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Abstract — In this work, we present an automated method for the detection and boundary determination of cells nuclei in 

conventional Pap stained cervical smear images. The detection of the candidate nuclei areas is based on a morphological image 

reconstruction process and the segmentation of the nuclei boundaries is accomplished with the application of the watershed transform 

in the morphological color gradient image, using the nuclei markers extracted in the detection step. For the elimination of false positive 

findings, salient features characterizing the shape, the texture and the image intensity are extracted from the candidate nuclei regions 

and a classification step is performed to determine the true nuclei. We have examined the performance of two unsupervised (K-means, 

spectral clustering) and a supervised (Support Vector Machines, SVM) classification technique, employing discriminative features 

which were selected with a feature selection scheme based on the minimal-Redundancy – Maximal-Relevance criterion. The proposed 

method was evaluated on a data set of 90 Pap smear images containing 10248 recognized cell nuclei. Comparisons with the segmentation 

results of a gradient vector flow deformable (GVF) model and a region based active contour model (ACM) are performed, which 

indicate that the proposed method produces more accurate nuclei boundaries that are closer to the ground truth. 

 

Keywords: Cell nuclei segmentation, Pap smear images, morphological reconstruction, watersheds, feature selection, 

clustering. 

 

 

I. INTRODUCTION 

For over 30 years, the most effective and widespread screening test for cervical cancer is the Papanicolaou (Pap) test [1]. This 

technique provides a staining procedure of cervical cells, which results in the identification of the abnormalities in the cervix. The 

cervical cells are sampled and smeared onto a glass slide and the characterization of the slide (as normal or abnormal) is 

accomplished through the careful microscopical examination of the slide by an expert cytopathologist. Nowadays in developed 
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countries, the extensive use of the Pap test has significantly reduced the incidence and mortality of invasive cervical cancer.  

Although the high diagnostic value of this test, the Pap smear images present certain limitations, which come from the fact that 

the conventional smear exhibits uneven layering, crowding and overlapping of cells. In addition, the staining introduces variances 

in illumination and dye concentration which result in inhomogeneities of the intensity of the cells. Therefore, the visual 

interpretation of these images is time-consuming and requires high level experience by the observer. For these reasons, in the last 

years many efforts have been made by several researchers in order to contribute to the automated analysis of such images.  

The correct characterization of Pap smear slides and the derivation of conclusions for the contents of the Pap smear in a high 

degree depend on the general appearance of the cells nuclei. This is based on the fact that the nucleus is an important structural 

part of the cell which exhibits significant changes when a cell is affected by a disease. In pathological situations, the nucleus may 

exhibit disproportionate enlargement, irregularity in form and outline, hyperchromasia or irregular chromatin condensation. The 

identification and quantification of these changes in the nucleus morphology and density contribute in the discrimination of 

normal and abnormal cells in Pap smear images. Thus, the prerequisite for any further processing of Pap smear images is the 

accurate determination of the cell nuclei area. However, the exact nuclei locations in the image are not clearly defined in many 

cases, mainly due to cell overlapping in combination with the existence of many artifacts, and the nuclei boundaries are quite 

ambiguous. For this reason, two open problems pose a challenge for every method proposed for the automated analysis of Pap 

smear images: the exact detection of nuclei locations and the accurate determination of nuclei boundaries.  

Some of the methods proposed in the literature deal only with one aspect of the problem, which is the segmentation of the cell 

nucleus and cytoplasm boundaries. The images that are used as test set, are presegmented from the original Pap smear images and 

they contain only one cell and consequently one single nucleus. Several image processing methods are proposed in this scope, 

such as active contours [2], template fitting [3] and edge detectors [4, 5, 6]. These methods exhibit remarkable performance in the 

segmentation of the structural parts of the cell. However the direct application of these methods in original Pap smear images, 

which may contain a large number of cells, cell overlapping and image artifacts is not appropriate, as they are focused on the 

recognition of the boundaries of the nucleus and the cytoplasm in images which contain only one single cell.  

More sophisticated approaches to the automated analysis of Pap smear images are the methods which are applied on images 

containing a large number of cells in cell clusters, which are clearly more complicated. These methods manage to exclude the 

background of the image and to recognize the locations and the boundaries of the cells. Several approaches have been proposed, 

such as deformable templates [7], genetic algorithms [8], region growing with moving K-means [9] and pixel classification 

schemes [10]. Although these methods present promising results, their evaluation is restricted in a small data set of images and the 

performance criterion that is used is visual inspection, from which no reliable results about the general behavior of these methods 

can be obtained.  

Methods based on watersheds for the analysis of Pap stained images have also been proposed in the literature. In [11], images 

containing one single nucleus of a Pap stained squamus epithelial cell are oversegmented with the watershed transform in order to 

define the differently stained subareas of the nucleus. Furthermore, in [12] watersheds are used for the detection of isolated cells 
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in low resolution images. However, in both methods, the problem of the detection of the accurate nuclei boundaries has not been 

resolved. Furthermore, Lezoray et al. [13] proposed a method for the determination of nuclei boundaries in Pap stained serous 

cytologies using color watersheds, which requires the cooperation of pixel classification schemes for the extraction of the nuclei 

markers. Nevertheless, the rough assumption used by the pixel classification schemes that the pixels of the entire image are 

distributed in two discrete classes, such as nuclei pixels and other pixels, is not appropriate for Pap smear images, which exhibit 

great complexity and the separation of all the pixels of the image in only two classes would produce noisy results.  

In our work, we propose a two-stage fully automated method for the accurate determination of the nuclei boundaries in Pap 

smear images, which may contain both isolated cells and cell clusters. More specifically, in the first step, nuclei markers are 

detected with a procedure based on morphological reconstruction for the extraction of the areas of regional minima in the image, 

which usually correspond to nuclei locations [14]. The centroids of the areas of the regional minima are considered as markers in 

the watershed transform for the extraction of the nuclei boundaries. The morphological color gradient image is used for the 

flooding process, in order to retain the color information of the image.  

