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Abstract

Spatially varying mixture models are characterized by the dependence of their mixing proportions

on location (contextual mixing proportions) and they have been widely used in image segmentation.

In this work, Gauss-Markov random field (MRF) priors are employed along with spatially varying

mixture models to ensure the preservation of region boundaries in image segmentation. To preserve

region boundaries, two distinct models for a line process involved in the MRF prior are proposed. The

first model considers edge preservation by imposing a Bernoulli prior on the normally distributed

local differences of the contextual mixing proportions. It is a discrete line process model whose

parameters are computed by variational inference. The second model imposes Gamma prior on the

Student’s-t distributed local differences of the contextual mixing

proportions. It is a continuous line process whose parameters are also automatically estimated by

the Expectation-Maximization (EM) algorithm. The proposed models are numerically evaluated and

two important issues in image segmentation by mixture models are also investigated and discussed:

the constraints to be imposed on the contextual mixing proportions to be probability vectors and the

MRF optimization strategy in the frameworks of the standard and variational EM algorithm.
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I. INTRODUCTION

Image segmentation methods relying on clustering arrange data into groups having common char-

acteristics [1]. One of the main research directions in the relevant literature is focused on mixture

models. Modeling the probability density function (PDF) of pixel attributes (e.g. intensity, texture) with

finite mixture models (FMM) [2] is a natural way to cluster data because it automatically provides

a grouping. The parameters of the FMM model with Gaussian components can be estimated very

efficiently through maximum likelihood (ML) estimation using the Expectation-Maximization (EM)

algorithm [3]. Furthermore, it can be shown that Gaussian components allow efficient representation

of a large variety of PDFs. Thus, Gaussian mixture models (GMM) are commonly employed in image

segmentation tasks.

In the context of image segmentation, a drawback of this approach is the difficulty to capture spatial

coherence information, due to the over-simplifying, yet useful in terms of model tractability, hypothesis

of independent data distribution. While methods to ameliorate this shortcoming have been proposed,

for example by incorporating spatial coordinates in the feature vector [4], a more elegant idea is to

model the data labels as a Markov random field [5], [6], [7]. MRFs are a powerful modeling tool,

also employed, for instance, in image restoration [8], image super-resolution [9] and edge-preserving

filtering [10].

However, inference of the posterior field distribution is typically intractable and estimation algo-

rithms such as the computationally expensive family of the Markov chain Monte Carlo techniques

[2] have to be employed. Other inference methodologies propose convenient approximations for the

posterior random field, such as the pseudo-likelihood [7] or the simulated-field approximation [11].

Estimation of discrete class labelling in an MRF mesh has been successfully handled with graph

theoretic approaches [12], [13], most notably graph cuts [14], [15].

An alternative to avoid the computational cost of the pixel label MRF estimation is to model the

contextual mixing proportions, that is probabilities of the pixel labels (or the mixing proportion vector

for each distinct pixel), as a Markov random field [16], [17], [18], [19], [20], [21]. In such models, MAP

estimation of the contextual mixing proportions is possible, and the computational cost is transformed

from a hard posterior inference problem, as in the discrete MRF-on-labels model family, to a difficult

constrained optimization problem. In that case, the constraint is that the contextual mixing proportions

corresponding to a pixel must always sum up to unity as they must be probability vectors. However,

as conjectured and experimentally observed in [22], an advantage for the second model would, in

general, be a less sharply peaked likelihood function, leading in turn to easier model inference in

terms of optimization efficiency and dependency on initialization.
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Another drawback of standard MRF priors used in image recovery and segmentation is that, in

general, they do not preserve boundaries between image segments as they have the tendency of

smoothing neighboring pixels. In the relevant literature, line processes [5], [23] have been proposed.

They model the presence of a boundary by a binary variable which is accordingly switched on and

off. In place of this explicit line process, implemented effectively with a binary variable mesh, dual of

the label/mixing proportions MRF mesh, a form of an implicit line process may be considered. Robust

clique potentials can be thus used for an edge-preserving effect. The relationship between explicit &

implicit line processes has been thoroughly discussed in [24].

In this work, we follow the second family of MRF methods and propose models imposing MRF

smoothness priors on the contextual mixing proportions of a spatially varying Gaussian mixture model.

Moreover, in order to account for the preservation of boundaries between image segments, we choose

appropriate priors that take the form of a line process. More specifically, we propose two distinct

models.

In the first model, the local differences between the contextual mixing proportions are normally

distributed and the line processes are considered as binary Bernoulli distributed, with Beta conjugate

hyperpriors imposed on their parameters. This model is shown to be tractable using variational

inference methodology [2]. In the second model, we propose a continuous approach to the line

process, where we use Student’s-t clique functions to model the local differences between contextual

mixing proportions. The Student’s-t distribution is well-known as a robust alternative to the Gaussian

distribution [25] and in this context serves as an implicit line process. However, we shall show that

this setting is equivalent with an explicit line process with Gaussian-distributed cliques and Gamma-

distributed line process variables. A short version of the continuous line process model has been

presented in [26] and an application of the binary line process model to brain image segmentation

has been presented in [27]. In this study, along with the comparison of the proposed models, we also

propose solutions for two important issues in image segmentation by spatially varying mixture models.

Firstly, we address the constraint that the contextual mixing proportions must be probability vectors.

This issue is generally handled by a projection of the estimated contextual mixing proportions onto the

simplex hyperplane at each step of the EM algorithm [17], [18]. In this paper, we propose a projection

method relying on a quadratic approximation of the function involving the unknown contextual mixing

proportions. The new approach provides more accurate results and higher values for the likelihood

of the observations in the EM framework. Secondly, a new strategy for the optimization of the MRF

on the image pixels is proposed. The proposed mechanism involves a multiresolution technique with

overlapping pixels at each resolution level.
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The main contribution of this work is the integration of a line process (continuous or discrete) with

spatially varying mixtures for image segmentation and modeling, where the line process parameters

are automatically computed from the data.

The remainder of the article is organized as follows. In section II we present the background

in spatially varying Gaussian mixture models. In section III we present the edge preserving MRF

priors incorporating a discrete and a continuous line process mechanism. Model inference is also

described using Bayesian methodology. The issue of constraining the contextual mixing proportions

to be probability vectors is addressed in section IV along with a new projection methodology. The

new optimization strategy of the MRF sites is discussed and evaluated in section V. Experimental

results in natural image segmentation are presented in section VI and conclusions are drawn in section

VII.

II. BACKGROUND ON SPATIALLY VARYING GAUSSIAN MIXTURE MODELS

Let X = {xn}Nn=1 be the set of pixel intensities, or in general pixel feature vectors, corresponding

to a single image. Viewing the required segmentation as a clustering problem on X , we can assume

that the xn are independent, identically distributed and that they are generated by a finite mixture

model [28]:

p(xn) =

J∑
j=1

πjϕ(x
n; θj)

where Π = {πj}Jj=1 are parameters expressing the prior probability of a pixel membership on class

j, and evidently being constrained to be positive and summing to unity. The {θj}Jj=1 is a set of

deterministic parameters controlling the shape of the “kernel” functions ϕ. Thus, there is a natural

correspondence between pixel class-membership and kernels, and we can classify the pixels according

to posterior class memberships (in the sense of being conditioned on the observed data X). A standard

and well-known choice of kernel function is the Gaussian distribution [2], [28], with other choices

for example including the Student’s-t [25] or the Gamma distribution [29]. From now on we make

the assumption that our data are generated by a Gaussian mixture model, and subsequently build on

this by choosing appropriate prior distributions on πj .

The J-kernel spatially varying GMM (SVGMM) [16], [18] differs from the standard GMM [2] in

the definition of the mixing proportions. More precisely, in the SVGMM, each pixel xn, n = 1, ..., N

has a distinct vector of mixing proportions denoted by πnj , j = 1, ..., J , with J being the number of

Gaussian kernels. We call these parameters contextual mixing proportions to distinguish them from
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the mixing proportions of a standard GMM. Hence, the probability of a distinct pixel is expressed by:

f(xn;π, µ,Σ) =

J∑
j=1

πnjN (xn;µj ,Σj) (1)

where 0 ≤ πnj ≤ 1,
∑J

j=1 π
n
j = 1 for j = 1, 2, ..., J and n = 1, 2, ..., N , µj are the Gaussian kernel

means and Σj are the Gaussian kernel covariance matrices.

