
Feature-based 3D Morphing based on Geometrically

Constrained Spherical Parameterization

Theodoros Athanasiadis, Ioannis Fudos, Christophoros Nikou and Vasiliki
Stamati

Department of Computer Science, University of Ioannina, GR45110 Ioannina, Greece

Abstract

Current trends in free form editing motivate the development of a novel edit-
ing paradigm for CAD models beyond traditional CAD editing of mechanical
parts. To this end, we need robust and efficient 3D mesh deformation tech-
niques such as 3D structural morphing.

In this paper, we present a feature-based approach to 3D morphing of
arbitrary genus-0 polyhedral objects that is appropriate for CAD editing.
The technique is based on a sphere parameterization process built on an op-
timization technique that uses a target function to maintain the correspon-
dence between the initial polygons and the mapped ones, while preserving
topology and connectivity through a system of geometric constraints. Fi-
nally, we introduce a fully automated feature-based technique that matches
surface areas (feature regions) with similar morphological characteristics be-
tween the two morphed objects and performs morphing according to this
feature correspondence list. Alignment is obtained without user intervention
based on pattern matching between the feature graphs of the two morphed
objects.

Keywords: mesh parameterization, morphing, feature-based models,
geometric constraints, animation

Email address: {thathana,fudos,cnikou,vicky}@cs.uoi.gr (Theodoros
Athanasiadis, Ioannis Fudos, Christophoros Nikou and Vasiliki Stamati)

Preprint submitted to Computer Aided Geometric Design October 1, 2010

*Manuscript
Click here to view linked References

http://ees.elsevier.com/cagd/viewRCResults.aspx?pdf=1&docID=1146&rev=0&fileID=34201&msid={187CA9A4-3E0B-4A24-81EF-C49180CFDAAE}
User
Typewritten Text
Computer Aided Geometric Design, Vol. 29, pp. 2-17, 2012

User
Sticky Note
Unmarked set by User

User
Typewritten Text

1. Introduction

Feature-based computer-aided design has enabled efficient and robust
editing of complex CAD models by effectively capturing designer intent [1].
There is an increasing trend to make the CAD design process accessible to
users with no previous CAD/CAM software experience. To this end, re-
searchers and manufacturing companies have proposed to mimic the way an
artist shapes a sculpture: start from a volume or object that is close to the
intended target and iteratively shape (morph) its parts to finally render what
the artist had in mind.

Our ultimate goal is to offer a novel editing paradigm for CAD models
that goes beyond traditional CAD editing of mechanical parts. Towards this
goal, we present an accurate and robust feature-based morphing technique
that can be applied between any pair of genus-0 objects.

Although there are quite versatile and accurate methods for 2D image
morphing, the 3D case remains an open problem both in terms of feasibility
and accuracy.

Existing methods for 3D morphing can be categorized into two broad
classes: volume-based or voxel-based [2] and mesh-based or structural [3] ap-
proaches. In this paper, we follow a mesh-based approach. The volume-based
approach represents a 3D object as a set of voxels usually leading to compu-
tationally intensive computations. The mesh-based approach exhibits better
results in terms of boundary smoothness and rendering, since the intermedi-
ate morphs are represented as volumes. Techniques such as marching cube [4]
are employed to acquire the final polygonal representation used for rendering.
Furthermore, most applications in graphics use mesh-based representations,
making mesh-based modeling more broadly applicable.

Although mesh morphing is more efficient as compared to volume-based
morphing, it requires a considerable preprocessing of both the source and
the target object. Mesh morphing involves two steps. The first step estab-
lishes a mapping between the source and the target object (correspondence
problem), which requires that both models are meshed isomorphically with a
one-to-one correspondence. The second step involves finding suitable paths
for each vertex connecting the initial position to the final position in the
merged mesh (interpolation problem). For performing structural morph-
ing, we can use boundary representation (Brep) or surface representation in
which we represent each object by its surface description, or volumetric or
solid meshes, for instance tetrahedral representations. In volumetric mesh

2

morphing, volumetric mesh morphing is much easier to maintain robustness
and avoid boundary folding. However, it is computationally expensive com-
pared to surface mesh morphing since the number of elements in the former
case is much larger in comparison to the latter.

In this paper, we propose an efficient surface mesh morphing that main-
tains robustness. We introduce a sound and complete approach to morphing
between any two genus-0 objects. Recall that genus-0 objects are by defini-
tion homeomorphic to the sphere. Our mapping works in two phases. In the
first phase, we calculate an initial bijective mapping. In the second phase,
we optimize the mapping to achieve a better placement under specific geo-
metric criteria and under a set of topological constraints. We also present an
improvement of this approach that takes into consideration 3D features and
derives a feature correspondence set to improve the final visual effect. This is
a very important characteristic for similar objects, as in the case of morphing
between two articulated human representations. Object alignment, feature
detection and feature point matching is performed automatically without
user intervention.

In a nutshell, this paper makes the following technical contributions:

• Presents an easy to implement feature-compatible method for mapping
genus-0 3D objects on the sphere using an optimization technique that
achieves a mapping that respects the original object geometry, while
preserving connectivity and topology with the use of geometric con-
straints.

• Introduces a feature-based method that achieves smooth visual results
in morphing between objects with structural similarities.

The rest of this paper is structured as follows. Section 2 presents related
work on 3D morphing. Section 3 presents the spherical parameterization
step of our approach. Section 4 briefly describes the efficient computation
of the intersections among the polygons on the sphere and the calculation
of the interpolation trajectory. Section 5 presents an alternative mapping
method that can be applied to one of the morphed objects based on the
mapping of the other object and a feature correspondence list of the two
meshes. Section 6 presents an experimental evaluation of our method and
some visual morphing results. Finally, Section 7 offers conclusions.