In the second stage, we extend the segmentation of nuclei boundaries with the determination of meaningful features of the 

detected areas, which contribute to the identification of the true nuclei in Pap smear images. It must be noted that several methods 

[15, 16] propose a number of cell features for the characterization of a cell as normal or abnormal. However, they involve images 

containing one single cell. Since our images contain overlapped cells and cell clusters, our aim is to identify the nuclei areas and 

to separate the results of the segmentation in two categories: the true nuclei and other findings. Therefore, from the extracted 

boundaries, features describing the shape and the texture of each segmented regions are calculated. In addition we also integrate 

texture features and intensity disparity features of the neighborhood of each detected area. The latter evince to be some of the most 

discriminative features by a feature selection step based on minimal-Redundancy – Maximal-Relevance (mRMR) criterion [17]. It 

must be noted that in our experiments we have estimated the mRMR feature rank with two different approaches, namely using the 

entire image data set and the “leave-one out” strategy, as it is explained in more details in the following paragraphs. 

A classification step is then performed for the reduction of unwanted findings. In this framework, the performance of two 

unsupervised (K-means and the spectral clustering) and one supervised (Support Vector Machine,SVM) classification schemes 

were examined. Our method was evaluated not only for the correct identification of cells nuclei locations but also for the accurate 

determination of nuclei boundaries with the boundaries obtained using the Gradient Vector Flow (GVF) deformable model [18] 

and a region based active contour model (ACM) [19] in terms of the Hausdorff distance from the ground truth. The method was 

evaluated using a large data set of 90 Pap smear images containing 10248 recognized cell nuclei, and the results indicate that the 

proposed method demonstrates high performance in both detection and segmentation of nuclei boundaries.  

II. METHOD 

A. Detection of the nuclei markers 

The first step of the proposed method is the detection of the nuclei markers in each image. This is accomplished following a two 



stage procedure, which includes the image preprocessing and the estimation of candidate nuclei centroids. It must be noted that 

the nuclei markers are obtained automatically in both isolated cells and cell clusters in the image. 

1) Preprocessing 

The preprocessing step is necessary for the definition of the regions of interest in the image which are occupied by cells. In this 

step, a binary mask is extracted with the cell areas highlighted. For this purpose, the initial image is firstly enhanced with the 

application of the contrast limited adaptive histogram equalization [20] in all color components, in order to obtain an image with 

the cells area more pronounced. Then, a global threshold is extracted using the standard method proposed by Otsu [21] in each 

color component, and the extracted binary masks are added with a logical OR operator. In the final mask, the detected areas are 

extended with a morphological dilation, and then all connected components with an area smaller than the area of an isolated cell 

are removed. This is required for the elimination of small objects that usually correspond to image artifacts, which may interfere 

in the classification step of the method. 

2) Estimation of candidate nuclei centroids 

After the preprocessing step, an image with the background extracted is obtained. Given the fact that the nuclei are darker than 

the surrounding cytoplasm, we search for intensity valleys in the detected areas. This is accomplished with the morphological 

reconstruction of the image and the detection of regional minima. 

More specifically, the h-minima transform [22] is applied in the red, green and blue channels of the original image. A mask 

image is produced from the original image, with the subtraction of a constant value h from its pixels. Using this mask, a 

morphological reconstruction [23] of the original image is performed and this results in the formation of homogenous minima in 

the image. Afterwards, the detection of regional minima is obtained with the application of the non regional maxima suppression 

[24] in the complement of the derived image and the boundaries of the intensity valleys are estimated.  

In each detected regional minima area, the coordinates of the centroid  is defined as:  cr
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where  is the number of pixels consisting the boundary of the regional minimum, and N i ix , y  are the coordinates of the pixel  of 

the boundary. These centroids indicate the probable position of the nuclei in the image. However, due to the inhomogeneity in dye 

concentration in the area of the nucleus, the detection of multiple centroids within the area of a single nucleus is possible. For the 

determination of a unique centroid in each nucleus, the elimination of two (or more) centroids in a regional minimum of a radius 

that it is smaller than the mean radius of a normal nucleus is required. This is accomplished with the application of the distance 

dependent rule, which is described as: 

i
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In this rule, is the set of all centroids, is the euclidean distance between two points, T  is the threshold on the minimum 

radius and 

cR

( )

D

I p  is the intensity of the image at the point . The detected nuclei markers in an image with cell overlapping are 

depicted in Fig. 1(b). The next step of our method is the construction of the morphological color gradient image, which exploits 

the color information of the original image in order to enhance the nuclei boundaries.   

p

B. Morphological Color Gradient Image 

For the application of the watersheds, an image containing pronounced nuclei boundaries is required. Given the fact that most of 

the nuclei usually have ellipse-like shape, with the intensity of the pixels inside the nucleus area lower than those lying outside, 

high gradient of the image across the nuclei boundaries is expected. However, the extensive variances in nuclei intensity which 

are present due to the staining procedure result in gradient values of nucleus/cytoplasm borders that fluctuate in a wide range. For 

this reason, the use of a threshold after the application of edge detectors in order to determine the nuclei edges in the image would 

produce noisy results, because low thresholds would result in the detection of too many false edges, while high values would 

result in the loss of some true nuclei boundaries (Fig. 2). Therefore, we construct a gradient image using the color morphological 

gradient [25], in order to exploit the color information of the image for the estimation of the nuclei borders.  

In general, the morphological gradient of a grayscale image f  is defined as: 

 ( ) ( ) ( )g gf f fδ ε∇ = − ,  (3) 

where ( )g fδ  and ( )g fε is the grayscale dilation and grayscale erosion for a structuring element g  respectively. Alternatively, 

the morphological gradient can be expressed as: 

 
( ) ( ){ } ( ){ }

( ) ( )( )
max min

max ,

x gx g
f f x f x

f x f y x y g

∈∈
∇ = −

= − ∀ ∈
 (4) 

which is the maximum absolute intensity difference between two pixels in the area of the structuring element. For color images 

with pixels denoted as three dimensional vectors the color morphological gradient (CMG) can be expressed as: 

 { },
CMG= max i j pi j G

x x
∈

−   (5) 

where ix , jx  are pixels in the structuring element G . In our experiments we compute the second norm ( )2p =  and the 

structuring element that is used is a  flat structuring element. The color morphological gradient of a representative Pap smear 

image is depicted in Fig. 1(c). 

3 3×
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C. The Watershed Transform 

The concept of watersheds [26] in image processing is based on considering an image in three dimensional space, with two 

spatial coordinates versus intensity. The value of the intensity is assumed to be the elevation information. In terms of this 

topographic representation of the image, the pixels are divided into three categories: pixels of regional minima, pixels of 

catchment basins and pixels of watershed lines, which separate neighboring catchment basins and consequently they separate 

different characteristic parts of the image.  

