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Abstract

The problem of registering images or point sets is addressed. At first, a pixel similarity-
based algorithm for the rigid registration between single and multimodal images is pre-
sented. The images may present dissimilarities due to noise, missing data or outlying mea-
sures. The method relies on the partitioning of a reference image by a Student’s t-mixture
model (SMM). This partition is then projected onto the image to be registered. The main
idea is that a t-component in the reference image corresponds to a t-component in the image
to be registered. If the images are correctly registered the distances between the correspond-
ing components is minimized. Moreover, the extension of the method to the registration of
point clouds is also proposed. The use of SMM components is justified by the property
that they have heavier tails than standard Gaussians, thus providing robustness to outliers.
Experimental results indicate that, even in the case of low SNR or important amount of
dissimilarities due to temporal changes, the proposed algorithm compares favorably to the
mutual information method for image registration and to the Iterative Closest Points (ICP)
algorithm for the alignment of point sets.

Key words: image registration, point set registration, Gaussian mixture model, mixtures of
Student’st-distribution, Expectation-Maximization (EM) algorithm.

1 Introduction

The goal of image registration is to geometrically align two or more images in
order to superimpose pixels representing the same underlying structure. Image reg-
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istration is an important preliminary step in many application fields involving, for
instance, the detection of changes in temporal image sequences or the fusion of
multimodal images. For the state of the art of registration methods we refer the
reader to [43]. Medical imaging, with its wide variety of sensors (MRI, nuclear,
ultrasonic, X-Ray) is probably one of the first application fields [24,1,15]. Other
research areas related to image registration are remote sensing, multisensor robot
vision and multisource imaging used in the preservation of artistic patrimony. Re-
spective applications include the following of the evolution of pathologies in med-
ical image sequences [28], the detection of changes in urban development from aer-
ial photographs [20] and the recovery of underpaintings from visible/X-ray pairs of
images in fine arts painting analysis [16].

The overwhelming majority of change detection or data fusion algorithms assume
that the images to be compared are perfectly registered. Even slightly erroneous
registrations may become an important source of interpretation errors when inter-
image changes have to be detected. Accurate (i.e. subpixel or subvoxel) registration
of single modal images remains an intricate problem when gross dissimilarities are
observed. The problem is even more difficult for multimodal images, showing both
localized changes that have to be detected and an overall difference due to the
variety of responses by multiple sensors.

Since the seminal works of Viola and Wells [41] and Maeset al. [23], the maxi-
mization of the mutual information measure between a pair of images has gained
an increasing popularity as a criterion for image registration [31]. The estimation
of both marginal and joint probability density functions of the involved images is a
key element in mutual information based image alignment. However, this method
is limited by the histogram binning problem. Approaches to overcome this limita-
tion include Parzen windowing [41,19], where we have the problem of kernel width
specification, and spline approximation [39,25]. A recently proposed method relies
on the continuous representation of the image function and develops a relation be-
tween image intensities and image gradients along the level sets of the respective
intensity [33].

Gaussian mixture modeling (GMM) [5,26] constitutes a powerful and flexible method
for probabilistic data clustering that is based on the assumption that the data of each
cluster has been generated by the same Gaussian component. In [22], GMMs were
trained off-line to provide prior information on the expected joint histogram when
the images are correctly registered. GMMs have also been successfully used as
models for the joint [14] as well as the marginal image densities [17], in order
to perform intensity correction. They have also been applied in the registration of
point sets [21] without establishing explicit correspondence between points in the
two images. The parameters of GMMs can be estimated very efficiently through
maximum likelihood (ML) estimation using the EM algorithm [8]. Furthermore, it
is well-known that GMMs are capable of modeling a large variety of pdfs [26].

2



An important issue in image registration is the existence of outlying data due to
temporal changes (e.g. urban development in satellite images, lesion evolution in
medical images) or even the complimentary but non redundant information in pairs
of multimodal images (e.g. visible and infrared data, functional and anatomical
medical images). Although a large variety of image registration methods have been
proposed in the literature only a few techniques address these cases [18,28,36].