3

2. Related Work

Most surface-based mesh morphing techniques employ a merging strategy
to obtain the correspondence between the vertices of the input model. The
merging strategy may be either automatic or user specified. Kent et al. [3]
proposes an algorithm for the morphing of two objects topologically equiva-
lent to the sphere. The mapping presented is accomplished by a mere pro-
jection to the sphere and thus is applicable solely to star shaped objects.

Kanai et al. [5] use a spring system to model the mesh and gradually force
it to expand or shrink on the unit sphere by applying a force field. Methods
using springs do not always produce acceptable mappings especially when
handling complex non convex objects. We overcome this problem successfully
in our approach.

In [6, 7], a spring-like relaxation process is used. The relaxation solution
may collapse to a point, or experience foldovers, depending on the initial
state. Several heuristics achieving convergence to a valid solution are used.

[8, 9, 10] describe methods to generate a provable bijective parameteriza-
tion of a closed genus-0 mesh to the unit sphere. The projection involves the
solution of a large system of non-linear equations. A set of constraints on
the spherical angles is maintained to achieve a valid spherical triangulation.
We have adapted some of these ideas in our work.

Schreiner et al. [11] present a method that directly creates and optimizes
a continuous map between the meshes instead of using a simpler interme-
diate domain to compose parameterizations. Progressive refinement is used
to robustly create and optimize the inter-surface map. The refinement min-
imizes a distortion metric on both meshes. Kraevoy and Sheffer [12] present
a method that relies on mesh refinement to establish a mapping between
the models. First a mapping between patches over base mesh domains is
computed and then mesh refinement is used to find a bijective parameteri-
zation. An advantage of this approach is that it naturally supports feature
correspondence, since feature vertices are required as user input for the ini-
tial patch mapping. However, it requires user supervision and interaction
whereas our method is fully automated.

In [13], reeb-graphs and boolean operations are used to extend spherical
parameterization for handling models of arbitrary genus. Existing methods
for producing valid spherical embeddings of genus-0 models can be integrated
into their framework. In that respect, this work is orthogonal to our ap-
proach. Another method that uses reeb-graphs for morphing topologically

4

different objects of arbitrary genus is [14]. The method specifies the corre-
spondence between the input models by using graph isomorphic theory. The
super Reeb graph, which has the equivalent topological information to the
Reeb graphs of the two input objects, is constructed and used to conduct the
morphing sequence.This method is very interesting from a theoretical point
of view, but in practice the resulting matching may be unintuitive. Our
method obtains intuitive matching results for similar objects and produces
visually smooth morphing sequences.

Finally, Lin and Lee [15] provide efficient techniques for morphing 3D
polyhedral objects of genus-0. The emphasis of the method is on efficiency
and requires the definition of feature patches to perform 2D mapping and
subsequent merging. Their method does not avoid self intersection and re-
quires embedding merging and user intervention for mapping. Our method
overcomes these shortcomings in the expense of considerable increase in pre-
processing time for mapping.

The method presented in this paper overcomes the limitations of prior
methods and allows for a totally automated and appropriate for morph-
ing mapping of an object of genus-0 surface into a 2D space with spherical
topology. An initial mapping over the unit sphere is computed and used as
initial state and is then improved by employing nonlinear optimization. For
smoother morphing that exploits object morphology we have introduced a
feature-based approach. Feature correspondence is performed automatically
without any user intervention.

3. Topology Preserving Spherical Parameterization

3.1. Preliminaries

A planar triangulation is a simple triangulated plane graph whose edges
are represented by straight lines. The triangulation is called valid when the
only intersections between its edges are at the common endpoints. It has
been shown by Fary [16] that every planar graph G has a valid straight
line representation. Therefore, for any planar graph G there exists a set of
points p such that the induced triangulated graph T (G, p) is valid. A way to
construct such a valid triangulated graph is described in [17]. The boundary
vertices of G are mapped to a convex polygon with the same number of
vertices and in the same order. Then, the interior vertices are placed such
that each vertex is the centroid of its neighboring vertices. This was extended

5

by Floater [18] who has proven that each vertex vi=(xi,yi) can be any convex
combination of its Ni neighboring vertices (1).

Consequently, for finding a one-to-one bijective mapping for a mesh with
an open boundary B to a convex parametric domain P ∈ R2 (e.g. a unit
disk), a sufficient condition is to find a set of positive weights that satisfy (1)
and solve the corresponding linear system for those weights. This is expressed
by (2).

vi =
∑

vj∈Ni

wijvj

∑

vj∈Ni

wij = 1

wij > 0

(1)

∑

vj∈Ni

wijxj = xi

∑

vj∈Ni

wijyj = yi
(2)

Theorem 1. The linear system (2), which expresses the position of each
node as a convex combination of its neighbors (1), has a unique solution if
at least one of its nodes is fixed.

Proof. See Appendix A.

Thus, the resulting system has always a unique solution provided that
the boundary vertices are fixed. A straightforward choice is to choose equal
weights resulting in each vertex representing the centroid of its neighbors.
This is also called barycentric mapping. For a mesh M(V,E), barycentric
mapping minimizes the sum of the squares of edges lengths, with respect to
a fixed boundary. This is due to:

f(v1, v2, ..., vn) =
∑

(vi,vj)∈E

||vi − vj ||
2

||vi − vj ||
2 = (xi − xj)

2 + (yi − yj)
2

(3)

6

Since f is convex, it has a global minimum when ∂f/∂xi = ∂f/∂yi = 0 for
i = 1, ..., n:

∂f

∂xi
= 2

∑

vj∈Ni
(xi − xj),

∂f

∂yi
= 2

∑

vj∈Ni
(yi − yj) (4)

This is equivalent to solving the following linear system which is actually (2)
with equal weights:

∑

vj∈Ni

wixj = xi

∑

vj∈Ni

wiyj = yi

wi =
1

|Ni|

(5)

The theory for planar parameterizations can be directly extended to a
spherical domain by reducing the problem to the planar case. The parame-
terization is then computed in polar coordinates. One approach to alleviate
the problem is to select two vertices as the poles (north and south) of the pa-
rameterization. Subsequently, a geodesic path must be established between
the poles over the mesh surface. The path connecting the two poles defines
the boundaries of the parameterization and thus the spherical surface can be
converted to a unit disk. Therefore, we can directly use the previous analysis
to compute one-to-one bijective mapping. If equal weights are chosen and
the poles are selected based on the largest distance along the z direction in
object space, the resulting system is the linear system proposed by Brech-
buhler et al. [19]. This way a valid spherical parameterization can always
be produced for every mesh. The quality of parameterization depends on
the choices for the poles and the connecting path. It turns out that select-
ing a good path is a difficult problem that affects the distortion in the final
parameterization.

Another approach is to cut out a triangle from the mesh, leaving an
open boundary, and make the mesh homeomorphic to the unit disk. This
approach, also referred to in literature as stereo mapping, usually results in
very distorted parameterizations since using the corresponding unit triangle
as a boundary tends to cluster the remaining vertices in the center of the
triangle.

7

As explained, the main drawback of the previously described techniques
is the unnecessary distortion introduced by the parameterization. Unfortu-
nately, generalizing the barycentric coordinates and the planar parameteri-
zation theory to a spherical domain is not straightforward. Since the domain
is non-planar, expressing a vertex on the sphere as a convex combination of
its neighbors is not feasible in general. This would imply for example that
if the neighbors of a vertex are co-planar, then the vertex should also lie on
the same plane. Nevertheless, it turns out that the following holds:

Theorem 2. If each vertex position is expressed as some convex combination
of the positions of its neighbors projected on the sphere (6), then the formed
spherical triangulation is valid.

vi =

∑

vj∈Ni
wijvj

||
∑

vj∈Ni
wijvj||

∑

vj∈Ni

wij = 1

wij = wji

wij > 0

(6)

Proof. This is an immediate result of Theorem 2 in Gotsman et al. [20].

Problem (6) can be expressed as a set of 3n − 3 non-linear equations for
the nodes i = 1, ..., n − 1 of the mesh. The equation for the last vertex
is redundant in the case of a connected triangular mesh. We should also
introduce n equations that constrain the vertices to lie on the unit sphere.
We then seek the positions of the vertices vi(xi, yi, zi) and the n auxiliary
variables ai:

aixi −
∑

vj∈Ni

wijxj = 0, i = 1, . . . , n− 1

aiyi −
∑

vj∈Ni

wijyj = 0, i = 1, . . . , n− 1

aizi −
∑

vj∈Ni

wijzj = 0, i = 1, . . . , n− 1

x2
i + y2i + z2i = 1, i = 1, . . . , n

(7)

8

In general, a solution to this system is not unique. Without removing
some degrees of freedom there are infinite solutions due to the possible rota-
tions over the sphere (three degrees of freedom). More importantly, there are
degenerate solutions that satisfy (7). The most obvious one is observed when
ai = 0 where all vertices of the parameterization collapse to one point on the
sphere. Another possible degenerate solution can occur when the mesh con-
tains a Hamiltonian cycle and the vertices are mapped to the equator of the
sphere. Other degenerate solutions also exist, see e.g. [20]. We can eliminate
the infinite solutions if we fix three degrees of freedom (for example vertex vn
and an angle that will determine a unit circle on which a second vertex lies).
However, even if we manage to avoid degenerate solutions we may still have
a finite but exponentially large number of solutions (see e.g. [21, 22]) that
we may have to eliminate by overconstraining or by introducing inequalities.

Even a robust and stable non-linear solver may converge to degenerate so-
lutions for the system of equations (7). A key observation is that, as the solver
iterations proceed, some triangles start growing and eventually pass through
the equator of the sphere. The fundamental problem is that the spherical
energy minimum occurs at a collapsed configuration. This situation occurs
because the continuous spherical energy is approximated by a quadratic en-
ergy function calculated over the mesh triangles. Therefore, since the area of
a planar triangle is always smaller than the area of the corresponding spheri-
cal triangle, an estimation error is introduced in the calculation of the energy
over the surface. This error increases disproportionately with the size of the
triangles. Therefore, the non-linear minimizer may minimize the correspond-
ing distortion metric (energy function) over the sphere surface by increasing
the size of the triangles with the largest error.

One common fix to avoid these degenerate solutions is to fix three or
more vertices, thus constraining the solver. In practice however there are
two problems, the extra constraints introduce additional distortion in the
parameterization, and it is difficult in general to determine a proper set of
fixed vertices. In addition, without paying special attention to the set of the
constrained vertices, the non-linear problem may become infeasible.

Another important issue with the system of equations in (7) is that there
is no guarantee that the solution is bijective in the case of non-symmetric or
negative weights. Therefore, adapting the weights for morphing is difficult
because weights for conformal mappings can be negative and weights for
authalic mappings are non-symmetric [23].

Summarizing the above observations, if we try directly to solve (7), the

9

following problems occur:

• Non convexity. The constraints x2
i +y2i +z2i = 1 are not convex. There-

fore classical convex minimization cannot be used directly.

• Non regularity. Due to non-convex constraints, uniqueness and higher
regularity of solutions cannot be expected [24].

• Non uniqueness. The energy does not have a unique minimum and
degenerate solutions always exist.