For the detection of the watershed lines in an image I with regional minima 1 2, ,..., RM M M , a flooding process is performed in 

integer flood increments from  to ( )0 min 1n I= + ( )max x 1Iman = + . Let ( ) , 1,...,i R=iC M  be the sets of points in the catchment 

basin corresponding to the regional minimum iM  and let [ ]C n be the union of the flooded catchment basins at stage  of the 

flooding process. The set of the image points with intensity value lower than  is defined as 

n

n [ ] ( ){ |T n p I p n= }< . The above 

sets of points are initialized as ( ) [ ]min 1+ =⎡ ⎤⎣ ⎦ mi 1T I +n( )C I . In the next steps of the algorithm, the set  [ ]C n  is sequentially 

derived from [ ]1C n − as follows: 

Let  be the set of the connected components inQ [ ]T n . Then for each connected component  the intersection q Q∈ ( )λ with 

the set  [ ]1C n −  is calculated as [ ]1q C nλ = ∩ −  . Depending on the value of λ  there are three possibilities: 

a) If λ  is empty then a new minimum is present and the connected component q  is added into [ ]1C n − , 

thus [ ] [ ]1C n C n q= − ∪ . 

b) If λ  contains one connected component of [ ]1C n − then q  belongs to an existing catchment basin of a regional 

minimum and consequently [ ] [ ]1C n C n q= − ∪ . 

c) If λ  contains more than one connected component of [ ]1C n −  this means that q partially belongs to different catchment 

basins and the next step of flooding would cause the water level in these catchment basins to merge. For this reason, a 

watershed line must be constructed to prevent the overflow between these catchment basins.  

The application of the watershed transform in this form usually results in oversegmentation of the image, because of the 

presence of artifacts and noise. To avoid this undesirable effect, the watersheds are applied in edge images with markers, which 

are connected components belonging to specific regions of interest in the image and they are used as starting points of the 

flooding process. 

In the proposed method the nuclei markers are determined automatically with the morphology based processing scheme, as it is 

described above.  Furthermore, we perform the distance transform in the binary mask obtained in the preprocessing step, in order 

to construct the cytoplasm markers. The result of the watershed transform in an image with nuclei markers is depicted in Fig. 1(d). 
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D. Clustering of the candidate nuclei 

The determination of the watershed lines, usually results in the correct identification of the nuclei positions in the image. 

However, some false positive areas are also detected, due to the existence of a regional minimum. This is a consequence of the 

detection of the nuclei markers step, which produces some centroids of regional minima that do not indicate the existence of 

nuclei (Fig. 3). Therefore, the elimination of these areas is necessary and a clustering step is performed for the separation of the 

detected areas into two classes: the true nuclei class and the rest of the findings. Thus, for every detected area a vector of features 

is determined, which will be used as input to the clustering algorithms.  

1) Feature extraction 

The efficient separation of the true nuclei regions from the total segmented regions requires the generation of meaningful 

features of very good discriminative ability. Having found the areas of the nuclei enclosed by the detected boundaries, features 

concerning the shape, the texture and the intensity of the detected regions can be easily determined. However, the restriction of the 

calculation of these features only for the area enclosed by the detected boundaries is not sufficient because regions of regional 

minima not corresponding to true nuclei may also have similar features. In this step it is expedient to take advantage of the fact 

that the nuclei are darker than the surrounding cytoplasm and the detected nuclei regions would present significant differences 

from their neighborhood. Moreover, the detected regions that do not belong to nuclei were probably detected due to the existence 

of shallow minima in the intensity of the area of the cytoplasm in the image, and they are more likely to present similar features 

values from their neighborhood (Fig. 4).  

For this reason, we propose the calculation of features also for the neighborhood of the detected areas, which is defined in terms 

of the bounding box of these areas (Fig. 5). More specifically, for each detected area A , the bounding box  is calculated as the 

maximum rectangle that contains the detected region, and the neighborhood  is determined as the complement 

B

Ngh cA  in , that 

is . In our work, for the construction of the feature set, the pixels within the detected region, the pixels of the 

neighborhood and the pixels of the bounding box are taken into account. Three categories of features are developed: shape, 

textural and intensity disparity features. 

B

cNgh A B= ∩

 

i) Shape Features 

The detected boundaries for the nuclei are expected to present an ellipse-like shape and several features to describe this 

characteristic are chosen. More specifically, six features extracted from the shape of the detected region boundary are calculated, 

that is the Circularity, the Eccentricity, the Major and the Minor Axis Length, the Equivalent Diameter of a circle with the same 

area as the region, and the Perimeter of the detected region. The Major Axis Length, the Minor Axis Length and the Eccentricity 

are defined in terms of an ellipse that has the same central second moments as the region. The shape features are presented in 

Table I.  
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 Third M

ii) Textural Features 

The texture analysis of the detected regions is based on the statistical properties of the intensity histogram in the three color 

components and the calculation of some texture descriptors such as the local binary patterns (LBP, see Appendix A) [16, 27]. 

Thus, for every segmented region we have calculated the oment, the Uniformity, the Entropy and the Smoothness of the 

intensity histogram for the three predefined regions ( , ,A B Ngh  Moreover, the normalized uniform rotation-invariant LBP 

occurrence histogram was calculated for the bounding box ( B ) of the segmented regions, using LBP of two different 

neighborhood topologies: a circle of unit radius and a hyperbola with semi-major and semi-minor axis lengths equal to one (fig. 

6). In both topologies, the number of equally spaced pixels was P=8 (see Appendix A for more details and [16] and [27] for a 

more in depth explanation of these features). The mean and the standard deviation of each histog

).

ram were used as features. All the 

textural features are calculated for all three color channels and they are summarized in Table II. 

 

asm. Three values of this feature were calculated 

independently for the red, green and blue component of the original image.  

de

iii) Intensity Disparity Features 

The feature that characterizes the intensity of each region is the average of the intensity value of all the pixels of the region. 