The method proposed in this study is based on mixture model training. More specif-
ically, we train a mixture model once for the reference image and obtain the cor-
responding partitioning of image pixels into clusters. Each cluster is represented
by the parameters of the corresponding density component. The main idea is that a
component in the reference image corresponds to a component in the image to be
registered. If the images are correctly registered the sum of distances between the
corresponding components is minimum.

A straightforward implementation of the above idea would consider models with
Gaussian components. However, it is well known that GMMs are sensitive to out-
liers and may lead to excessive sensitivity when the number of data points is small.
This is easily understood by recalling that maximization of the likelihood function
under an assumed Gaussian distribution is equivalent to finding the least-squares
solution which lacks robustness. Consequently, a GMM tends to over-estimate the
number of clusters since it uses additional components to capture the tails of the
distributions [4]. The problem of attaining robustness against outliers in multivari-
ate data is difficult and increases with the dimensionality. In this paper, we consider
mixture models (SMM) with Student’s-t components for image registration. This
pdf has heavier tails compared to a Gaussian [29]. More specifically, each com-
ponent in the SMM mixture originates from a wider class of elliptically symmetric
distributions with an additional parameter called the number of degrees of freedom.
In this way, a more robust mixture model is employed than the typical GMM.

The main contributions of the proposed registration method are the following: (i)
the histogram binning problem is overcome through image modeling with mixtures
of distributions which provide a continuous representation of image density. (ii)
Robustness to outlying pixel values is achieved by using mixtures of Student’st-
distributions. The widely used method of maximization of the mutual information
is outperformed. (iii) The method may be directly applied to vector valued images
(e.g. diffusion tensor MRI) where standard histogram-based methods fail due tothe
curse of dimensionality. (iv) The proposed method is faster than histogram based
methods where the joint histogram needs to be computed for every change in the
transformation parameters.

Moreover, the registration problem is extended to the case of point sets where the
nature of the problem is different since there is no spatial ordering contrary to
image grids (e.g. pixelized images). Therefore, the difficulty consists in simultane-
ously estimating the transformation parameters and establishing correspondences
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between points.

In the related literature of point set registration, the standard approach is the well
known Iterative Closest Points (ICP) algorithm [3] and its variants [37,13,8,30].
In [9,10] a robust point matching algorithm is proposed relying onsoft-assign[34]
and an iterative optimization procedure. Thesoft-assignis based on a matrix whose
entries describe the probability that a point of one set matches upon transformation
to one of the other set. Mutual information was also used as a constraint [35] for
point set matching under the above framework. Features extracted from the point
sets are employed in [2,40], a kernel-based method is used in [38] and a method
modeling the point sets by a GMM with constraints on the component centers is
presented in [27]. Also, an approach to the construction of an atlas from multiple
point sets is proposed in [42]. Finally, a work related to the herein proposed ap-
proach is presented in [21]. The authors propose to model the probability density
function (pdf) of the points of the two sets by GMMs and estimate the transfor-
mation parameters through the minimization of an energy function describing the
distance of the two GMMs. Our model completes this study by proposing a more
robust framework for modeling the point sets.

The remainder of this paper is organized as follows. In section 2, the image reg-
istration method as a problem of minimizing distances between mixture models
is presented. ML estimation of the parameters of a Student’st-mixture model and
the generalization of the image registration method using SMMs are described in
section 3, while the extension of the algorithm to the registration of point sets is
described in section 4. Experimental results and comparison with the state of the
art image registration method of maximization of the mutual information (MI) are
provided in section 5. Results on the registration of point sets are also presented in
this section. Finally, conclusions are drawn in section 6.

2 Image registration by minimization of the distance between mixture mod-
els

Let Iref be an image ofN × N pixels with intensities denoted asIref (x
i), where

xi, i = 1, ..., N2, is theith pixel index. The purpose of rigid image registration is
to estimate a set of parametersS of the rigid transformationTS minimizing a cost
functionE(Iref (·), Ireg(TS(·))) that, in a similarity metric-based context, expresses
the similarity between the image pair. In the 2D case the rigid transformation para-
meters are the rotation angle and the translation parameters along the two axes. In
the 3D case, there are three rotation and three translation parameters. Eventually,
scale factors may also be included, depending on the definition of the transforma-
tion.