An approach to tackle these difficulties was proposed in [10]. Here a
penalty term d−2

min, where dmin is the minimum distance of each triangle from
the sphere center, was added in the corresponding planar quadratic energy
and the constraints were removed. The motivation of this approach is to
provide an upper bound of the spherical energy by scaling the corresponding
planar energies of the triangles. Therefore, the corresponding problem (7)
is transformed to an unconstrained one, that can be solved with standard
methods. However, this approach is possible to restrict the minimize process
and the convergence properties are unclear since no theoretical guarantee is
provided.

In the method presented in this paper, we overcome the above difficulties
by employing a two step approach. An initial bijective parameterization over
the unit sphere is computed and is used as an initial guess for a nonlinear
optimization process. The optimized parameterization is guaranteed to be
bijective by enforcing a proper set of constraints.

3.2. Initial Spherical Parameterization

A possible technique that one can use to obtain an initial parameteri-
zation is an iterative process that attempts to converge to a valid parame-
terization by applying local improvement (relaxation) [6]. The principle for
this improvement is to reduce the spring energy of the points with Lapla-
cian smoothing ignoring the sphere constraint and renormalise the solution
to obtain valid spherical points. In practice however, the iterative process
may converge to a degenerate solution and will then require a restart. Since
Laplacian smoothing does not perform any triangle area balancing, certain
elements may collapse leading to a degenerate solution. The following key
observation motivates our approach,

10

Observation 1. Iterative projected Laplacian smoothing collapses after one
or more elements overgrow.

The above observation motivates an area balancing procedure where the
new position of the vertices is determined based on an area weighted sum.
More specifically, the new position of each vertex is determined by the
weighted sum of the centroids of the surrounding triangles, where the weights
are determined by the area of each neighboring triangle. This approach yields
a smoother mesh with more balanced element area since larger polygons tend
to attract vertices, while smaller polygons tend to repulse them. Since the
set of weights is positive and symmetric, each individual folding is not stable
and is forced to unfold according to the area weighted centroid attraction
rule.

The above procedure is expressed concisely by the following steps:

1. Let (v1, v2, ..., vn)
0 be an initial guess for the solution

2. For j = 0; until no folded elements exist; j++

(a) Set vj+1
i =

∑

vk∈Ni
akck for i = 1, ..., n

(b) Set vj+1
i =

v
j+1

i

||vj+1

i ||
for i = 1, ..., n

where ak is the area of the corresponding k-th triangle that is adjacent to
vertex vi and ck is the centroid of this triangle. The initial solution is ob-
tained by normalizing the original vertex coordinates (assuming the object
is centered at the origin),

v0i =
vi

||vi||
for i = 1, ..., n (8)

The normalizing denominator maintains vertices on the unit sphere.
We have used two alternative methods for obtaining an initial mapping:

barycentric mapping and area weighted Laplacian smoothing. In barycentic
mapping, two polar coordinates are determined for all vertices in two steps.
Two vertices are selected as the poles (north and south) for this process. The
poles must not be too close as this will result in a poor initial parameteri-
zation. Therefore, we have implemented this initial mapping by selecting as
poles the vertex pair with the largest distance between them (diameter of the
solid). In Laplacian smoothing, we use the area weighted variation. Figure 1

11

shows the results of the initial mapping when applying the planar barycentric
mapping method and Laplacian smoothing on the frog from [25]. In general,
Laplacian smoothing is faster and provides a robust unfolded initial mapping
while preserving similarities with the initial mesh.

(a) (b) (c) (d)

Figure 1: (a) The result of the initial mapping using the planar barycentric method, (b)
the Laplacian smoothing technique, (c) the result after optimization and (d) the original
frog model.

Figure 2: In the left the Blender Suzanne model with 5600 faces and in the right the final
optimized result of mapping.

Objective Function: We use as the objective function f to be minimized
the sum of all dot products of every mapped vertex vsi with their correspond-
ing initial position v0i on the mesh.

f(v1, v2, ..., vn) =
∑

vi∈V

v0i · v
s
i (9)

3.3. Optimized Parameterization for Morphing

For the optimized mapping we use the following objective function and
set of constraints that are appropriate for morphing:

12

Start

(a) (b) (c)

Model A

Model B

Intersection

Figure 3: (a) Finding intersections in merged topology, (b) curve faces visited in clockwise
manner and (c) triangulation

Geometric Constraints: For each vertex vi we use the spherical constraints
from (7) to keep the vertices on the unit sphere surface.

x2
i + y2i + z2i = 1 (10)

Topological Constraints: For each face fi of the mesh with vertices vi0, vi1, vi2
and for each vertex of this face, each vertex should stay on the same side of
the plane defined by the other two vertices and the center of the sphere:

(vi1 × vi2) · vi0 > 0

(vi2 × vi0) · vi1 > 0

(vi0 × vi1) · vi2 > 0

(11)

The goal of our optimization approach is to find a valid spherical pa-
rameterization suitable for morphing purposes by avoiding the degenerated
solutions that may exist. This is guaranteed by the topological constraints
(11). In addition, by using a suitable tolerance ǫ > 0 instead of 0, these con-
straints offer control over the area of each face in the final parameterization
and thus degenerated elements are avoided. Furthermore, the choice of the
objective function is motivated by the observation that a mapping suitable
for morphing should introduce more distortion in the concave areas. There-
fore, the structurally important vertices of the mesh (for example those over
the convex hull) are kept in their original projected positions on the sphere,
whereas the distortion is concentrated on the less significant concave areas.
Figure 1 illustrates the optimized mapping for the frog, while Figure 2 illus-
trates the final optimized mapping on the sphere for the Blender Suzanne
model [26]. The preservation of the initial characteristics is apparent.

13

4. Surface Correspondence and Interpolation

Following the successful mapping of two meshes MA and MB on the
sphere, a merging process of the two topologies is performed. The purpose of
this step is to create a final merged topology that is suitable for navigating
back and forth to the original models.