However, as it is observed, the average intensity of the nuclei varies in a wide range and may coincide with regions of cell 

overlapping in the image. An equivalent intensity feature that pronounces the disparity of the detected region and its neighborhood 

is the difference of the average intensity between those regions (Table III). We expect high values for this feature when it refers to 

nuclei regions, as the nuclei area is darker than the surrounding cytopl

 

2) Feature selection  

For each detected region we have calculated in total 57 features. More specifically, 6 features concerning the shape of the 

region, 3 features concerning the intensity disparity of the tected areas and their neighborhood and finally, for the three color 

components, 3×4 textural features for the enclosed area ( A ), 3×4 textural features for the neighborhood ( Ngh ), 3×8 textural 

features for the bounding box ( B ) were calculated. However, the contribution of each feature is different in the categorization of 

the data. For the selection of the most discriminative features, a feature selection technique is employed which is based on the 

nimal-Re ce (mRMR) criterion [17]. More specifically, given a data set of N  samples f Mi dundancy-Maxima levan ol-Re

M features { }1,... , 1,.
i
, .jX x i M N= = =j , and the target classification variable c , the objective is to find from the M  

dimensional space MR  a subset of m features that character ore efficiently.  

The mRMR criteri

izes 

on combines both Max-Relevance 

c  m

( )max D  and Min-Redundancy criteria , which are defined 

respectively as [17]: 

( )min R



( ) (1max , , ;
i

iS X x S
D S c D I x c

S⊂ ∈
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1min , ;i jR S R I x x= ∑ , (7) 
,i j

S X x x SS⊂
∈

wher  is the feature set and e S ( );I x y

ability density functions 

is the mutual information between two random variables, which is defined in terms of their 

probmarginal and joint ( )p x , ( )p y  and ( ),p x y  as: 

( ) ( ) ( )
( ) ( )

,
; , log

p x y
I x y p x y dxdy

p x p y
= ∫∫ . (8) 

The mRMR criterion is then defined as: 

 ( ) ( )( )max ,D S c R S−
S X⊂

. (9) 

The selection of features for the construction of the final set is obtained incrementally, that is if  features are already 

selected in the 

ed in r mo

of the m

three states at the positions 

1m −

1mS − , then the  selected feature will be the one that satisfies eq. (9). The optimal size of the features set depends 

on the specific classification algorithm that will be used.  

Thus the features were rank  a ange beginning from the st powerful discriminative feature to the feature with the least 

discriminative power. It must be noted that for the calculation utual information, each feature variable was discretized into 

thm

stdμ ± ( μ  is the mean value and std

More specifically, it takes -1 if the feature value is less than

 is the standard deviation of the specific feature distribution). 

stdμ − , 1 if the feature value is larger than stdμ + and 0 otherwise. 

This assumption is reliable when our features follow a unimodal-like distribution. This was verified by the construction of the 

histograms of each feature and some representative examples are depicted in Fig. 7. In Table IV the first 16 most discriminative 

fe tion techniques are presented. 

slides were used as training set and the remaining slide was used as 

test set. This experiment was repeated 22 times, each time using a different slide as test set. The performance of the classification 

is calculated using the trained SVM classifier in the test set.  

 

atures for all the segmenta

 

3) Clustering algorithms 

In our work, for comparison purposes, three clustering methods are employed for the separation of the detected areas in the true 

nuclei class and the other findings class: the K-means [28], the spectral clustering [29] (see Appendix B) and the Support Vector 

Machine (SVM) classifier with the radial basis function (RBF) kernel [30]. Given the fact that the K-means and the spectral 

clustering algorithms do not require any training, they are applied independently in each image. However, for the application of 

the SVM classification algorithm a training data set is constructed. In our experiments, we use the “leave one out” technique for 

the evaluation of the performance of the classifier. Thus, 21 
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ns and the acquired images of size 1536×2048 were stored 

in JPEG format. The total number of cell nuclei in the images, which were identified by an expert observer is 10248. In order to 

o cations were manually identified.  

s, namely the GVF deformable model [18] and the ACM model [19] in terms of both 

cl

mance, we have calculated the number of true positive (TP), true negative (TN), false positive (FP) 

classification are calculated: 

1. The 

III. RESULTS  

1) Study Group 

We have collected 90 images from 22 different Pap stained cervical cell slides, which were acquired through a CCD camera 

adapted to an optical microscope. We have used a 10× magnification le

btain the ground truth, the nuclei lo

 

2) Numerical Evaluation 

The presented method was bilaterally evaluated in order to estimate the performances of the clustering algorithms for the 

detection of the true nuclei in the images, and also the accuracy of the segmentation, in comparison with the ground truth 

(manually traced nuclei boundaries). Furthermore the method performance was compared with the corresponding performance of 

two different segmentation technique

assification and segmentation results. In the detected regions of both GVF and ACM segmentation techniques, the previously 

described features were determined.  

For the classification perfor

and false negative (FN) findings in all images of our data set.  Two widely used statistical measures for the performance of the 

 

sensitivity , which measures the proportion of actual nuclei which are correctly identified as such and it is defined 

as: 
TP

sensitivity =
TP FN+

 .  (10) 

2. The specificity

rized as

 which m

 such by the c

easures the proportion of candidate centroids that are not nuclei and are correctly 

characte lassification techniques, and it is defined as: 
TN

specificity
TN + FP

= . (11) 

 addition, the segmentation performance was evaluated with the calculaIn tion of the Hausdorff Distance ( )HausdorffD  between the 

manual traced boundary Μ and the boundary tained from the segmentation procedure defined as: Ψ ob

 ( ){ }{ }max min ,Hausdorff ba M
D D a b

∈Ψ∈
=  (12) 

where D is the Euclidean distance. 

It must be noted that in the detection of the nuclei markers the method misses in total 147 true nuclei position which is a  total 

s in the following steps, the total number of true nuclei is reduced to 10101.    loss rate of 1.01%. Thu

 

A) Classification  
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k and the clustering algorithms (K-means, spectral clustering and SVM). For this reason we include the 

egmentation algorithms (watersheds, 

ined in two different ways:  

algorithms applied to the image of the testing slide. This 

 was determined by the 

corresponding mRMR rank (obtained using the other 21 slides as training set). In order to evaluate the importance of each 

ted the value of σ that 

xhibited the best performance in the training set. This value was used for the application of spectral clustering in the images 

fferent data sets, each one

In our experiments we have tested several configurations of the classification process which involve both the calculation of the 

mRMR feature ran

following experiments, which were executed for all the data sets obtained from the three s

GVF, level sets).: 

a. The estimation of mRMR rank of feature was determ

• The whole data set of patterns was used as input to the mRMR criterion (global mRMR) and a ranking was obtained 

which was then used in the classification algorithms. 