We assume that, conditioned on a hidden variable Z, pixels X = {x1, x2, ..., xN} are independent

and Gaussian-distributed:

p(X|Z;µ,Σ) =
J∏
j=1

N∏
n=1

N (xn;µj ,Σj)
znj (2)

where the set of N×J latent variables Z = {znj }n=1..N,j=1..J is introduced to make inference tractable

for the model. The hidden variables Z are distributed multinomially:

p(Z|Π) =
J∏
j=1

N∏
n=1

(πnj )
znj (3)

where each zn is a binary vector, with znj = 1 if datum n is generated by the j-th kernel and znj = 0

otherwise. It is easy to see that assumptions (2) and (3) combined lead to (1).

Considering the set of contextual mixing proportions Π as random variables and assuming a proper

prior, we can incorporate the intuitive fact that neighboring pixels are more likely to share the same

class label. We assume a Markov random field on Π, which equivalently means that Π is governed

by a Gibbs distribution [5], generally expressed by:

p(Π) ∝
∏
C

e−ψc(Π) (4)

where ψc is a function on clique c, called clique potential function in the literature, and the product

is over all minimal cliques of the Markov random field.

An appropriate clique distribution choice would be to assume that the local differences of contextual

mixing proportions follow a Gaussian distribution:

πnj − πkj ∼ N (0, β2jd), ∀n, j, d, ∀k ∈ γd(n) (5)

and the joint distribution on Π is given by:

p(Π;β) =

D∏
d=1

J∏
j=1

N∏
n=1

∏
k∈γd(n)

N (πnj ;π
k
j , β

2
jd). (6)

This distribution1 treats implicitly the variates in each weight vector πn = [πn1π
n
2 · · ·πnJ ] as independent

to one another, while this is not all the case as sum-to-unity probability constraints have to be always

1Note that relations (5) and (6) imply that each clique is counted twice in the product of Gaussians (6), once as a difference

between sites n and k and once between k and n, for given j and d. This is equivalent to counting each clique only once.

We use the current convention simply for reasons of notation brevity.
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met. In other words, (6) assigns probability mass to Π configurations that are actually impossible;

such configurations are suppressed using a constrained optimization step during model learning (see

section IV). Similar in spirit choices of modelling the prior of a probability vector set have already

been proposed in [16], [19], [17], [20]

Treatment of the constrained set Π in this indirect manner may seem inelegant, however there are

reasons that deem such an approach legitimate in the current context. Firstly, prior (6) rewards MRF

configurations with neighboring prior weights close to one other, serving as a smoothing prior. Out

of the set of admissible Π realizations, still the smoothest are given the highest probability. Secondly,

the simplicity of choosing our prior to be a product of Gaussian distributions is translated later on as

simple derivations of the Π-related parameters (namely β and U ) on the model training phase (section

III). Thirdly, absence of any straightforward choice of a distribution that would simultaneously impose

smoothness of the MRF cliques and rule out inadmissible Π realizations automatically [16], [17], [19],

[20].

The J×D different Gaussian distributions we have introduced in eq. (5) amount to an equal number

of parameter sets {βjd}j=1..J,d=1..D. In eq. (5), D stands for the number of a pixel’s neighborhood

adjacency types and γd(n) is the set of neighbors of pixel indexed n, with respect to the dth adjacency

type. In our model, we assume 4 neighbors for each pixel (first-order neighborhood), and partition

the corresponding adjacency types into horizontal and vertical, thus, setting D = 2 (see fig. 1 for

a detailed illustration). This variability of parameter sets aims to capture the fact that smoothness

statistics may vary along clusters and spatial directions [18].

III. EDGE-PRESERVING MRF PRIORS

In the current work we employ a smoothing prior for the local contextual mixing proportion

differences. We also assume that the local differences depend on a set of hidden random variables

U called in the literature line process [5], [23]. This configuration enables to switch on and off the

smoothing property of the prior depending on whether there exists an edge or not between neighboring

pixels. The general form of the model is presented in figure 2. The dependency between U and Π

will be described analytically in the descriptions of the proposed models and for the moment it is not

explicitly defined.

In any case, our goal is to find Maximum a posteriori estimates for Π and the deterministic

parameters Ψ (the latter including here µ and Σ) that maximize the model likelihood. Thence, it

is straightforward to assign each pixel to one of the J kernels which essentially will yield the desired

segmentation.
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Fig. 1. First-order neighbourhood cliques in the Π contextual mixing proportions mesh, used in the present

algorithm implementation. (a) Each MRF site is associated with a probability scalar value πn
j , and is dependent

on 4 neighbours. The MRF layers for different class values j are independent to one another, reflecting eq.(5)

and (6); the sum-to-unity constraint is forced implicitly (see text). (b) Set of horizontal neighbours, γ1(n), is

highlighted. (c) Set of vertical neighbours, γ2(n), is highlighted. Numbers next to links between sites in (b) and

(c) correspond to ϕ function (see section III-A) values.
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Fig. 2. General form of the graphical model for our edge preserving models. Superscript n ∈ [1, N ] denotes

pixel index, subscript j ∈ [1, J ] denotes kernel (segment) index.

We shall construct our MAP parameter estimation algorithms by making use of two powerful

inference tools, namely Expectation-Maximization (EM) [3] and Variational inference (see [2]). Both

of them are comprised of two analogous steps. On the first step, an estimate of the posterior distribution

of the hidden variables (these include sets Z, U of fig. 2) given the observations and current parameter

estimates is computed; on the second step, new parameter estimates (these include sets Π, Ψ of fig.2)

given the posterior of the hidden variables are computed. Typically these two steps are reiterated until
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convergence.

In what follows, we discuss two alternatives for defining and incorporating the line process and

describe in detail how to infer the model parameters in each case.

A. Binary, Bernoulli distributed line process model

The clique potential functions, set by equations (5) and (6) for the non-edge preserving model, are

now defined to be distributed as

πnj − πkj |unkj = 1 ∼ N (0, β2
jd), ∀n, j, d,∀k ∈ γd(n) (7)

where we assume a line process set of binary random variables U = {unkj }k=1..γd(n),n=1..N,j=1..J,d=1..D.

Analytically, the distribution, conditioned on the line process, is expressed by:

p(Π|U ;β) =

D∏
d=1

J∏
j=1

N∏
n=1

∏
k∈γd(n)

N (πnj ;π
k
j , β

2
jd)

unk
j . (8)

This configuration assigns lower energy (higher probability) on local differences which are close

to zero only when there is not an edge between them, that is when unkj = 1. Otherwise, if unkj = 0,

the corresponding Gaussian is zeroed and therefore makes no contribution to the total MRF energy.

Thus, differences are encouraged to be tightened only between pixels not separated by a boundary.

We consider the line process binary variables unkj to be iid Bernoulli distributed random variables,
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Fig. 3. Graphical model for the binary line process edge preserving model. Superscripts n, k ∈ [1, N ] denotes

pixel index, subscript j ∈ [1, J ] denotes kernel (segment) index, d ∈ [1, D] describes the neighborhood direction

type and l ∈ [1,Γ] denotes neighbor index.

governed by a parameter set ξ = {ξ1, ξ2, ..., ξΓ}:

p(U |ξ) =
D∏
d=1

N∏
n=1

∏
k∈γd(n)

p(unkj |ξl) =
D∏
d=1

N∏
n=1

∏
k∈γd(n)

ξl
unk
j (1− ξl)(1−unk

j ), (9)
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where in the third product with respect to k, we have l = ϕ(n, k). Function ϕ(n, k) is defined on

site indices n and k; necessarily k ∈ γd(n) for some d ∈ [1, D] or ϕ is undefined. Function ϕ(n, k)

is equal to an index value in the range [1,Γ]. For fixed n, ϕ defines a one-to-one correspondence

between site index k and an index l ∈ [1,Γ]. There are thus Γ ξl scalar variables, equal to the number

of possible neighbors of any given MRF site. Qualitatively, this means that the Bernoulli prior is

spatially invariant and only dependent to the direction to the given neighbor.