This process requires each projected edge of one model to be intersected
with each projected edge of the other. The algorithm to compute this step
efficiently is based on the observation that starting from an intersection over
an edge we can traverse all the remaining intersections by exploiting the
topological information contained in the models. The complexity of this step
is O(EA +K) where K is the total number of intersections.

From the intersections found, along with the vertices of the two models, a
set of spherical regions bounded by circular arcs is determined. These regions
are always convex, therefore it is straightforward to triangulate them. First
for each edge, the list of intersections that belong to that edge is sorted by
the distance from each vertex of the edge. Additionally, for each vertex,
a list of the edges incident to it in clockwise order is calculated. Based
on the aforementioned geometrical data we traverse each closed bounded
region in a clockwise order and compute the triangulated merged topology
in O(K logK) time complexity. Figure 3 illustrates this process.

The final step of the algorithm involves the projection of the merged
topology back to the original models. For each model A the vertices of
model B along with the intersection points are mapped back to A.

Following the successful establishment of a correspondence between the
source and target vertices, the vertex positions are interpolated to acquire
the final morphing sequence. To this end, we use simple linear interpolation.
The advantage of linear interpolation, besides its simplicity, is that it can be
efficiently realized on GPUs using a simple morphing shader for interpolating
vertices and attributes (lighting, textures) in real-time. Nevertheless, linear
interpolation may not always be desirable, especially in very complex meshes
where self-penetrations may appear during the morphing sequence of the
models. More advanced interpolation techniques are applied in such cases.
Some of them are also implemented in shaders but their performance may
vary depending on the limits set by the GPU.

14

Figure 4: Detecting feature regions in two head meshes: (left) mesh MA and (right) mesh
MB. Numbers correspond to identifiers for feature regions.

5. Feature-based Morphing

To detect feature regions on meshes, we built on a method developed ear-
lier in [27] for reverse engineering based on discovering features on the point
cloud by detecting local changes in the morphology of the point cloud. This
method works better on meshes, since in meshes vertex adjacency informa-
tion is provided a priori.

We use region growing, detection of rapid variations of the surface normal
and the concavity intensity, i.e. the distance from the convex hull. This
results in a number of regions that represent object feature areas (Figure
4). In the context of this paper, we employ this method to detect features
in models for the purposes of matching and alignment of the two morphed
meshes.

More specifically, morphological features in the meshes are detected using
a characteristic called concavity intensity of a point which represents the
smallest distance of a point from its convex hull.

Definition 1. The concavity intensity of a vertex vi of a mesh denoted by
I(vi) is the distance of vi from the convex hull of the mesh.

This characteristic is used to detect concave features in the mesh. Fea-
ture regions are detected by rapid variations of the surface normal and the
concavity intensity. These two characteristics are used in conjunction with a
region growing method that results in detecting sets of faces corresponding
to individual features (Figures 4 and 6). After obtaining the features of the

15

0 (10093)
83.78%

1 (950)
9.64%)

2 (220)
0.64%

3 (1034)
2.05%

4 (190)
0.71%

5 (89)
0.36%

6 (813)
2.0%

7 (130)
0.4%

8 (95)
0.37%

(a) Original adjacency graph of MA

showing the region number (see Fig-
ure 4), the number of nodes and the
area covered in the original model.

0 (10093)
83.78%

1 (950)
9.64%)

2 (220)
0.64%

4 (190)
0.71%

1.52133

8 (95)
0.37%

1.78105

3 (1034)
2.05%

5 (89)
0.36%

1.68412

6 (813)
2.0%

7 (130)
0.4%

1.89106

(b) Reduced graph of MA, all edges
with large geodesic distances are
eliminated.

0 (4489)
83.44%

1 (85)
10.24%

2 (359)
1.7%

3 (103)
0.34%

4 (369)
1.8%

5 (147)
0.8%

6 (130)
0.74%

7 (110)
0.58%

8 (86)
0.34%

(c) Original graph of MB

0 (4489)
83.44%

1 (85)
10.24%

2 (359)
1.7%

3 (103)
0.34%

7 (110)
0.58%

1.2556

8 (86)
0.34%

1.1311

4 (369)
1.8%

5 (147)
0.8%

2.08218

6 (130)
0.74%

2.22287

(d) Reduced graph of MB

Figure 5: Graph reduction of the head meshes.

object, we create a connectivity graph that captures adjacency information
as illustrated in Figure 5. For each edge, we calculate the geodesic distances
between the centroids of the corresponding feature regions. The graphs are
then simplified by reducing the edges that correspond to large geodesic dis-
tances to facilitate region matching (Figure 5). In addition, small regions
that can introduce noise and are insignificant are merged.

Elimination of large distances is performed motivated by the observation
that usually meshes do not exhibit a general structural similarity but rather
a local feature one. In simple cases (Figure 4), where meshes have an almost

Figure 6: Detecting feature regions in the head and the Suzanne model.

16

Figure 7: Detecting feature points inside feature regions.

Figure 8: Feature point matching between the head and the Suzanne model.

Figure 9: Feature point matching for the fish and the duck model.

17

identical structure, matching of the corresponding graphs is trivial. For more
complex cases (see Figure 6), meshes possess only local structural feature
similarities. Therefore, by eliminating the edges with large geodesic distances
we match only local neighborhoods in the graph. These local neighborhoods
still capture higher level information about the structure of the features,
for example detect eyes, nose and mouth similarities between completely
different character models.