Consider, now, a partitioning of the reference imageIref into K clusters (groups)
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by training a mixture model withK components with arbitrary pdfp(I(x); Θ):

φ(Iref (x)) =
K∑

k=1

πkp(Iref (x); Θref
k )

Therefore, the reference image is represented by the parametersΘref
k , k = 1, . . . , K

of the mixture components. The partitioning of the image is described using the
functionf(x) : [1, 2, ..., N ]× [1, 2, ..., N ] → {1, 2, ..., K}, wheref(x) = k means
that pixelx of the reference imageIref belongs to the cluster defined by thekth

component. Let us also define the sets of all pixels of imageIref belonging to the
kth cluster:

Pk = {xi ∈ Iref , i = 1, 2, ..., N2|δ(f(xi)− k) = 1}
for k = 1, ..., K, whereδ(x) is the Dirac function:

δ(f(xi)− k) =





1, if f(xi) = k

0, otherwise
(1)

The above mixture-based segmentation of the reference image is performed once,
at the beginning of the registration procedure. The reference imageIref is, thus,
partitioned intoK groups, generally, not corresponding to connected components
in the image. This spatial partition is projected on the image to be registeredIreg,
yielding a corresponding partition of this second image (i.e., the partitioning of the
reference image acts as a mask on the image to be registered). Then, we assume that
the pixel values of each clusterk in Ireg are modeled using a mixture component
with parametersΘreg

k obtained from the statistics of the intensities of pixels in group
k of Ireg.

In order to apply our method it should be possible to define a distance measure
D(Θref

k , Θreg
k ) between the corresponding mixture components with pdfp(I). Then

the energy function we propose, is expressed by the weighted sum of distances
between the corresponding components inIreg andIref :

E(Iref (·), Ireg(TS(·))) =
K∑

k=1

πkD(Θref
k , Θreg

k ) (2)

whereπk is the mixing proportion of thekth component:

πk =
|Pk|

K∑

l=1

|Pl|

where|Pk| denotes the cardinality of setPk. If the two images are correctly regis-
tered the criterion in (2) assumes that the total distance between the whole set of
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components would be minimum.

For a given set of transformation parametersS, the total energy between the image
pair is computed through the following steps:

• segment the reference imageIref (·) into K clusters by a mixture model.
• for each clusterk = 1, 2, ..., K of the reference image:
· project the pixels of the cluster onto the transformed image to be registered

Ireg(TS(·)).
· determine the parametersΘreg

k of the projected partition ofIreg.
• evaluate the energy in eq. (2) by computing the distances between the corre-

sponding densities.

In the case of GMMs, the above registration procedure can be applied as follows:

Consider the multivariate normal distributionsN1(µ1, Σ1) andN2(µ2, Σ2) and de-
noteΘi = {µi, Σi}, with i = {1, 2}, their respective parameters (mean vector and
covariance matrix). The Chernoff distance between these distributions is defined as
[12]:

C(Θ1, Θ2, s) =
s(1− s)

2
(µ2 − µ1)

T [sΣ1 + (1− s)Σ2]
−1(µ2 − µ1)

+
1

2
ln

( |sΣ1 + (1− s)Σ2|
|Σ1|s|Σ2|1−s

)
.

The Bhattacharyya distance is a special case of the Chernoff distance withs = 0.5:

B(Θ1, Θ2) =
1

8
(µ2 − µ1)

T
[
Σ1 + Σ2

2

]−1

(µ2 − µ1) +
1

2
ln


 |Σ1+Σ2

2
|√

|Σ1||Σ2|


 (3)

A representative GMM for the reference image can be obtained via the EM algo-
rithm [5]. Therefore, the reference image is represented by the parametersΘref

k =
{µref

k , Σref
k }, k = 1, . . . , K of the GMM components. After projecting the pixel

groups of the reference image to obtain the corresponding groups in the registered
image, the parametersΘreg

k can be estimated by taking the sample meanµreg
k and

the sample covariance matrixΣreg
k :