• The set of patterns was separated into 22 folds (each fold corresponds to a single slide). Then, 21 folds were used for 

training and the remaining fold was used for testing. From the training set, we obtained the mRMR rank (leave-one-out 

mRMR) of features and this rank was used in the classification 

procedure was repeated 22 times, each time using a different slide as test set. By these means, we obtained 22 different 

feature ranks, which were assigned in the 22 folds (slides).  

Therefore, all of the classification techniques (K-means, spectral clustering and SVM) were executed twice, using the 

above mRMR rankings (global mRMR and leave-one-out mRMR). For the selection of the ideal number of features, the 

performance of the classification techniques was estimated on the test set using a pattern of increasing dimension varying 

from 2 to 57 features. Starting from a pattern described by only 2 features, one feature was added incrementally until all of 

the 57 features are employed. In the second case described above, the selection of the feature that is added in the pattern is 

different for each test slide (and consequently for the images belonging to this slide) and it

feature, the mean position and its standard deviation in a feature histogram was calculated (Fig. 8). 

 

b. The estimation of the best value for parameter σ in spectral clustering was also obtained using a leave-one-out strategy.  

The set of patterns was separated into 22 folds (each fold corresponds to a single slide), with 21 folds were used for training 

and the remaining fold was used for testing. Several experiments with different values for σ were performed in the training 

set, using patterns containing all of the features (the dimension of each pattern was 57). Then, we selec

e

of the test set. This procedure was repeated 22 times, each time using a different training and test set.  

 

c. The values of the parameters of the SVM classifier (γ and C for the RBF kernel) were obtained by constructing two 

di  containing half of the slides (11 slides were randomly selected for the training set and the 

remaining were used as test set). We performed several experiments with different pairs of values for γ and C 

( ( ) [ ], 0.01,0.125,0.25,0.5,1,2,4,8C γ ∈ ), while the SVM classifier was trained with the training set of patterns containing 57 

features. Afterwards the performance of the classifier was estimated with the test set. The values for γ and C were selected as 



 12

 algorith

a performa  is maximized for a specific number of features, then this subset of features is selected. In our work, the 

performance criterion that the clustering algorithm should maximize is the harmonic mean (HM) of the 

those which exhibit the best performance of the SVM classifier in the test set and they were γ=0.01 for all the segmentation 

methods and C=2 for the GVF segmentation and C=4 for the watershed and the ACM segmentation. 

The number of features that results in the best classification performance depends on the specific classification m. When 

nce criterion

sensitivity  and the 

specificity defined as: 

 2HM sensitivity specificity
sensitivity specificity
× ×

+

In Fig. 9, the values of HM criterion versus the number of features are depicted for the ACM, GVF and the watershed 

segmentation for the K-means algorithm. Similar experiments were performed for the definition of the best feature subset using 

the spectral clustering algorithm (Fig. 10) and the SVM classifier (Fig. 11). The performance of the SVM classifier for the 

watershed and the GVF segmentation increases as more features are used, and reaches the maximum performanc

=  (12) 

e at 57 features. 

F

 

le R feature rank produces better results in comparison with the use of the global mRMR rank. It must be noted 

th

and the initial approximation o nvex hull of the circumferential points found in the 

th

or the ACM segmentation, the SVM classifier  reaches the maximum performance at 26 features. In all cases as it can be 

observed, the HM measure for the watershed segmentation is higher than the other two segmentation techniques. 

More specifically, the best results in terms of the HM for the all the segmentation schemes using the global and the leave-one-

out mRMR rank are presented in Table V. As we can see, the best results were obtained with the K-means clustering algorithm 

using patterns obtained from the watershed segmentation. The SVM classifier is preferable for the ACM and GVF segmentations, 

as it produced higher performances than the K-means and the spectral clustering. Furthermore, in most of the cases, the use of

ave-one-out mRM

at for comparison purposes, the performance of the SVM classifier was selected for 26 features for all segmentation techniques. 

B) Segmentation 

In order to evaluate the performance of the segmentation method, the obtained nuclei boundaries were compared with the 

corresponding resulted nuclei boundaries of the GVF deformable model and the ACM model and also with the manually traced 

boundaries. It must be noted that for the application of the GVF deformable models, an initial approximation of every nucleus 

boundary is required. For this reason, we search for some points in the neighborhood of each detected centroid, which are likely 

lying in the nucleus circumference [31]. In the morphological color gradient image, having as starting points the candidate nuclei 

centroids we construct a circular searching grid with 8 radial profiles consisted of 8 points each and centered at the location of 

each candidate nucleus centroid.  In each radial profile we choose the pixel with the highest intensity (non maximum suppression) 

f the nuclei boundaries is obtained with the co

is step. The values for the weighting parameters of the GVF deformable model are fixed for all the images and they are set to be 

0.9a =  for the tension, 1.5β =  for the rigidity and 3γ =  for the image force.  

In a similar way, the ACM model was also applied to the same images. More specifically, having found the nuclei markers, we 

apply the ACM model, as it is described in [19] in the 21×21 image window centered at each marker. The model was initialized as 



 13

a 

d the ACM segmentation. Furthermore, the ACM 

segmentation is more performing than the GVF segmentation, as it exhibits lower Hausdorff Distance. In the next paragraph, 

some reasons of failure for the GVF and ACM segmentations are discussed.  

hile the corresponding time for the spectral clustering algorithm is 5-6 seconds. Finally, the mean execution time 

fo

the regional minima. In 

ad

sidered as isolated objects in the image background and they are rejected as image 

ar

rectangle in the middle of the selected neighborhood and it was applied in the morphological color gradient image with α=20, 

where α is the balloon force which controls the contour shrinking or expanding. 

