of the scene to the other and backwards,

while in Real5 (T = 635) the persons additionally move forward and backward in the scene.

As ground truth is not provided in these cases we have evaluated our approach only visually. In

problems Real1-3 all algorithms produce approximately the same trajectories. On the contrary, in the

cases of Real4 and Real5 problems, where we deal with articulated objects and occlusion, mean shift

and camshift fail to properly track the persons and one of them is lost. Moreover, the trajectory of

the center of the ellipse (which represents the object in mean shift and camshift) is not smooth. This

is due to the change in the appearance of the target. When the person walks, there are frames where

both arms and legs of a person are visible and instances where only one of them is present. In these
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cases, mean shift and camshift may produce abrupt changes in motion estimation because the person

in the frame has change its appearance with respect to its appearance in the first frame (which is used

to initialize the model representing the object). On the other hand, our method is more accurate and

produces a smooth trajectory.

Looking in more detail the problem Real4, we can see the person in black disappears (because

he gets behind the other person) twice during this image sequence: at first, when he is moving from

right to left, and then, as he is moving from left to right. Mean shift successfully follows the person

before and after the first occlusion, but it fails to track it when the second one takes place. Camshift

fails to track the person after the first occlusion, but it follows it after the second occlusion when the

person turns back. The Kalman filter successfully follows the person. This is better depicted in Fig.

9 where the predicted trajectory, corresponding to the person in black, is shown in green. The part

of the trajectory where the person is lost is highlighted by an ellipse. Mean shift (Fig. 9(b)) follows

the correct person from right to left and from left until the middle of the image when the second

occlusion takes place. Then it follows the other person which moves from the middle of the image to

the left. Camshift (Fig. 9(c)) follows the person until the first occlusion at the middle of the image.

Then, it follows the other person which moves from the middle to the right and from the right to the

middle. After the second occlusion is occurred, it finds the correct person again which moves from

the middle to the right. On the other hand, the proposed method successfully tracks the object in all

frames (Fig. 9(a)).

C. Experiments using the Hopkins 155 dataset

We have also used the Hopkins 155 dataset [37] to evaluate our approach, where we have selected

the traffic subset that consists of 31 scenarios with two motions and 7 scenarios with three motions.

For each video, the extracted trajectories and the ground truth are provided. Here we must highlight

that these trajectories have been manually corrected or filled by the researchers that constructed the

dataset [37], so each trajectory has a value for every frame. Some representative frames of the traffic

subset are presented in Fig. 10.

In Tables II and III, the performance of our algorithm is presented in terms of the classification

error. For comparison purposes, we also summarize the results obtained by 15 other methods as

they are presented in the web page of the dataset (http://www.vision.jhu.edu/motion.php#results).

More specifically, the average value of the classification error as calculated by our method over the

corresponding dataset is shown in Table II. For the rest of the compared methods, we present the

minimum, the maximum, the mean and the median values for the average classification error over
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Fig. 8. Comparative results with five real datasets. For each problem we give the true objects motion (chosen

manually), the created input trajectories and the estimated motion by all approaches.

all the 15 state of art methods. This means that we have included the average classification error of

each of the compared methods in the computation of each statistic (min, max, mean, median). As

it may be observed, our method provides satisfactory results compared to all other methods. This is
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(a) (b) (c)

Fig. 9. Estimated trajectories for the dataset Real4. (a) Our method, (b) mean shift, (c) camshift. The green

(printed in light gray in black and white) trajectory in (b) and (c) corresponds to the person in black moving

from the right side of the image to the left and backwards. The ellipse highlights the part of the trajectory where

the person is lost, because mean shift or camshift fails to track the object due to occlusion. The figure is better

visualized in color.

Fig. 10. Representative frames of the Hopkins 155 dataset. The feature points are marked using different colors

in order to denote the cluster they belong to.

also confirmed by the ranking information, shown in the last column of Table II. In the case of two

motions, our method is ranked first among the 15 compared algorithms. Let us notice that the method

sparse subspace clustering (SSC) [47] provides a similar average error. This is indicated in the last

column of the Table II, showing how many methods provide the same error in average. In the case

of three motions, the performance of our method is ranked in the second place behind SSC, whose

average error is 0.58%.