The reduced adjacency graphs are used to perform a 3D alignment of
the two models and establish a correspondence between the regions. This is
achieved by first matching the two highest degree nodes in the two graphs
and then performing a 3D alignment of the two models. The remaining
regions are paired according to their degree and the distance between them.
Furthermore, we also take into consideration the area covered by each region
by favoring the matching of regions covering similar areas. We have used the
following heuristic similarity measure for matching,

sij = ||ci − cj||

max
k∈{i,j}

ak

min
l∈{i,j}

al

max
m∈{i,j}

dm

min
n∈{i,j}

dn
(12)

where ci and cj are the centroids of regions i and j, ai and aj are the cor-
responding areas and di and dj are the degrees of the nodes in the reduced
region adjacency graphs.

Moreover, for each feature region we detect points with certain properties
that provide a high level description of specific structural characteristics of
the meshes. The resulting point set, called a feature point set, provides a
high-level description of concave and convex extrema of the object.

Definition 2. A vertex vi is called a feature point, if and only if, I(vi) ex-
hibits a local extremum at vi.

Following the establishment of a correspondence between the region patches
of the two models, the feature points of the corresponding patches are as-
sociated according to their distance. Since the patches may be in different
locations in each model, the two regions are translated so that their corre-
sponding centroids coincide. Figures 7, 8, and 9 illustrate the final feature
point matching for different models.

For the feature based mapping of the second model we use the follow-
ing objective function and set of constraints to obtain a more appropriate
mapping based on the feature point correspondence of the models:

18

Input: Two triangular meshes MA and MB

for each vertex vi of MA do
calculate I(vi)

end

for each vertex vj of MB do
calculate I(vj)

end

for MA and MB do
compute the corresponding feature region sets FA and FB

end

for FA and FB do
compute the corresponding connectivity graphs and perform graph
reduction on them

end

Establish a correspondence of the two nodes with the highest degree in
the two graphs and perform a 3D alignment of F1 and F2 up to
scaling,rotation and translation based on that correspondence;
for each feature region in FB do

find a feature region in FA using the similarity measure (12) and
match the corresponding feature point sets

end

Calculate the spherical parameterization for MA and MB;
Optimize the spherical parameterization of MB in order to match the
paired feature points of the parameterizations;

Figure 10: The algorithm for feature based morphing.

Objective Function: We use as the objective function to be minimized the sum
of all dot products of every pair pi = (vi1, vi2) of feature vertices vi1 ∈ MA,
vi2 ∈ MB. Let FP be the set of pairs of feature vertices pi.

∑

pi∈FP

vi1 · vi2 (13)

Geometric Constraints: For each vertex vi we use constraint (10).
Topological Constraints: In addition to equation (10), the length of each edge
ei (circular arc over the sphere) that connects the vertices vi1,vi2 must remain
the same during optimization:

vi1 · vi2 = vsi1 · v
s
i2 (14)

19

recall that vsi is the position of vertex vi after the sphere optimization process.
By doing so, we preserve the morphology of the second object during the
optimization process. In addition, this avoids very long stretches of triangles
to satisfy a certain feature point pair matching.

The algorithm for feature-based morphing is presented in Figure 10. Fig-
ures 17 and 18 illustrate the visual improvement offered by this method.

Figure 11: Morphing with alignment and feature point matching. Morphing is visually
smooth through the entire sequence.

Figure 12: Morphing with alignment and feature point matching. Morphing is visually
smooth through the entire sequence.

Figure 13: Morphing with alignment but no feature point matching: fish (4994 faces) to
duck (1926 faces), merged topology has 28526 faces.

20

Figure 14: Morphing with alignment and feature point matching: fish (4994 faces) to duck
(1926 faces), merged topology has 33038 faces.

Figure 15: Morphing with alignment but no feature point matching of the Charioteer
model (11098 faces) to a Cycladic idol model (16798 faces), merged topology has 142422
faces.

Figure 16: Morphing with alignment and feature point matching, merged topology has
142512 faces

21

6. Experiments and Performance Evaluation

We have developed software for implementing mapping, merging and in-
terpolation as described in the previous sections. The platform used for
development consists of a Windows XP Professional based system running
on a Intel Pentium Q6600 Core 2 at 2.4GHz, 2GByte of RAM, with NVIDIA
GeForce 8600GT.We have developed the system on Visual Studio 2005, using
OpenGL 2.0 (Shader Model 3.0) and GLUT.

Table 1 summarizes the results of some of our experiments on mapping
for different models using both the barycentric method and the Laplacian
smoothing initialization. |V | is the number of vertices of the mesh, |F | is the
number of faces, and |C| is the number of constraints for the optimization
procedure. The number of iterations refers to the optimization phase, while
time refers to the total time for both deriving the initial mapping and for
performing optimization.

(a) (b)

(c) (d)

Figure 17: Close-up of the morphing sequence: (a) Model M1, (b) 50% morph without
feature point matching, (c) 50% morph with feature point matching and (d) target model
M2. The improvement around the ear area with feature point matching in (c) as compared
to morphing without feature point matching in (b) is evident.

22

(a) (b) (c) (d)

Figure 18: Comparison of morphing results: (a) ModelM1, (b) 50% morph without feature
point matching, (c) 50% morph with feature point matching and (d) target modelM2. The
improvement around the ear area and the outline of the model with feature point matching
in (c) as compared to morphing without feature point matching in (b) is apparent.

We observe that the Laplacian smoothing initialization yields a much
faster convergence in the optimization phase (half the number of iterations
and 50% faster). Our extensive experiments indicate that the number of
iterations increases quadratically over the number of faces of the polyhedral
representation for triangular models. This is a considerable overhead but it
can be calculated offline during a preprocessing phase and stored along with
the polyhedral representation. Table 2 shows the results for the same set of
experiments for the same model with different LODs ranging from 854 faces
up to 5610 for the Suzanne model. This set of experiments confirms the
above observations.