Several examples of the segmentation results are depicted in Fig. 12. The Hausdorff Distance for the ground truth and the 

watershed segmentation was estimated as 1.71±0.54 (mean±std) . The corresponding distance for the GVF and ACM 

segmentation is 2.65±3.23 and 2.48±2.30 respectively.  This implies that the watershed segmentation is closer to the manually 

traced nuclei boundaries, and as a result it is more accurate than GVF an

IV. DISCUSSION  

The proposed method for the segmentation of the cell nuclei in Pap smear images is fully automated and it can be applied 

directly in any conventional Pap stained cervical smear images, in order to produce accurate nuclei boundaries. It consists of five 

steps: the preprocessing, the estimation of the candidate nuclei centroids, the application of the watershed transform, the feature 

extraction and the classification step. The method was developed in Matlab using a dual core PC with a 2.0 GHz processor and 

3GB of RAM. The execution time for each step of the method depends on several factors, such as the proportion of the image 

characterized as background in the preprocessing step, the number of the candidate nuclei centroids in each image, the 

classification algorithm and the number of features in each pattern. An indicative execution time for the segmentation of the 

images (steps one to four of our method) is 2-5 min. The mean execution time of K-means in an image using 16 features is less 

than a second, w

r the training of the SVM classifier using 21 slides and the evaluation of the performance in the test set (one slide) varies from 2 

to 4.5 minutes. 

The parameters used in the several steps of the segmentation method were determined after careful examination of the images 

by an expert cytopathologist in combination with the results of several tests. Thus, in the preprocessing step, for the elimination of 

small objects that do not correspond to nuclei positions,  we used as a threshold of 500 for the object area, which is sufficient for 

the rejection of small image artifacts, while preserving the isolated cells in the image. Furthermore, for the extraction of the nuclei 

markers in the images with the h-minima transform, we use a threshold value of h=15 for the extraction of 

dition, in the distance dependent rule, for each detected centroid we calculated the minimum Euclidean distance from the 

neighboring centroids and we used a threshold of 8 for the minimum radius of the nucleus neighborhood.  

However, as it was mentioned before, this step misses some of the true nuclei positions. This is mainly due to the faintly 

staining and the uneven layering of some cells. In the first case, the cells are undistinguished from the background and as a 

consequence, the nuclei of these cells are con

tifacts. In the second case, the intensity of the nucleus does not well differentiate from the cytoplasm intensity and no regional 

minimum is detected in the nucleus position.  
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ess starts from a position in the 

ca

R is rather insignificant for the first 10 and the last 20 positions in the mRMR rank, which indicates that from 

th

 nucleus. In all these cases the GVF and ACM model do not succeed in detecting 

th

IV), which indicates that for 

The nuclei markers obtained in the previous step are used in the application of the watershed transform. The importance of this 

step is crucial, as it prevents from the oversegmentation that would be produced by the application of the watershed transform in 

the images without markers. Hence, using the detected cytoplasm markers, the flooding proc

tchment basins of the nuclei area and finally converges to the actual boundaries of the true nuclei. Furthermore, the problem of 

the detection of false positive detected centroids is effectively resolved in the classification step. 

The feature selection using the mRMR criterion produces different feature ranks for the three segmentation techniques, as it can 

be observed in Table IV. This is a consequence of the differences between the segmented regions provided by each method 

(ACM, GVF, watersheds) necessitating different features for its representation. As it can be observed by the feature ranking, we 

can conclude that the discriminative ability of some features is equally important for all the segmentation techniques, as seven of 

them were selected by all of the segmentation techniques in the first 14 positions. These features are highlighted in  bold face 

fonts in Table IV. Furthermore, from Fig. 8 we can observe that in general, the standard deviation of the features selected by the 

leave-one-out mRM

e entire data set of features, the most discriminative and the least discriminative features are the same for every fold (slide) of 

our image data set. 

As it was verified by the results, the watershed segmentation is more accurate than the GVF and the ACM segmentation. For 

both these segmentation techniques, the main reason of failure is that their behavior highly depends on the values of their 

parameters. Furthermore, the existence of a high gradient value in a small distance of the detected nucleus and the 

inhomogeneities on the nuclei intensity affect the performance of these techniques. Some examples of these cases are depicted in 

Fig. 13. In Fig. 13(a) as the gradient in the border of the nucleus/cytoplasm is weak, the shape of the GVF deformable model is 

mainly determined by its internal forces, which enforce it to be of a relatively small length and smooth. Furthermore, in Fig. 13(b) 

the existence of intensity variations in the area of the nucleus attracts the points of the GVF deformable model, which converges 

to a position far from the actual nucleus boundary. For the same images, the ACM model also fails to accurately determine the 

nucleus borders. Finally, in Fig. 13(c) both the GVF and ACM model are attracted by the points of high image gradient, which do 

not correspond to the boundary of the detected

e accurate nucleus boundary. In contrast, as it is observed, the watersheds overcome these limitations and produce nuclei 

boundaries that are closer to the ground truth.  

The accurate determination of the nuclei boundaries leads to the calculation of more accurate features, which improve the 

performance of the clustering algorithms. This is the reason why the use of features extracted with the watershed segmentation 

present better classification performance than the corresponding features extracted from the GVF and the ACM segmentation. 

Furthermore, for the determination of a feature set we exploit the fact that the true nuclei area presents significant variations with 

respect to its neighborhood and the calculation of neighborhood features would result in the effective discrimination of the true 

nuclei areas and the false positive areas. This is also confirmed by the use of mRMR criterion (Table 
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th

earch is the separation of clustered nuclei, since the 

method in its current form indicates the existence of one nucleus in the specific location. Furthermore, the recognition of abnormal 

nuclei in Pap smear images is another issue that we

V. CONCLUSION 

entation method. The main advantage of the proposed method is that it can be applied directly in Pap smear 

images obtained by an optical microscope, without any observer interference, for the accurate automated identification of the cell 

nuclei boundaries.  
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ccording to [27], the texture T in a local neighborhood of a monoc e image is the joint distribution of the gray levels of P 

: 

e feature set obtained with all the segmentation techniques (Watersheds, GVF, ACM), at least 7 out of 10 most discriminative 

features concern the outer area (bounding box B and neighborhood Ngh) of the detected boundaries.  

Traditionally, immediate fixation and staining of the cellular sample on the slide with 70% ethyl alcohol and Papanicolaou stain 

have been established as the professional standard. This fixation and staining combination results in a cellular sample, that, not 

only has well-defined and tinted morphological features, but also its transparency allows for microscopic visualization of nuclear 

and cytoplasmic boundaries through multiple layers of epithelial cells. In our work, we use 90 conventionally stained Pap smear 

images, which exhibit several differences in colorization (e.g. the blue color can vary from deep blue to light blue). Although we 

have not included any process of color correction and detection of improper staining, the method provides accurate results when it 

is applied to the images of our data set. However, an issue that is under res

 consider as future work. 