Aiming at making the line process model fully Bayesian, a Beta distribution, which is the conjugate

to the Bernoulli distribution, is imposed on the ξ parameters:

p(ξ;αξ0, ϖξ0) =

Γ∏
l=1

Γ(αξl0 +ϖξl0)

Γ(αξl0)Γ(ϖξl0)
(ξl)

(αξl0−1)
(1− ξl)(ϖξl0−1), (10)

with αξ0 = {αξl0}Γl=1, ϖξ0 = {ϖξl0}Γl=1. In order to preserve model clique symmetry, we demand

that αξl0 have the same value for all l corresponding to the same adjacency type d; likewise for ϖξl0.

In practice, if Γ = 4, as it is the case in figure 1, there are four components in vector ξ but they have

two distinct values, one for the horizontal and one for the vertical direction (ξ1 = ξ3, and ξ2 = ξ4).

The graphical model showing the dependencies between variables for this model is presented in

fig. 3.

To perform model inference, the likelihood with respect to the model parameters Ψ and the

contextual mixing proportions Π has to be optimized:

ln p(X|Π;Ψ) + ln p(Π;Ψ) =

ln p(X,Π;Ψ) (11)

where the deterministic parameters are Ψ = {µ,Σ, β}. The contextual mixing probabilities Π, although

being random variables, are treated as parameters and are to be optimized during inference. Thus

effectively p(Π), defined in (8), acts as a penalty term; in this sense, the proposed inference methods

in this section are Maximum a posteriori (MAP) algorithms [2].

Calculation of eq. (11) is however intractable and we have to resort to an estimation scheme to

perform inference. In our case, the suitable framework is provided by Variational inference [2]. This

involves finding approximations of the posterior distribution of the hidden variables, denoted by q(Z),

q(U), q(ξ), then using them to find Π and Ψ estimates that maximize the Variational lower bound

(see eq.33). Details on the computation of the variational lower bound and its connection with the

maximization of the model likelihood can be found in the Appendix. As it is shown in [2], optimization

of the Variational lower bound L(q,Ψ,Π) boils down to updating each ln q(·) to the expectation of
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<ln p(X,Π, Z, U, ξ;µ,Σ, β)>, taken with respect to all latent variables except the one in question. In

our case, this means that updates for Z, U , ξ are given by

ln q(Z) = ln p(X,Z;µ,Σ) + ln p(Z,Π) + const.

ln q(U) = ln p(Π|U ;β)+ <ln p(U |ξ)>ξ +const.

ln q(ξ) =<ln p(U |ξ)>U + ln p(ξ) + const.

After some manipulation, we obtain the update equations for the model parameters which maximize

over q(Z), q(U), q(ξ) and over Π and the deterministic parameters Ψ = {µ, Σ, β}. The form of

all q approximating-to-the-posterior functions will remain the same as the corresponding prior, as we

have used conjugate priors; namely q(Z), q(U), q(ξ) which approximate p(Z|X,Π;Ψ), p(U |X,Π;Ψ),

p(ξ|X,Π;Ψ) will follow the multinomial, Bernoulli and Beta distributions respectively. Also, let us

note that for the q functional updates on Z and U we just provide the expected values, which are

sufficient to define the distribution. The expectations - updates for q(Z) and q(U) along with the Beta

hyperparameters are as follows:

<znj>
(t+1)=

π
n(t)
j N (xn;µ

(t)
j ,Σ

(t)
j )∑J

l=1 π
n(t)
l N (xn;µ

(t)
l ,Σ

(t)
l )

,

<unkj >
(t+1)= sig

(
lnN (π

k(t)
j ;π

n(t)
j , β

2(t)
jd )+ <ln ξl>(t) − <ln(1− ξl)>(t)

)
,

<ln ξl>(t+1)= ψ(α
(t)
ξl )− ψ(α

(t)
ξl +ϖ

(t)
ξl ),

<ln(1− ξl)>(t+1)= ψ(ϖ
(t)
ξl )− ψ(α

(t)
ξl +ϖ

(t)
ξl ),

α
(t)
ξl = αξl0+

J∑
j=1

N∑
n=1

<unkj >
(t), ϖ

(t)
ξl = ϖξl0+

J∑
j=1

N∑
n=1

<1−unkj >(t), ∀n, j, d, ∀k ∈ γd(n), l = ϕ(n, k),

(12)

where ψ(·) is the digamma function and sig(x) = (1 + e−x)−1.

In order to learn the model for the contextual mixing proportions (Π), as we are using a MAP

methodology, we optimize the lower bound (33) with respect to Π, always taking account of the prior

(8). So setting the derivative of (33), or ln p(Z|Π)+ ln p(Π|U ;β)+ const. (defined in eq. (3) and eq.

(8)) with respect to πnj to zero, we come up with πnj computed as the roots of the quadratic equation

anj

(
π
n(t+1)
j

)2
+ bnj

(
π
n(t+1)
j

)
+ c

n(t+1)
j = 0, (13)

with coefficients:

anj = −
D∑
d=1

{
β
−2(t)
jd

∑
k∈γd(n)

<unkj >
(t)

}
,
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bnj =

D∑
d=1

{
β
−2(t)
jd

∑
k∈γd(n)

<unkj >
(t) π

k(t)
j

}
,

cnj =
1

2
<znj>

(t) .

The form of the coefficients guarantees that there is always a non negative solution [30]. However,

the solutions of eq. (13) for a given pixel indexed by n, will not, in general, satisfy the constraints∑J
j=1 π

n
j = 1, πnj > 0, ∀j ∈ [1..J ]. Hence we have to perform a projection onto the constraints space.

We discuss this step in more detail in section IV.

Furthermore, the deterministic parameters of the model are also obtained in closed form:

µ
(t+1)
j =

∑N
n=1 <z

n
j>

(t) xn∑N
n=1 <z

n
j>

(t)
, Σ

(t+1)
j =

∑N
n=1 <z

n
j>

(t) (xn − µ(t)j )(xn − µ(t)j )T∑N
n=1 <z

n
j>

(t)
(14)

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd(n) <u

nk
j >

(t) (π
n(t)
j − πk(t)j )2∑N

n=1

∑
k∈γd(n) <u

nk
j >

(t)
. (15)

The above updates form an iterative scheme, where we have progressively better estimates q(t), Ψ(t)

and Π(t) at iteration t, starting from an initial estimate q(0),Ψ(0),Π(0) and reiterating until Variational

lower bound (33) convergence.

B. Continuous, Gamma distributed line process model

In this model, the local differences of contextual mixing proportions are considered to follow a

univariate Student’s t-distribution (one is referred to the appendix for its definition and other details).

The clique potential functions are properly defined in order to impose:

πnj − πkj ∼ St(0, β2
jd, νjd), ∀n, j, d,∀k ∈ γd(n), (16)

and the joint distribution on Π is given by:

p(Π;β, ν) =

D∏
d=1

J∏
j=1

N∏
n=1

∏
k∈γd(n)

St(πnj ;πkj , β2
jd, νjd). (17)

The distribution of the differences of local contextual mixing proportions thus becomes:

πnj − πkj ∼ N (0, β2jd/u
nk
j )

unkj ∼ G(νjd/2, νjd/2), ∀n, j, d, ∀k ∈ γd(n). (18)

This generative model (fig. 4), apart from being tractable using the EM algorithm, allows better

insight in our assumption of Student-t cliques. As a robust-to-outliers distribution , Student’s-t cliques

exhibit edge-preserving behavior [24]. Following the definition of the t-distribution in (36) and (37) the

latent variables U = {unkj }n=1..N,j=1..J,d=1..D,∀k∈γd(n), may be interpreted equivalently as a continuous
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Fig. 4. Graphical model for the continuous line-process edge preserving model. Superscripts n, k ∈ [1, N ]

denotes pixel index, subscript j ∈ [1, J ] denotes kernel (segment) index, d ∈ [1, D] describes the neighborhood

direction type. Γ equals the maximum number of possible neighbors.

line process. Since unkj depends on datum indexed by n, each weight difference in the MRF can be

described by a different instance of a Gaussian distribution. Therefore, as unkj → +∞ the distribution

tightens around zero, and enforces neighboring contextual mixing proportions to be smooth. On the

other hand, when unkj → 0 the distribution tends to be uninformative, and enforces no smoothness.