Similar in spirit statistics are shown in Table III concerning the median classification error. In that

case, our method accurately classifies more than half of the time series which is also the case for 7

out of 15 methods for the problems involving two motions. For the three motions problems, where the

complexity increases, our algorithm is also ranked at the first place along with other three methods,

namely multi stage learning (MSL) [48], local linear manifold clustering with projection to a space

of dimension 5 (LLMC 5) [49] and SSC [47].
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TABLE II

STATISTICS ON THE AVERAGE OF CLASSIFICATION ERROR FOR THE TRAFFIC SUBSET OF THE HOPKINS 155 DATASET.

Our approach Other approaches Our Rank In tie

Min Max Mean Median

Two motions 0.02% 0.02% 5.74% 2.63% 2.23% 1/15 1

Three Motions 0.98% 0.58% 27.02% 9.53% 8.00% 2/15 -

TABLE III

STATISTICS ON THE MEDIAN OF CLASSIFICATION ERROR FOR THE TRAFFIC SUBSET OF THE HOPKINS 155 DATASET.

Our approach Other approaches Our Rank In tie

Min Max Mean Median

Two motions 0.00% 0.00% 1.55% 0.51% 0.21% 1/15 7

Three Motions 0.00% 0.00% 34.01% 7.22% 2.06% 1/15 3

D. Experiments using other key point descriptors

In section II we described how to create trajectories from an image sequence and as an example we

used Harris corners [35] in order to detect salient image features and optical flow [38] to associate them

between images. Apart from Harris corners, numerous interest-point detectors have been proposed

in the computer vision literature, such as the scale invariant feature transform difference of Gaussian

key points (SIFT DoG or SIFT for simplicity) [39], the maximally stable extremal regions (MSER)

[50], the Hessian matrix-based affine features [40] and the speeded-up robust features (SURF) [51].

They mainly differ to the level of the tradeoff between repeatability and complexity [40], [52]. The

SIFT features for example are highly repeatable but require a large computational cost. This is why

SURF key point detectors have gained increasing interest, as they are faster (they are based on box

filters and integral images [53]).

In order to study the consistency of the proposed method we have evaluated it in terms of the

technique used for generating trajectories. Table IV summarize the comparative results on the seven

simulated datasets using Harris corners, SIFT and SURF features. For every case we give also the

number of the generated trajectories. It may be observed that when the trajectories are computed using

Harris corners a smaller MSE is obtained while trajectories computed by SIFT and SURF detectors

have approximately similar errors but in any case higher than Harris corners. In terms of accuracy, all

of the methods exhibit, in average, comparable rates which indicates a larger number of trajectories,

provided for example by SURF, does not necessary ensure a better result.
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TABLE IV

THE PERFORMANCE OF THE DIFFERENT KEY POINT EXTRACTION METHODS IN TERMS OF CLASSIFICATION ACCURACY

(ACC) AND MEAN SQUARED ERROR (MSE).

Problem Harris corners SIFT SURF

#Trajectories MSE ACC #Trajectories MSE ACC #Trajectories MSE ACC

Sim1 3820 69 100% 973 130 100% 6352 107 99%

Sim2 1516 10 99% 1146 138 98% 3453 139 99%

Sim3 2348 10 96% 2296 172 98% 7708 104 99%

Sim4 2346 15 97% 2319 122 98% 7758 32 100%

Sim5 1954 20 100% 811 110 99% 4848 130 100%

Sim6 1351 29 100% 646 142 99% 3693 191 99%

Sim7 1485 41 99% 689 168 100% 4244 155 99%

V. CONCLUSIONS

In this study we have presented a compact methodology for objects tracking based on model-based

clustering trajectories of Harris corners extracted from an image sequence. Clustering is achieved

through an efficient sparse regression mixture model that embodies efficient characteristics in order to

handle trajectories of variable length, and to be translated in measurement space. Experiments have

shown the abilities of our approach to automatically detect the motion of objects without any human

interaction and also demonstrated its robustness to occlusion and feature misdetection.

The main advantage of our method with respect to Kalman filter is that the former handles both

tracking and motion segmentation while the latter only tracks the target. Also, Kalman filter should

be provided with the motion model while the method proposed herein needs as input only the number

of the objects to be tracked. Moreover, our method may be applied without the knowledge of the

full trajectories by using only time series data up to the current time instant if this is imposed by the

application. Finally, linear regression model can be applied in order to predict the next state [41].

Some directions for future study include an alternative strategy for initializing regression mixture

model parameters during EM procedure especially in cases of occlusion, as well as a mechanism

to simultaneously estimate the number of objects K in the image sequence. Also, our willing is to

study the performance of our method in other interesting computer vision applications, such as human

action recognition [54] and fully 3D motion estimation [30].
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