The identification of the cervical cell nuclei areas is a prerequisite for the derivation of diagnostic conclusions and the 

characterization of the contents in the Pap smear images. The automated detection and segmentation of the nuclei boundaries in 

these images is a challenging issue, as these images present several limitations. In this work, we have effectively overcome the 

problem of the detection of the nuclei locations and we have developed a fully automated method for the segmentation of cell 

nuclei in Pap smear images. Moreover, we propose the determination of a meaningful feature set for the detected areas, which 

results in the efficient discrimination of the true nuclei class by the clustering algorithms. As it is verified by the results, the 

method produces more accurate nuclei boundaries which are closer to the ground truth, compared to the GVF deformable model 

and the ACM segm

APPENDIX A 

A hrom

(P>1) image pixels  

 ( )0 1, ,...,c PT t g g g −= ,  
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here gray value corresponds to the gray value of the center pixel of the n borhood and ( )0,..., 1p p Pg = −

)). By subtracting t

eighw cg  correspond to the 

ixels o he gray value of 

e center pixel 

gray values of P equally spaced p n a loci of points (usually a circle with radius R (R>0

th cg from the gray value of the neighborhood pixels, we obtain an equivalent form   of the texture, that is:

 ( )0 1 1, , ...,c c c P cT t g g g g g g g−= − − −       (A1). 

If we assume that the differences p cg g−  are independent of  the (A1) can be factorized as: cg

( ) ( ) 0 1 1, ...,c c c PT t g t g g g g g g−≈ − − − c     (A2)  

)c       (A3) 

hich is a highly discriminative texture operator, as it records the occurrences arious patterns in the neighborho ach 

 a P-dimensional histogram. The invariance with respect to the scaling of the gray scale is achieved by considering just the 

signs of the differences 

and since the distribution ( )ct g describes the overall luminance of the image, it does not provide useful information for texture 

analysis, leading to a simplified form of (A2) 

 ( 0 1T t g g≈ − 1, ...,c c Pg g g g−− −

w of v od of e

pixel in

p cg g− and not their exact value: 

 ( ) ( ) ( )( )0 1 1, , ...,c c PT t s g g s g g s g g−≈ − − − c     (A4) 

where 

 ( )
1, 0
0, 0.

x
s x

x
≥⎧

= ⎨ <⎩
 

( )p cs g g−By assigning a binomial factor 2p for each sign , the (A4) is transformed into a unique LBPP,R number that characterizes 

the spatial structure of the local image texture: 

 ( )
1

0

P
p

, 2P R p cLBP s g g∑ . 
p

−

=

= −

It is observed that certain local binary patterns are fundamental properties of texture, and they are characterized as “uniform”. 

The uniformity measure U(pattern) corresponds to the number of spatial transitions (bitwise 0/1 changes) in the pattern. In 

g he operator for grayscale texture description using rotati  invariant uniform patterns introduced by [27] is defined as:  eneral, t on

( ) ( )1
,0

, 2
, 1

P
p c P Rp

s g g if LBPriuLBPP R P otherwise

−

=
⎧ − ≤⎪= ⎨

+⎪⎩

∑ U   

where ( ) ( ) ( ) ( ) ( )
1

, 1 0 1
1

P

P R P c c p c p c
p

U LBP s g g s= − − g g s g g s g g
−

− −
=

− + − − −∑ . 

Given a set of vectors 

APPENDIX B 

Spectral clustering algorithm 

( ), ,... N1 2x x x , p
kx R∈  and the number  of desired clusters to be separated, the spectral clustering 

algorithm performs the following steps: 

c



 17

 ma1. Define the affinity trix N NA ×   as ( )2 2
, exp / 2i j i jA x x σ= − − . 

2. Define the diagonal matrix as N ND ×
ii ijD A=∑ . 

j

3. Define the matrix 1/ 2 1/2L D AD− −=  . 

4. Define the c  largest eigenvalues , 1,..,i i cλ =   of L  and the corresponding eigenvectors , 1,..,iy i c= . 

5. Form the matrix Y   which has as columns the eigenvectors iy . 

6. Normalize each row of  to have unit length. 

7. Treat each row of   as a point in   and cluster them ters via K-means. 

Y

Y cR  into c  clus

8. Assign the original points  ix  to cluster j  if and only if row i   of the matrix Y was assigned to cluster
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Table I 

Shape Features 

Minor Axis Length(1)  ( )20 02
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+ − Δ
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Major Axis Length (1) 
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L

u
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Eccentricity 
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2 22

L K

L
E

−⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
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Equivalent Diameter 
4 AreaED

π
×

=  

Perimeter number of boundary pointsP =  

Circularity 2

4 AreaC
P

π ×
=  

(1)  The formulas for Δ  and the central moments of order pqu p q+  of the region ( ),s x y  are defined as: 

( )22
11 20 024u u uΔ = + − , 

( ) ( )p q

pq
x y

u x x y= − −∑∑ y , where x  and y  are the coordinates of the centroid of the region.  
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Table II 

Texture Features 
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Mean Histogram  2riu
circleLBP See Appendix A 

Std Histogram  2riu
circleLBP See Appendix A 

Mean Histogram  2riu
hyperbolaLBP See Appendix A 

Std Histogram  2riu
hyperbolaLBP See Appendix A 

(2) Given that  is the intensity value  and  is the histogram of the intensity levels in a region with  possible intensity 

levels, then the average intensity of the region is calculated as . 

iz i ( )p z L

( )
1

0

L

i i
i

m z p z
−

=

= ∑
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Table III 

Intensity Disparity Features 

Foreground-Background contrast  in red(3) Ngh A
RED REDdR m m= −  

Foreground-Background contrast green (3) Ngh A
GREEN GREENdG m m= −

 
Foreground-Background contrast in blue(3) Ngh A

BLUE BLUEdB m m= −  

(3) is the average intensity value of an image region in a specific color component. The RGB color space is used in our 

experiments and the regions of the image that are considered are the enclosed boundary area 

region
colorm

A  and its neighborhood 

, where  is the bounding box of the area cNgh A B= ∪ B A .  
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Table IV 

mRMR rank of the 16 most discriminative features for the watershed, the GVF and the ACM  segmentation(4) 