Thus, the spatially varying hidden variables U = {unkj }n=1..N,j=1..J,d=1..D,∀k∈γd(n) are continuous line

processes and may be considered as the continuous equivalent of the binary line process presented in

section III-A. Consequently, in both models, the variables U provide a very detailed description of

the boundary structure of the image.

Model inference is obtained by MAP estimation and under the EM algorithm framework. The

incomplete data likelihood is provided by eq. (11) while the complete data log-likelihood is expressed

by:

ln p(X,Π, Z, U ; Ψ). (19)

Let us notice that the observed data augmented by the hidden variables Z is still incomplete as

the covariance matrices of the t-distributions depend also on the degrees of freedom. Therefore, the

complete data vector additionally includes the missing data U . Also, like in section (III-A), quantities

Π are maximized in the MAP sense, and are not treated as hidden.

The conditional expectation of the complete data log-likelihood is an important quantity in the EM

methodology. In this model, it is defined as:

EZ,U |X,Π(t)

{
ln p(X,Π(t), Z, U ; Ψ(t))

}
. (20)
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By optimizing the above expectation with respect to Ψ and Π, given the observed variables and some

initial estimate Ψ(0), Π(0), we can iteratively update the estimates converging to a local optimum.

The E-step consists in computing the joint expectation of the hidden variables Z and U , with

respect to the current parameters Π(t),Ψ(t) at iteration t. Observing the graphical model in fig. 4, it

can be seen, that, given X and Π, Z and U are conditionally independent; therefore EZ,U |X,Π(·) =

EZ|X,Π{EU |X,Π(·)} and we can compute these expectations separately. The updates then become

∀n, j, d,∀k ∈ γd(n):

<znj>
(t)=

π
n(t)
j N (xn;µ

(t)
j ,Σ

(t)
j )∑J

l=1 π
n(t)
l N (xn;µ

(t)
l ,Σ

(t)
l )

, (21)

<unkj >
(t)= ζ

nk(t)
j /η

nk(t)
j ,

<lnunkj >
(t)= ψ(ζ

nk(t)
j )− ln η

nk(t)
j ,

where ψ(·) stands for the digamma function, and parameters ζ, η being:

ζ
nk(t)
j =

1

2

(
ν
(t)
jd + 1

)
,

η
nk(t)
j =

1

2

(
ν
(t)
jd +

(π
n(t)
j − πk(t)j )2

β
2(t)
jd

)
.

Maximization of the current complete data log-likelihood (20) must be driven with respect to the

model parameters Ψ and Π. With some manipulation, eq. (20) may be split into the following terms:

EZ|X,Π{ln p(X|Z;µ,Σ)}+ EZ|X,Π{ln p(Z|Π)}+

+EU |Π{ln p(Π|U ;β)}+ EU |Π{ln p(U ; ν)}.

In this form, parameter optimization is straightforward. The resulting update equation for the class

variances is:

β
2(t+1)
jd =

∑N
n=1

∑
k∈γd(n) <u

nk
j >

(t) (π
n(t)
j − πk(t)j )2∑N

n=1 |γd(n)|
, (22)

where |γd(n)| denotes the cardinality of the set γd(n), ∀n. The updates for the Gaussian mean and

covariances remain the same as in (14). The contextual mixing proportions πnj are also computed as

the roots of a quadratic equation (13). Like in the Bernoulli prior model, we also have to perform a

projection step to constrain the contextual mixing proportions to be probability vectors.

Finally, setting the derivative of (20) with respect to the degrees of freedom of the Student’s -t

distributions equal to zero we obtain ν(t+1)
jd as the solutions of the equation:

ln(ν
(t+1)
jd /2)− ψ(ν(t+1)

jd /2) +

[∑N
n=1

∑
k∈γd(n)(<lnu

nk
j >

(t) − <unkj >(t))∑N
n=1 |γd(n)|

]
+ 1 = 0

with ψ(·) being again the digamma function.
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C. Insight

The inference updates computed in this section reveal a certain relation in the behavior of the two

models; observe for example the similarity in the updates for β and Π in either case, see eq. (15),

(22) and (13). Let us also note that although the model based on the binary line process is solved

using variational inference, this is not due to the binary nature of the line process. One could easily

omit the Beta hyperprior on the Bernoulli parameters ξ and the model could also be solved by the EM

algorithm. The difficulty in this model is introduced by the hyperprior that makes the computation of

the expectations with respect to p(U, ξ|X,Π) intractable. However, the introduction of the hyperprior

permits the model to elegantly adjust the smoothness between pixels. A similar hyperprior is not

straightforward to be imposed on the continuous line process model, due to the degrees of freedom

parameter ν in the Student’s-t prior which does not lead to a convenient form for a conjugate prior.

In both edge-preserving models, parameters U play a very important role in the preservation of

the boundaries between image regions. The U -variable maps for the jth kernel represent the edges

that separate the jth segment of the image from the remaining segments. To demonstrate this point,

we show an example in figure 5. In this example, a color image is segmented into J = 3 segments

and therefore there are 6 U -variable maps (all possible pairs of the 3 segments for the horizontal and

vertical directions). The first two rows of this figure show the original and the segmented images for

the continuous and binary line process priors. Moving from top to bottom, the U -variable maps for

the three image segments, namely sky, roof and shadows, building are shown, respectively. The left

column highlights vertical edges and the right column underpins horizontal edges. Notice that in the

second row of the U-maps, where the U -variable maps for segment sky are shown, the edges between

the segment sky and the rest (roof and shadows, building) are mainly highlighted. The edges between

the other segments, (roof and shadows and building) are mainly highlighted in the remaining two

maps. Similarly, the edges between the segments sky and building are not highlighted in the third row

of images as the U -variable maps for roof and shadows are underpinned.

In [18] the segmentation model of [17] is extended using a class-dependent smoothness intensity

parameter. This has been proven to capture variations in smoothness along classes. In the same spirit,

in this work, we chose to give the line process parameters a higher flexibility. Let us furthermore note

that the appearance of an edge between two pixels with a true label of class 1 and class 2 respectively,

means that we need π1 and π2 to be discontinuous close to these points. For πj for j other than 1 or

2, we do not need necessarily smoothness or non-smoothness imposed. The current model complies

with this situation, while a single line process layer for classes would not. This is a difference with

respect to other MRF based models which consider the edge structures in a class-invariant sense [21].
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Fig. 5. U -variable maps: The image on the top is the original image., The segmented images for J = 3 clusters

are presented in the second row, the continuous line process segmentation is on the left and the binary line

process segmentation on the right. The rows below show U -variable maps (expected values of unkj variables)

inferred for both models. The two columns on the left correspond to the continuous line process model, and the

two columns on the right correspond to the binary line process model. Brighter values represent lower values

of u. In each row, the U -variable maps for kernel indexed by j = 1 (sky), j = 2 (roof and shadows) and

j = 3 (building), are shown respectively. In each model, the left column corresponds to u values computed for

horizontal adjacencies, and the right column for vertical adjacencies.

Let us finally note that the U -variable maps carry information about the edge structure, important

in itself, that comes as a byproduct of the presented segmentation algorithms. Such information would

otherwise be inaccessible if we were to use an implicit approach to edge-preservation [24] as in [17],

[20]. The continuous line process model in particular can be seen as an implicit line process model,

since we define it by Student’s-t robust clique potentials. However due to its inference by the EM
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algorithm, the line process appears explicitly as a hidden EM variable and computed during model

learning.

IV. PROJECTION ON CONSTRAINTS HYPERPLANE STEP

The quadratic equation (13), whose non-negative solution are the contextual mixing proportions πnj

is derived by maximizing the objective function:

ln p(Z|Π) + ln p(Π|U ;β) + const. =

lnπnj

N∑
n=1

<znj> +

D∑
d=1

N∑
n=1

∑
k∈γd(n)

{
−
unkj
β2dj

(πnj − πkj )2
}
+ const. (23)

corresponding to the variational lower bound or the complete data log-likelihood, depending on the

model (continuous or binary prior). It can be easily seen, that, for a particular site n, eq.(23) has the

form:

xTAx+ xT b+ c lnx+ d (24)

where we have denoted [πn1π
n
2 · · ·πnJ ] as x for convenience. Also, note that the above function is

concave and the J × J matrix A is diagonal and negative definite.