Table 1: Experimental results of mapping with different models of various level of detail

model method |V | |F | |C| iterations time (secs)

Suzanne Laplace 429 854 2991 36 10.9
Suzanne Barycentric 429 854 2991 78 22.6
Bunny(Lod1) Laplace 440 876 3068 94 24.3
Bunny(Lod1) Barycentric 440 876 3068 165 52.0
Frog(Lod1) Laplace 1964 3924 13736 70 422.2
Frog(Lod1) Barycentric 1964 3924 13736 152 895.8

As mentioned in Section 4, merging takes in average O(K logK) time,

23

Table 2: Experimental results with the same model with different levels of detail

model method |V | |F | |C| iterations time (secs)

Suzanne(Lod1) Laplace 429 854 2991 36 10.9
Suzanne(Lod1) Barycentric 429 854 2991 78 22.6
Suzanne(Lod2) Laplace 703 1402 4909 26 21.3
Suzanne(Lod2) Barycentric 703 1402 4909 70 54.8
Suzanne(Lod3) Laplace 1404 2804 9816 49 151.3
Suzanne(Lod3) Barycentric 1404 2804 9816 91 271.3
Suzanne(Lod4) Laplace 2807 5610 19637 79 934.0
Suzanne(Lod4) Barycentric 2807 5610 19637 136 1578.6

where K is the number of intersections. For all cases in Tables 1 and 2, this
step took less than 2.5 sec. Finally, the interpolation step is implemented
in GPU so it is very fast and can accommodate almost unlimited number of
frames.

Figures 11, 12, 13 and 14 illustrate 4 different cases of morphing. We
have performed the experiments on well-known models such as the Stanford
bunny [28], the Blender Suzanne [26] and the Aim@shape frog [25]. Finally,
we have applied the algorithm to generate the morph sequence for two models
obtained from a 3D scanner The results are illustrated in figures 15, 16 and
18. In addition to the geometry, the textures of the model were interpolated
to produce the final morphing sequence.

7. Conclusions

We have presented a method that performs morphing between arbitrary
genus-0 objects without any user intervention. The sphere mapping can be
considered as a preprocessing step and stored along with the representation
of the solid. The merging is very fast in the average case, and the interpola-
tion is implemented with GPU GLSL shaders. Finally, we have presented a
fully automated technique for feature matching and alignment that greatly
improves the visual effect and allows for applying controlled morphing to
CAD model editing. We have used our method successfully on object pairs
of similar topology (for examples busts) and of a quite different one (fish and
duck). We are currently exploring the feasibility of parallelization through
GPUs of the optimization phase and the use of user defined constraints for

24

feature matching and morphing-based editing.

References

[1] C. Hoffmann, R. Joan-Arinyo, On user-defined features, Computer
Aided Design 30 (1998) 321–332.

[2] A. Lerios, C. D. Garfinkle, M. Levoy, Feature-based volume metamorho-
sis, in: Proceedings of SIGGRAPH 1995, ACM SIGGRAPH, pp. 449–
456.

[3] J. R. Kent, W. E. Carlson, R. E. Parent, Shape transformation for
polyhedral objects, in: Proceedings of SIGGRAPH 1992, volume 26(2),
New York, Published as Computer Graphics, 1992, pp. 47–54.

[4] W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3d
surface construction algorithm, in: Proceedings of SIGGRAPH 87, pub-
lished as Computer Graphics, ACM SIGGRAPH, pp. 163–169.

[5] T. Kanai, H. Suzuki, F. Kimura, 3d geometric metamorphosis based
on harmonic map, in: PG ’97: Proceedings of the 5th Pacific Confer-
ence on Computer Graphics and Applications, IEEE Computer Society,
Washington, DC, USA, 1997, p. 97.

[6] M. Alexa, Merging polyhedral shapes with scattered features, The
Visual Computer 16 (2000) 26–37.

[7] M. Zwicker, C. Gotsman, Meshing point clouds using spherical pa-
rameterization, in: Proceedings of the Eurographics Symposium on
Point-Based Graphics, 2004, Zurich.

[8] A. Sheffer, C. Gotsman, N. Dyn, Robust spherical parameterization of
triangular meshes, Computing 72 (2004) 185–193.

[9] S. Saba, I. Yavneh, C. Gotsman, A. Sheffer, Practical spherical embed-
ding of manifold triangle meshes, in: Proceedings of the International
Conference on Shape Modeling and Applications 2005, pp. 258–267.

[10] Ilja Friedel and Peter Schröder and Mathieu Desbrun, Unconstrained
spherical parameterization, in: SIGGRAPH ’05: ACM SIGGRAPH
2005 Sketches, ACM, New York, NY, USA, 2005, p. 134.

25

[11] J. Schreiner, A. Asirvatham, E. Praun, H. Hoppe, Inter-surface map-
ping, ACM Trans. Graph. 23 (2004) 870–877.

[12] V. Kraevoy, A. Sheffer, Cross-parameterization and compatible remesh-
ing of 3d models, ACM Trans. Graph. 23 (2004) 861–869.

[13] T.-Y. Lee, C.-Y. Yao, H.-K. Chu, M.-J. Tai, C.-C. Chen, Generat-
ing genus-n-to-m mesh morphing using spherical parameterization: Re-
search articles, Comput. Animat. Virtual Worlds 17 (2006) 433–443.

[14] P. Kanonchayos, T. Nishita, S. Yoshihisa, T. L. Kunii, Topological
morphing using reeb graphs, in: CW ’02: Proceedings of the First
International Symposium on Cyber Worlds (CW’02), IEEE Computer
Society, Washington, DC, USA, 2002, p. 0465.

[15] C.-H. Lin, T.-Y. Lee, Metamorphosis of 3d polyhedral models using
progressive connectivity transformations, IEEE Transactions on Visu-
alization and Computer Graphics 11 (2005) 2–12.