Watersheds GVF ACM 

1. Entropy of B in green Foreground-Background contrast in green Foreground-Background contrast  in red 

2. Perimeter Minor Axis Length Minor Axis Length 

3. Foreground-Background contrast  in red Third moment of A in blue Uniformity of Ngh in green 

4. Std Histogram in green 2riu
hyperbolaLBP Std Histogram in red 2riu

hyperbolaLBP Std Histogram in red 2riu
hyperbolaLBP

5. Circularity Entropy of Ngh in red Smoothness of Ngh in green 

6. Foreground-Background contrast in green Mean Histogram  in green 2riu
circleLBP Eccentricity 

7. Mean Histogram  in blue 2riu
circleLBP Foreground-Background contrast in blue Foreground-Background contrast in green 

8. Entropy of B in red Eccentricity Mean Histogram  in blue 2riu
circleLBP

9. Mean Histogram in blue 2riu
hyperbolaLBP Mean Histogram in blue 2riu

hyperbolaLBP Mean Histogram in blue 2riu
hyperbolaLBP

10. Smoothness of B in green Uniformity of B in green Third moment of A in red 

11. Std Histogram  in red 2riu
circleLBP Foreground-Background contrast  in red Circularity 

12. Entropy of A in green Std Histogram  in red 2riu
circleLBP Foreground-Background contrast in blue 

13. Foreground-Background contrast in blue Std Histogram in green 2riu
hyperbolaLBP Std Histogram in green 2riu

hyperbolaLBP

14. Std Histogram in red 2riu
hyperbolaLBP Circularity Entropy of Ngh in  red 

15. Smoothness of A in red Entropy of B in green Mean Histogram  in red 2riu
circleLBP

16. Third moment of Ngh in blue Third moment of Ngh in red Third moment of A in blue 

(4) A  is the enclosed detected boundary area, is the bounding box of B A  calculated as the maximum rectangle that contains 

the detected region, B and the neighborhood  is defined as Ngh cNgh A B= ∩  (see Fig. 5 and text for a detailed description). The 

features highlighted in bold face fonts are common for the three segmentation techniques and they appear in the first 14 positions 

in each mRMR rank. 
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TABLE V 

Clustering Performance 

 K-means Spectral Clustering SVM 
 global 

mRMR 
leave-one-out 

mRMR 
global 

mRMR 
leave-one-out 

mRMR 
global 

mRMR 
leave-one-out 

mRMR 
Watersheds 84.09% 84.36% 82.64% 82.93% 82.46% 82.52% 

ACM 80.09% 79.64% 76.84% 77.00% 81.87% 81.95% 

GVF 77.83% 78.76% 77.20% 77.33% 80.20% 80.28% 

 

 

 



 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 1: (a) Initial image of overlapped cells, (b) the detected nuclei markers, (c) the corresponding color morphological gradient 

image, (d) the watershed segmentation. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2: (a) Initial image of overlapped cells and (b) the corresponding grayscale image, in which we apply the Canny edge 

detector. Using a small threshold results in (c) an image with many undesired edges, while using a high threshold results in (d) an 

image with several significant edges missing.    
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Fig. 3: The detected centroids of the regional minima in the image. The true nuclei locations are represented by a yellow cross 

and the false positive findings are represented by a black circle. 
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(a) 

 

(b) 

  

(c) 

R2 

R1 R2 

R1 

R2 

R1 

Fig. 4: (a)-(b) The result of the watershed transform in parts of two different cell images. The regions R1 and R2 that are 

detected in both images with the watershed transform are joined with a line for better visualization purposes. In (a) the detected 

areas R1 and R2 correspond to the areas of true nuclei, while in (b) the detected area R1 corresponds to a nucleus and the area R2 

corresponds to a cytoplasm overlapping area. The variation of the average color image intensity value along the line which joins 

the areas R1 and R2 is depicted in (c). Notice that for the area R1 we observe sharp reduction of the intensity value in both images. 

For the area R2, although the average intensity value is similar in both images, sharper intensity reduction (in relation with its 

neighborhood pixels) occurs only for the true nucleus in image (a). This indicates that the use of the neighborhood of each 

detected area contributes in the recognition of the true nuclei. 
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(a)  

   

(b) (c) (d) 

Ngh 
B

A 

Fig. 5. The selected areas for the construction of the feature set. (a) A cell from the initial image, (b) the detected nucleus boundary with the watershed transform and the enclosed area A, (c) 

the area B of the bounding box of the detected boundary, (d) the area of the neighborhood Ngh (Ac∩B) of the detected nucleus. 
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(a) (b) 
Fig.6: The topology of the neighborhood used for the calculation of the LBP: (a) circle, (b) hyperbola.  
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Fig. 7: Representative histograms of some features of the watershed and the GVF segmentation. Notice that their distribution 

consists of a single blob and this allows their discretization into three states at the positions μ σ± . 
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Fig. 8: The leave-one-out and global mRMR feature rank for the watershed, SCM ang GVF segmentation algorithms. For the 

leave-one-out mRMR feature rank the standard deviation is also depicted with error bars.



 

 

 
(a) 

 
(b) 

Fig. 9: Results in terms of the HM measure for the K-means clustering for ACM, GVF and watershed segmentation for both (a) 

global and (b) leave-one-out mRMR rank. The vertical line indicates the number of features where the HM measure takes its 

maximum value for the three segmentation methods. These values of HM are contained in Table V.
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(a) 

 
(b) 

Fig. 10: Results in terms of the HM measure for spectral clustering for ACM, GVF and watershed segmentation for both global 

(a) and leave-one-out (b) mRMR rank. The vertical line indicates the number of features where the HM measure takes its 

maximum value for the three segmentation methods. These values of HM are contained in Table V. 

.
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(a) 

 
(b) 

Fig. 11: Results in terms of the HM measure for the SVM clustering for ACM, GVF and watershed segmentation for both 

global (a) and leave-one-out (b) mRMR rank. For comparison purposes, the indicative values for HM measure were evaluated 

using the first 16 features. These features are described in Table IV, while the values of HM are contained in Table V. 
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 GVF ACM Watersheds Ground Truth 

(a) 

    

(b) 

  

(c) 

    
Fig. 12: (a)-(c) Segmentation results for several detected nuclei.
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 GVF ACM Watersheds Ground Truth 

(a) 

(b) 

(c) 

Fig. 13:  Representative cases of failure for ACM and GVF segmentation in images with (a) weak gradient at the nucleus 

boundary, (b) the inhomogeneities of the nucleus intensity and (c) the existence of high value of gradient in the neighborhood of 

the nucleus boundary .  
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