We have already discussed that we need a maximizer for (23) also satisfying the constraints:
J∑
j=1

πnj = 1, πnj > 0, ∀j ∈ [1..J ], ∀n ∈ [1..N ].

In the general case, the solution of (13) does not satisfy the above constraints, that is, the computed

contextual mixing proportion πnj , j = 1, ..., J for a given pixel n are not the components of a

probability vector. However, there is no straightforward way to give an exact solution to the constrained

maximization of (24). This is a well-known problem, treated originally in [16] using gradient projection

[31]; a projection-based solution was again given in [17], superior to [16].

Here we give a theoretical foundation to our approach - building on and generalizing the solution

proposed in [17] - basing our methodology on the hypothesis that one of the terms in (23) is negligible

compared to the others. An approximation of the objective function (23) is obtained by dropping the

term involving the logarithm:
D∑
d=1

N∑
n=1

∑
k∈γd(n)

{
−
unkj
β2dj

(πnj − πkj )2
}
+ const. (25)

In view of the fact that the objective (23) is a sum of the form fit-to-data term + smoothing term

+ const., our hypothesis will be valid in areas were intense smoothing is desirable, for which the

smoothing term ln p(Π|U ;β) will be more important than the fit-to-data term ln p(Z|Π). The reason

smoothing priors are used in the first place is based on the exact same assumption that smoothing
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is desirable for the most part of an image (excluding edges et cetera). Thus we conclude that our

hypothesis is reasonable, at least for the vast majority of the input image area.

Let us stress that by hypothesizing that the smoothing term is dominant to the data term we do not

mean that we ignore the data term completely. If the data term did not exist, the optimum for eq.(23)

would be an homogenous Π field, and πnj = K−1,∀j, n. The purpose of the proposed hypothesis is

that, given the unconstrained solution a⋆ for each site in Π (by solving the second-order equation (13)

to improve a⋆ to be as close as possible to the constrained true optimum.

Let y⋆ be the desired constrained maximizer of the objective function (25), and t a point on the

constraints plane other than y⋆; let α⋆ be the unconstrained maximizer as computed by solving (13).

It can be shown that y⋆ will have to satisfy (y⋆−α⋆)TA(t−y⋆) = 0 for any plane point t. This can be

expressed otherwise, as looking for y such that the projection of α′ ≡ A
1

2α⋆ on the transformed plane

defined by t′ ≡ A
1

2 t will be y′ ≡ A
1

2 y. Thus, formally, we have the following quadratic programming

problem to solve:

argmin
y′
∥ α′ − y′ ∥,

∑
j

yj = 1, yj > 0, j = 1, ..., J.

We now employ an active set type method as suggested in [17], allowing to derive closed form

expressions for the Lagrange multipliers. The associated Lagrange function is given by:

L(y, λ0, λ) =
1

2

J∑
j=1

(bjyj − bjαj)2 − λ0
( J∑
j=1

yj − 1

)
−

J∑
j=1

b2jλjyj

where λ0 is the multiplier for the equality, and λj , j = 1 · · · J are the multipliers for the inequality

constraints. We also used the representation of y⋆, α⋆ as [y1y2 · · · yJ ] and [α1α2 · · ·αJ ] respectively.

Parameters bj are the diagonal elements of the Hessian matrix A:

bj =

√√√√ D∑
d=1

∑
k∈γd(n)

ukjβ
−2
dj

where we have omitted the n data index from b and u for convenience. First-order necessary conditions

imply:

yj = αj +
λ0
b2j

+ λj (26)

and injecting it into the equality constraint yields:

λ0 =
1∑
j b

−2
j

−
∑

j αj∑
j b

−2
j

−
∑

j λj∑
j b

−2
j

(27)

Finally, by combining (26) and (27) we obtain:

yj = αj − cj + cj

J∑
l=1

αl + cj

J∑
l=1

λl + λj (28)
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where cj ≡ −
b−2
j∑J

l=1 b
−2
l

.

Let us notice that the vector αj−cj+cj
∑J

l=1 αl is the projection of α on the constraints hyperplane∑J
j=1 yj = 1. The set of Lagrange multipliers λj , j = 1, ..., J must satisfy the inequality constraints.

Karush-Kuhn-Tucker conditions [31] state that at the minimizer y⋆ we must have λj > 0 and λj > 0

if y⋆j = 0 which is the active constraint.

x

t

y*

α*

x

2

1

ξ

Fig. 6. Example projection to the constraints plane, in the two-dimensional case J = 2. Ellipses represent

contours of the quadratic approximation to the objective function; the line joining the x1 and x2 axes is the

linear constraints plane, here x1 + x2 = 1, x1, x2 > 0. The unconstrained maximizer is a⋆, the constrained

maximizer is y⋆ and t is a point on the constraints plane. Point ξ shows the location of the solution proposed

in [17].

Comparing our proposed optimizing projection with [17], we can point out that we have constructed

our reasoning based on the sole hypothesis that the logarithm in eq. (24) is a negligible quantity with

respect to the other terms; this provided, our method will necessarily give the correct constrained

optimum. On the contrary the projection in [17] is presented as a rather ad hoc solution to the

problem, based on no underlying justification for this specific projection choice. Note also that this

latter method could be seen as a subcase of our own proposal, for b1 = b2 = · · · bJ .

To evaluate the proposed algorithm we have compared it to the algorithm in [17]. We have segmented

the color image in figure 5 with the proposed model with the continuous line process prior. The

resulting comparison revealed that the new algorithm provides consistently higher values for the data

likelihood (fig. 7).
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Algorithm 1 Projection on constraints hyperplane
1 Let y denote the vector at the current iteration. Initially, we set yj ← bj , ∀j = 1, 2, ..., J .

In the general case, there exist m negative components yj . The corresponding set of indices

S = {j, with yj < 0} constitutes the active set of constraints for the current vector y.

2 ∀j /∈ S, set λj ← 0.

3 ∀j ∈ S, set yj = y⋆j ← 0 and we compute the corresponding λj by solving an m×m linear

system that forces the inequalities to be satisfied as equalities, namely yj+λj+cj
∑J

l=1 λj =

0, written in matrix form as (I + 1cT )λ = y. The Sherman-Morisson formula [31] gives:

λj ← yj +

∑
l∈S clyl∑
l /∈S cl

4 Compute the updated yj values for j /∈ S by (28), using the new vector λ.

5 Return to step 2 until convergence.
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Fig. 7. Comparison of data likelihood values for the projection method in [17] and the algorithm proposed in

this section: The test image in fig. 5 was segmented into three classes using the proposed continuous line process

prior algorithm as described in section III-B. The solid curve shows our results using the proposed projection

against the results using the projection proposed in [17], shown by the dashed curve. For each configuration,

we ran the segmentation 10 times using k-means initialization perturbed by additive white Gaussian noise of

0.2 units standard deviation. Likelihood values (averaged over number of pixels N and over the 10 different

initializations) are shown for the first 100 EM iterations.

V. MRF OPTIMIZATION STRATEGY

In both models considered in this paper, we have to maximize a quantity with respect to the

contextual mixing proportions Π. In the case of the discrete prior it is the variational lower bound
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and in the case of the continuous line process prior it is the complete data log-likelihood in the

framework of the EM algorithm. A simple and straightforward implementation would be to perform

a raster scan for each pixel n ∈ [1..N ] in order to update the sites sequentially; this involves solving

J quadratic equations for each site and then projecting the resulting πnj vector onto the constraints∑J
j=1 πj = 1 and πj > 0 using the quadratic programmatic method presented section IV. This scheme

would typically lead to a local maximum.

However, in practice, this local maximum is often far from the desirable segmentation result both

quantitatively and visually (a related work with a detailed discussion on this issue is presented in

[32]). This is due to the fact that the values of Π have a direct impact on the segmentation as the

hidden variables Z depend on them. These latter variables are updated (see eq. (21) or eq. (12)) by:

znj ∝ πnjN (xn;µj ,Σj), ∀n ∈ [1..N ], ∀j ∈ [1..J ]

Fig. 8. A synthetic 3-class piecewise constant gray-level image, produced using a Gibbs-sampler [33]. The

gray levels for each segment are 30, 125 and 220.