[16] I. Fary, On straight line representation of planar graphs, Acta Univ.
Szeged Sect. Sci. Math. 11 (1948) 229–233.

[17] W.T.Tutte, How to draw a graph, Proc. London Math. Soc 13 (1963)
743–768.

[18] M. S. Floater, Parametrization and smooth approximation of surface
triangulations, Computer Aided Geometric Design 14 (1997) 231–250.

[19] C. Brechbuhler, G. Gierig, O. Kubler, Parametrization of closed surfaces
for 3d shape description, Computer Vision and Image Understanding
61 (1995) 154–170.

[20] C. Gotsman, X. Gu, A. Sheffer, Fundamentals of spherical parame-
terization for 3d meshes, in: ACM Transactions on Graphics 22, pp.
358–363.

[21] I. Fudos, C. M. Hoffmann, A graph-constructive approach to solving
systems of geometric constraints, ACM Trans. Graph. 16 (1997) 179–
216.

26

[22] M. Sitharam, A. Arbree, Y. Zhou, N. Kohareswaran, Solution space
navigation for geometric constraint systems, ACM Trans. Graph. 25
(2006) 194–213.

[23] M. Desbrum, M. Meyer, P. Alliez, Intristic parameterization of surface
meshes, in: Proceedings of Eurographics 2002.

[24] S. Hildebrandt, H. Kaul, K.-O. Widman, Dirichlet’s boundary value
problem for harmonic mappings of riemannian manifolds, Mathematis-
che Zeitschrift 147 (1976) 225–236.

[25] Aim@shape, AIM@SHAPE Shape Repository v4.0, Department of Gen-
ova, Institute for Applied Mathematics and Information Technologies,
CNR, http://shapes.aimatshape.net, AIM@SHAPE Project.

[26] Blender, Blender Suite, Open Source Suite, http://www.blender.org,
Blender Foundation.

[27] V. Stamati, I. Fudos, A feature based approach to re-engineering ob-
jects of freeform design by exploiting point cloud morphology, in: SPM
’07: Proceedings of the 2007 ACM symposium on Solid and physical
modeling, ACM, New York, NY, USA, 2007, pp. 347–353.

[28] Stanford, The Stanford 3D Scanning Repository, Stanford Univer-
sity, http://graphics.stanford.edu/data/3Dscanrep, Stanford Computer
Graphics Laboratory.

[29] G. H. Golub, C. V. Loan, Matrix Computations, Johns Hopkins Univ.
Press, 1996.

27

Appendix A. Solving Linear Systems with Laplacian Smoothing

Let (xi, yi) denote the coordinates of the ith node of a mesh. In addition,
let the coordinates of its adjacent vertices be (xj , yj) : vj ∈ Ni, where Ni

denotes the set of neighbors of node vi. If we assign a set of positive weights
wij, where wij is the weight of a neighbor node j when determining node i
then,

We will prove Theorem 1, i.e. that the linear system (2), which expresses
the position of each node as a convex combination of its neighbors (1), has
a unique solution if at least one node is fixed.

Proof. Let b and m represent the numbers of boundary (or fixed) and interior
(or free) nodes, respectively. Next, define xB and yB to be vectors of length b
that contain the initial x and y coordinates of the boundary nodes. Similarly,
define xI and yI to be the vectors of length m that contain the initial x
and y coordinates of the interior nodes. Thus, [xB|yB] and [xI |yI] contain
the original positions of the boundary and interior nodes respectively. The
weighted matrix L, for the graph G(V ;E;w) is:

L(i, j) =
{ −wij , i 6= j
∑

k∈V wik, i = j

wij = 0, (i, j) /∈ E

(A.1)

where the boundary nodes are placed in last b rows and columns m +
1, . . . , m + b, i.e. after the interior nodes which are placed in the first m
rows and columns 1, . . . , m. Let A = [AI |AB] be the matrix that is derived
from the weighted matrix L by deleting its last b rows. Then, the linear
system (2) is expressed as:

AI [xI |yI] = −AB [xB|yB] (A.2)

where AI is an m×m matrix that contains all the weights corresponding to
the interior neighbors. In addition, AB is an m× b matrix contains all of the
weights corresponding to the boundary neighbors. Because the mesh is con-
nected and a positive weight is associated with each edge, AI is irreducible. In
addition, |aIii| ≥

∑m

j=1,j 6=i |a
I
ij | for each row because the diagonal elements are

1, and the off-diagonal elements are negative summing to a value in [−1, 0].
Equality is true if the corresponding vertex is connected only with interior
nodes. Therefore, if b > 0, there exist i such that |aIii| >

∑m

j=1,j 6=i |a
I
ij |, and

28

AI is weakly dominant. Thus, AI is invertible and has a unique solution [29],
if there is at least one boundary node.

Moreover, it can be shown that the Jacobi iteration for each row i rep-
resents a step of the simultaneous version of Laplacian smoothing, where all
the positions are modified simultaneously,

[xI |yI]
k+1
i =

m
∑

j=1
j 6=i

wij[xI |yI]
k
j +

m+b
∑

j=m+1

wij[xB|yB]j (A.3)

Similarly, it can be shown that the iterations produced by the Gauss-
Seidel method are the same as the sequential version of Laplacian smooth-
ing, where the positions are modified sequentially and depend on the order
in which the vertices are considered. Since AI is irreducible and weakly dom-
inant and thus invertible, both Jacobi and Gauss-Seidel methods converge
[29], and thus Laplacian smoothing converges to the same point which is the
solution of the linear system (A.2).

29

Video File
Click here to download Video File: MorphingVideo.avi

http://ees.elsevier.com/cagd/download.aspx?id=34104&guid=fb2b446b-ca6e-4c27-a63a-9d5d4373e225&scheme=1