In order to illustrate the importance of Π and its optimization, we have performed segmentations on

a test image (fig. 8) by applying two different initialization schemes. At first, we have used a standard

k-means algorithm which is common in initializing mixture models. The second approach consisted

in using as initial condition the ground truth of the image. Although it is impossible to perform the

latter initialization in a real segmentation scenario, we applied it in the sense of the best initialization

a segmentation method could potentially attain.

A raster scan was applied to both initialization approaches in order to sequentially optimize the

parameters Π for each pixel. The results in table I and figure 9 validate that the ground truth is indeed a

local optimum for our edge-preserving algorithm. However, k-means initialization and standard raster

scan MRF optimization lead to a solution that is optimal neither in terms of likelihood nor visually.

Let us consider now the Markov random field example in fig. 10. Each site represents a vector

of contextual mixing proportions for a certain pixel location. Consider also a step in the EM update

algorithm during which the white sites have mixing proportion vectors equal to πn = zn = [0.5 +

ϵ, 0.5 − ϵ]T , with 0 < ϵ < 0.5 and the gray sites have πn = zn = [0.5 − ϵ, 0.5 + ϵ]T . Consider also
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TABLE I

THE RAND INDEX [34] FOR THE SEGMENTATIONS OF THE DEGRADED VERSIONS OF THE IMAGE IN FIG. 8 ALONG

DIFFERENT ITERATIONS OF THE EM ALGORITHM ARE PRESENTED. METHOD NAMES FOLLOWED BY ”Π” REFER TO THE

HYPOTHETICAL SEGMENTATIONS COMPUTED USING Π INSTEAD OF THE HIDDEN VARIABLES Z TO CLASSIFY PIXELS.

THE AVERAGE DATA LOG-LIKELIHOOD AT THE 1000th ITERATION IS ALSO SHOWN.

Initialization Method 2 5 10 20 200 500 1000 Av.Lhood

k-means [18] .70 .64 .63 .63 .62 .62 .62 29.4

[18] (Π) .69 .74 .78 .81 .68 .59 .58

Ground truth [18] .99 .97 .97 .96 .89 .84 .78 28.4

[18] (Π) .99 .98 .98 .97 .92 .86 .78

k-means Continuous LP .70 .64 .62 .62 .62 .62 .62 59.0

Continuous LP (Π) .70 .73 .75 .76 .77 .77 .77

Ground truth Continuous LP .99 .99 .99 .99 .99 .99 .99 129.0

Continuous LP (Π) .99 .99 .99 .99 .99 .99 .99

Method Method in [18] Continuous LP

Initialization k-means GT k-means GT

Z-map

Π-map

Fig. 9. Segmentation results of the 3-class synthetic image of fig. 8 degraded by 2 dB additive white Gaussian

noise after 1000 iterations. The top row shows the segmentations computed using the labels distribution Z to

classify the pixels. The bottom row shows the hypothetical segmentations computed using the contextual mixing

proportions Π instead of Z for classification.

that we are just before updating these contextual mixing proportions using (13). Moreover, we make

the hypothesis that the line process unkj is constant ∀j, n, k ∈ γ(n), in order not to influence the

parameter updates.

Observe, that each gray site is surrounded by exactly two gray and two white neighbors and that

all white sites have at most one gray neighbor each. Hence, there is a high probability that given
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Fig. 10. An example of Markov random field of 6x6 sites. The color of each site corresponds to the image

class the pixel is more likely to belong to.

appropriate values for β21 , β22 and ϵ the gray sites have their π parameters updated to values closer to

the values of the white sites. This will not be the case if β2j are 2 such that the MRF smoothing effect

is tight enough. In that case, each individual update for the gray sites will naturally leave their weights

unaffected. Therefore, if the gray sites are optimized jointly higher values for the data likelihood could

be obtained. Intuitively, this can be achieved by optimizing groups of pixels with the constraint of

being all set to the same value.

Having in mind the continuous line process model, we extend the standard raster scan procedure

to a new grid scan strategy which is described in Algorithm 2.

(a) (b) (c)

Fig. 11. Grid-scan updates on an example lattice with 8x8 elements and 1st order neighborhoods. Black color

shows the elements whose contextual mixing proportions need to be updated. Gray color shows their neighboring

pixels. (a) Single element to be optimized and its neighbors. (b) Elements to be co-optimized by a step of grid

scan and their neighbors. (c) The same elements to be co-optimized redrawn as one.

The update equations (30) and (31) in step 5 of the proposed algorithm are justified as follows. In

each update step of a single grid S, we need to optimize:

ln p(X|Z) + ln p(Z|Π) + const. =

J∑
j=1

{
lnπj

∑
n∈S

(<znj>) +

D∑
d=1

∑
n∈S

∑
k∈γd(n),k /∈S

(
−
unkj
β2dj

(πj − πkj )2
)}

+ const.

2In this example we omit the ’d’ indice for clarity, assuming D = 1.
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Algorithm 2 Grid scan
1 Calculate the initial grid size, maxLevel. This is empirically set to

maxLevel← max(xlog2max(dimX, dimY )y− 3, 3) (29)

2 For each L ← maxLevel to 1 iterate:

3 Let subsetLength← 2L. Let G denote the set of sites, with |G| = dimX × dimY .

4 Partition the dimX × dimY sites into L subsets {Si}Li=1. Also we require ∪Li=1Si = G and

Si ∪ Sj = ∅, ∀i ̸= j.

5 For each site subset Si, i = 1, . . . , L, repeat steps 5.1, 5.2.

5.1 For each neighborhood direction d = 1...D do

5.1.1 Define a set of sites γ̃d(Si) as

γ̃d(Si) , {∪s∈Si
γd(s)} \ Si

5.2 Optimize the sites in Si by solving the quadratic equation (13) where <znj> and γd(n) are

replaced by

<z̃j>←
∑
n∈Si

<znj> (30)

γd ← γ̃d(Si) (31)

6 End.

with respect to πj , ∀j ∈ [1..J ]. We can easily conclude that the second-order equation to be solved

(13) has coefficients given by:

anj = −
D∑
d=1

{
β
−2(t)
jd

∑
n∈S

∑
k∈γd(n),k /∈S

<unkj >
(t)

}
,

bnj =

D∑
d=1

{
β
−2(t)
jd

∑
n∈S

∑
k∈γd(n),k /∈S

<unkj >
(t) π

k(t)
j

}
,

cnj =
1

2

∑
n∈S

<znj>
(t) .

which makes the derivation of (30) and (31) straightforward.

To evaluate the proposed MRF optimization strategy, we computed a number of segmentations using

the grid-scan versus the raster-scan optimization method. All tests were performed on noisy versions

of the synthetic 3-class image (fig. 8) using always the continuous line process prior (section III-B). In

table II we present a comparison of raster-scan and grid-scan algorithms in terms of model likelihood

and ratio of misclassified pixels (MCR). Likelihood scores are consistently better for grid-scan for all
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tested noise levels. Visual result as represented with the segmentation MCR however worsens with

grid-scan optimization on low-noise levels. This is justified since as the noise level decreases, the

need for smoothing decreases as well and higher probability model states may well be corresponding

to undesirable smoothing in the resulting segmentation. However, this is an issue of a MRF prior in

general.

σ = 28 σ = 47 σ = 52 σ = 95

Fig. 12. Top row: A synthetic 3-class image degraded by white Gaussian noise, with varying standard deviations

σ = {28, 47, 52, 95}. Bottom row: Corresponding segmentations using the proposed continuous line process

model of section III-B and grid-scan optimization as in section V.

TABLE II

COMPARISON IN TERMS OF LIKELIHOOD AND MISCLASSIFICATION RATIO (MCR) FOR THE CONTINUOUS

LINE PROCESS MODEL, BETWEEN RASTER-SCAN AND GRID-SCAN OPTIMIZATION METHODS.

Raster-scan Grid-scan

σ Av.Likelihood MCR Av.Likelihood MCR

25 43.9 .1% 51.9 .13%

28 40.5 .17% 47.5 .18%

47 27.8 .5% 34.6 .5%

52 28.3 .8% 33.5 .6%

95 28.9 3.7% 31.5 3.2%

VI. NATURAL IMAGE SEGMENTATION RESULTS

In our implementation, we have used a 4-dimensional feature vector to describe the image data. It is

comprised by the Lab color space features and the Blobworld contrast texture descriptor as described in
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[4]. Prior to segmentation, each variate has been separately normalized in order not to have dominating

features. We also note that in the binary line process model, we let the hyperparameter values αξ0, βξ0

of the Beta prior distribution fixed to αξk0 = βξk0 = 1, ∀k. This value makes the prior effectively

uninformative as the data size N ≫ 1.

Let us also note that our algorithm requires only the determination of the number of segments J

as input (which is an open issue in the machine learning community). We consider this issue as an

advantage in comparison with state-of-the-art methods like the normalized cut (ncut) [14] and the

mean-shift [35] algorithms which depend on more parameters to be defined by the user. For instance,

the ncut algorithm strongly depends on the size of the kernel, the variance of the kernel, involved in

the computation of the affinity matrix, and the number of segments. Also the mean-shift algorithm

highly depends on the variance of the kernel, the size of the kernel and the termination criterion. For

a given image these parameters have to be defined by the user, making straightforward comparison

prone to trial-and-error procedure.

We illustrate the above considerations in figure 13, where we compare the continuous line process

model proposed in this work with the ncut algorithm with varying parameter settings. Settings ncut-1,

ncut-2 and ncut-3 correspond to affinity matrix kernels set to influence a progressively larger pixel

area, with corresponding areas of influence 5×5, 10×10, 15×15. In the same figure we also compare

the two methods on noise-degraded images. The result presents the advantages of our method, which

due to its smoothing prior exhibits higher robustness to noise. For both the degraded and non-degraded

image cases, the result for the ncut clearly depends heavily on the parameters used. In all, for parameter

sets ncut-1 and ncut-3, our method visually and numerically outperforms the ncut result in the church

image case as well as most of the images in the boat image case.

Moreover, in the same figure, we present some cases where although the Rand index is slightly

superior for the ncut methods, visual examination reveals that there are erroneously merged regions.

More specifically, the noisy boat image segmentations for the ncut-2 and ncut-3 methods as well

as the noise-free boat image for the ncut-2 method provide better Rand indices with respect to our

continuous line process algorithm. However, visual inspection depicts that, for instance, the beach and

the sea are merged in the noise free boat image segmentation for ncut-2.

The results given by ncut-1 (small affinity kernel scale) and ncut-3 (large affinity kernel scale)

suggest that the best parameter choice should correspond to a scale between the two. Indeed, ncut-2

with kernel scale size between that of cases ncut-1 and ncut-3 gives the best results for ncut. However,

choosing a priori such a configuration for any image is by no means obvious and the best parameters

must be consequently found by trial-and-error determination.
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Input Segmentations

Continuous LP ncut-1 ncut-2 ncut-3

Original image RI = 0.85 RI = 0.63 RI = 0.87 RI = 0.73

SNR = 2 dB RI = 0.76 RI = 0.57 RI = 0.71 RI = 0.68

Original image RI = 0.83 RI = 0.81 RI = 0.85 RI = 0.81

SNR = 10 dB RI = 0.80 RI = 0.76 RI = 0.81 RI = 0.81

Fig. 13. Comparison of the proposed continuous line process method (III-B) with normalized cuts (ncut) [14].

We have tested the two algorithms on two Berkeley database images [36], as well as on noise-degraded versions

of the same images. We fixed the number of classes to J = 3 for the Church image, and J = 7 for the Boat

image for both algorithms. ncut-1 stands for the normalized cut algorithm with region of affinity kernel support

and kernel variance parameters set to influence a 5× 5 region. ncut-2 stands for the normalized cut algorithm

with region of affinity kernel support and kernel variance parameters set to influence a 10× 10 region. ncut-3

stands for the normalized cut algorithm with region of affinity kernel support and kernel variance parameters

set to influence a 15× 15 region.

We have evaluated the proposed continuous line-process and binary line-process segmentation

schemes on the 300 images of the Berkeley image database [36]. We have applied our algorithm

with different values for the number of segments J = {3, 5, 7, 10, 15, 20}. For comparison purposes,

we have also experimented with the standard GMM [2] and the GMM based segmentation with

”standard” smoothness constraints [18] with the same number of components.

The obtained segmentations were quantitatively evaluated with two performance measures: the Rand

index (RI) [34] and the boundary displacement error (BDE) [37]. The RI measures the consistency
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TABLE III

STATISTICS ON THE RAND INDEX (RI) OVER THE 300 IMAGES OF THE BERKELEY IMAGE DATA BASE FOR THE

COMPARED METHODS. HIGHER VALUES REPRESENT BETTER SEGMENTATIONS.

GMM SVGMM Continuous LP Binary LP

J Mean Median St. dev. Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

3 0.675 0.680 0.085 0.686 0.690 0.085 0.690 0.693 0.087 0.690 0.693 0.087

5 0.710 0.735 0.102 0.717 0.745 0.107 0.720 0.7462 0.108 0.720 0.746 0.107

7 0.717 0.753 0.119 0.723 0.759 0.121 0.724 0.758 0.121 0.724 0.757 0.121

10 0.717 0.759 0.133 0.721 0.760 0.135 0.721 0.759 0.136 0.721 0.759 0.136

15 0.712 0.754 0.143 0.716 0.758 0.146 0.716 0.757 0.147 0.717 0.757 0.146

20 0.709 0.749 0.147 0.706 0.7452 0.153 0.712 0.754 0.152 0.712 0.753 0.152

TABLE IV

STATISTICS ON BOUNDARY DISPLACEMENT ERROR (BDE) OVER THE 300 IMAGES OF THE BERKELEY IMAGE DATA

BASE FOR THE COMPARED METHODS. LOWER VALUES REPRESENT BETTER SEGMENTATIONS.

GMM SVGMM Continuous LP Binary LP

J Mean Median St. dev. Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

3 4.789 4.164 2.386 4.787 4.206 2.397 4.612 4.043 2.302 4.591 4.055 2.287

5 4.386 3.757 2.173 4.394 3.814 2.174 4.258 3.668 2.147 4.255 3.692 2.150

7 4.244 3.708 2.095 4.212 3.683 2.055 4.125 3.594 2.053 4.120 3.586 2.055

10 4.137 3.602 2.009 4.096 3.504 1.986 4.028 3.495 1.999 4.040 3.492 2.011

15 4.010 3.635 1.976 4.034 3.504 1.940 3.959 3.431 1.954 3.955 3.408 1.967

20 4.128 3.678 2.011 4.191 3.655 1.908 3.923 3.393 1.924 3.921 3.425 1.934

between the ground truth and the computed segmentation map while the BDE measures error in

terms of boundary displacement with respect to the ground truth. The statistics for these measures are

presented in tables III and IV.

Based on the theoretical properties of the edge-preservation models one might have expected that

they would introduce erroneous boundaries that did not agree with human segmentation. Therefore

that would provide a worse RI as compared to the ”classical” non preserving algorithm (SVGMM)

[18]. However, as observed in the statistics of the RI (table III), both edge preservation schemes

outperform the standard GMM in all cases and the SVGMM in the overwhelming majority of the

different number of components.

Also, in terms of correct region boundary estimation, expressed by the BDE (table IV), the edge-

preservation models outperform the SVGMM, as theoretically expected. However, they also outperform
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standard GMM and the difference in performance increases with the number of segments. The

explanation for this behavior is that since the standard GMM does not integrate a smoothing step

it generally computes correctly the boundaries between segments (it also outperforms the SVGMM

in the same median values). However, as the number of segments increases, the complexity of the

image cannot be captured by a simple GMM and smoothness constraints that model the image edge

structure become increasingly beneficial.

Comparing the proposed edge-preserving priors, their performance scores are in general close. The

continuous line process prior seems to give better results for the RI, while the binary line process

prior gives better results for the BDE. The difference in performance is however too slight to draw a

safe conclusion about the behavior of the one prior compared to the other. To illustrate this, one can

observe that on RI and BDE the mean scores differ respectively by 8 · 10−5 and 8 · 10−3 (on average

over the number of kernels J) between the two models. This is only a fraction of the improvement

the proposed schemes exhibit over the non-edgepreserving scheme SVGMM, namely 4% and 6% for

each case. Overall, the proposed schemes not only preserve region boundaries but also improve the

correct classification rates with respect to the standard methods. Some representative segmentation

examples for the two proposed models are shown in figures 14 (continuous line process model), and

15 (binary line process model).

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented an image segmentation algorithm having the property of taking

into account spatial relationships to classify image pixels. We have explored two alternative ways to

make the model edge-preserving, which is the main contribution of the paper. We have also noted the

importance of properly optimizing the Markov random field energy in the current model, and we have

proposed improvements over the field optimization methods used for similar models like [16], [18].

The corresponding edge-preserving prior choices, the binary and the continuous line process priors,

lead to model solutions feasible with variational inference and Expectation-Maximization respectively.

We have seen that the binary line process model includes a set of fixed hyperparameters (αξ0,ϖξ0)

that can affect the model’s sensitivity to what is regarded as an edge; the continuous line process

model is, on the other hand, computationally and conceptually simpler. The automatic estimation of

model parameters from the data is crucial, as many state-of-the-art segmentation algorithms rely on

empirical parameter selection. An important perspective of this study is to automatically estimate the

number of components. To this end, criteria appropriate to constrained mixtures could be conceived.
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Fig. 14. Segmentation examples using the proposed continuous line process spatially variant mixture for varying

number of classes J . From left to right, the columns show: the original image, segmentation with J = 5, J = 10

and J = 15.

APPENDIX

A. Variational lower bound derivation

The model likelihood (11) may be written as∑
Z,U

∫
ξ
q(Z,U, ξ) log

p(X,Π, Z, U, ξ; Ψ)

q(Z,U, ξ)
dξ −

∑
Z,U

∫
ξ
q(Z,U, ξ) log

p(Z,U, ξ|X,Π;Ψ)

q(Z,U, ξ)
dξ. (32)

The first term is called variational lower bound in the related literature [2], while the second is the

Kullback-Leibler divergence between the posterior distribution of the latent variables conditioned on

the observations and Π, and a distribution q(·) which represents an estimate of the posterior. It is

well-known that any Kullback-Leibler divergence has a minimum at zero, and that that minimum is

achieved when the comparing distributions are identical. This means that (a) the first term in eq.(32)

is a lower bound of the likelihood, and (b) this bound is maximized with respect to q if and only

if q(Z,U, ξ) = p(Z,U, ξ|X,Π;Ψ). So instead of working with the likelihood, which here involves

an intractable marginalization over Z,U, ξ, in variational inference, the idea is to find estimates that

maximize the variational lower bound: the variational lower bound L is given by eq.(33):

L(q,Ψ,Π) ,
∑
Z,U

∫
ξ
q(Z,U, ξ) log

p(X,Π, Z, U, ξ; Ψ)

q(Z,U, ξ)
dξ (33)
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Fig. 15. Segmentation examples using the proposed binary line process spatially variant mixture for varying

number of classes J . From left to right, the columns show: the original image, segmentation with J = 5, J = 10

and J = 15.

= Eq(Z,U,ξ)
(
ln
p(X,Π, Z, U, ξ; Ψ)

q(Z,U, ξ)

)
=<ln p(X,Π, Z, U, ξ;µ,Σ, β)> − <ln q(Z,U, ξ)>

To proceed with the computation of optimal q on L, we must introduce here the mean field

approximation which stems from statistical physics [2]:

q(Z,U, ξ) = q(Z)q(U)q(ξ). (34)

Note that in the proposed model, we only need to assume q(U, ξ) = q(U)q(ξ), as q(Z,U, ξ) =

q(Z)q(U, ξ) is induced from the model structure. We can thus rewrite (33) as

L(q,Ψ,Π) =<ln p(X|Z;µ,Σ)> + <ln p(Z|Π)> + <ln p(Π|U ;β)> + <ln p(U |ξ)> + <ln p(ξ)>

− <ln q(Z)> − <ln q(U)> − <ln q(ξ)> .

The expectations in (33), over the estimate posterior distribution q are given by:

<ln p(X|Z;µ,Σ)>=
N∑
n=1

J∑
j=1

<znj> N (xn;µj ,Σj),
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<ln p(Z|Π)>=
N∑
n=1

J∑
j=1

<znj> lnπnj ,

<ln p(Π|U ;β)>=

N∑
n=1

J∑
j=1

D∑
d=1

∑
k∈γd(n)

<unkj > lnN (πnj − πkj |β2jd),

<ln p(U |ξ)>=
D∑
d=1

N∑
n=1

∑
k∈γd(n)

(
<unkj ><ln ξ

k> +(1− <unkj >) <ln(1− ξk)>
)
,

<ln p(ξ;αξ0, βξ0)>=

Γ∑
k=1

(
Γ(αξk0 + βξk0)

Γ(αξk0)Γ(βξk0)
+ (αξk0 − 1) <ln ξk> +(βξk0 − 1) <ln(1− ξk)>

)
,

<ln q(Z)>=

N∑
n=1

J∑
j=1

<znj> ln <znj>,

<ln q(U)>=

D∑
d=1

N∑
n=1

∑
k∈γd(n)

(
<unkj > ln <unkj > +(1− <unkj >) ln(1− <unkj >)

)
,

<ln q(ξ)>=

Γ∑
k=1

(
Γ(αξk + βξk)

Γ(αξk)Γ(βξk)
+ (αξk − 1) <ln ξk> +(βξk − 1) <ln(1− ξk)>

)
.

The quantities <unkj >,<ln ξl>, <ln(1− ξl)>,<znj> and the hyperparameters αξl, βξl are given in

(12) .

In order to maximize L over Ψ and Π, after dropping constant terms we can observe that we only

need to maximize the expectation:

L(q,Ψ,Π) = Eq(Z,U,ξ){p(X,Π, Z, U, ξ; Ψ)}+ const. (35)

where the index denotes that the expectation is computed over q. This optimization is made tractable

due to the approximation (34).

B. The Student’s-t distribution

A d-dimensional random variable X follows a multivariate t-distribution, X ∼ St(µ,Σ, ν), with

mean µ, positive definite, symmetric and real d× d covariance matrix Σ and has ν ∈ [0,∞) degrees

of freedom when [2], given the weight u, the variable X has the multivariate normal distribution with

mean µ and covariance Σ/u:

X|µ,Σ, u ∼ N (µ,Σ/u), (36)

and the weight u follows a Gamma distribution parameterized by ν:

u ∼ G(ν/2, ν/2). (37)
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Integrating out the weights from the joint density leads to the density function of the marginal

distribution:

p(x;µ,Σ, ν) =
Γ
(
ν+d
2

)
|Σ|−

1

2

(πν)
d

2Γ
(
ν
2

)
[1 + ν−1δ(x, µ; Σ)]

ν+d

2

(38)

where δ(x, µ; Σ) = (x − µ)TΣ−1(x − µ) is the Mahalanobis squared distance and Γ is the Gamma

function [2]. It can be shown that for ν → ∞ the Student’s t-distribution tends to a Gaussian

distribution with covariance Σ. Also, if ν > 1, µ is the mean of X and if ν > 2, ν(ν − 2)−1Σ is

the covariance matrix of X . Therefore, the family of t-distributions provides a heavy-tailed alternative

to the normal family with mean µ and covariance matrix that is equal to a scalar multiple of Σ, if

ν > 2 (fig. 16) [2]. The Student’s-t has been used successfully as a robust alternative to the Gaussian

distribution in maximum likelihood fitting to data that contain outliers [25], [38], [39]. In the context

of the edge-preservation prior, the differences between pixels at an edge can be perceived as outliers,

which in effect means that the fitting process will not take them into account when estimating the model

parameters. Consequently, the fitting process will not smooth out such mixing proportion differences.

Fig. 16. The Student’s t-distribution for various degrees of freedom. As ν → ∞ the distribution tends to a

Gaussian. For small values of ν the distribution has heavier tails than a Gaussian.
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