µreg
k =

1

|Pk|
N2∑

i=1

Ireg(TS(xi))δ(f(xi)− k) (4)

and

Σreg
k =

1

|Pk|
N2∑

i=1

(∆I i
k)(∆I i

k)
T δ(f(xi)− k), (5)
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where∆I i
k = Ireg(TS(xi)) − µreg

k . The role ofδ(f(xi) − k) in eq. (4) and (5)
is to determine the support (the pixel coordinates) for the calculation of the mean
and covariance. These parameters are computedon the image to be registeredfor
the pixel coordinates belonging to thekth groupon the reference image. This also
implies a Gaussian mixture model for the components ofIreg. The total distance
between the two images is computed using eq. (2), where the Bhattacharyya dis-
tance between the corresponding Gaussian components is considered as distance
measureD.

However, GMMs are very sensitive to outlying data and their outcome is largely
influence by the presence of pixels not belonging to the dominating model. In order
to overcome this drawback of GMMs, we have employed in our registration method
mixtures of Student’st-distributions. These mixtures are more robust to outliers as
it is described in the next section.

3 Robust image registration with mixtures of Student’st-distributions

In what follows, we briefly present the properties of mixtures of Student’st-distributions
(SMMs), as well as the ML estimation of their parameters using the EM algorithm.
Then, we describe how SMMs can be employed as mixture models in the the gen-
eral registration approach presented in the previous section.

3.1 ML estimation of mixtures of Student’s t-distributions

A d-dimensional random variableX that follows a multivariatet-distribution with
meanµ, positive definite, symmetric and reald × d covariance matrixΣ and has
ν ∈ [0,∞) degrees of freedom has a density expressed by:

p(x; µ, Σ, ν) =
Γ

(
ν+d

2

)
|Σ|− 1

2

(πν)
d
2 Γ

(
ν
2

)
[1 + ν−1δ(x, µ; Σ)]

ν+d
2

(6)

whereδ(x, µ; Σ) = (x− µ)T Σ−1(x− µ) is the Mahalanobis squared distance and
Γ is the Gamma function.

It can be shown that the Student’st distribution is equivalent to a Gaussian distribu-
tion with a stochastic covariance matrix. In other words, given a weightu following
a Gamma distribution parameterized byν:

u ∼ Gamma(ν/2, ν/2). (7)

the variableX has the multivariate normal distribution with meanµ and covariance
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Σ/u:
X|µ, Σ, ν, u ∼ N(µ, Σ/u), (8)

It can be shown that forν → ∞ the Student’st-distribution tends to a Gaussian
distribution with covarianceΣ. Also, if ν > 1, µ is the mean ofX and if ν > 2,
ν(ν − 2)−1Σ is the covariance matrix ofX. Therefore, the family oft-distributions
provides a heavy-tailed alternative to the normal family with meanµ and covariance
matrix that is equal to a scalar multiple ofΣ, if ν > 2 (fig. 1). A K-component

Fig. 1. The Student’st-distribution for various degrees of freedom. Asν → ∞ the distri-
bution tends to a Gaussian. For small values ofν the distribution has heavier tails than a
Gaussian.

mixture oft-distributions is given by

φ(x, Ψ) =
K∑

i=1

πip(x; µi, Σi, νi) (9)

wherex = (x1, ..., xN)T denotes the observed-data vector and

Ψ = (π1, ..., πK , µ1, ..., µK , Σ1, ..., ΣK , ν1, ..., νK)T . (10)

are the parameters of the components of the mixture.

A Student’st-distribution mixture model (SMM) may also be trained using the EM
algorithm [29]. Consider now the complete data vector

xc = (x1, ...xN , z1, ..., zN , u1, ..., uN)T (11)

wherez1, ..., zN are the component-label vectors andzij = (zj)i is either one or
zero, according to whether the observationxj is generated or not by theith com-
ponent. In the light of the definition of thet-distribution, it is convenient to view
that the observed data augmented by thezj, j = 1, ..., N are still incomplete be-
cause the component covariance matrices depend on the degrees of freedom. This
is the reason that the complete-data vector also includes the additional missing data
u1, ..., uN . Thus, the E-step on the(t + 1)th iteration of the EM algorithm requires
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the calculation of the posterior probability that the datumxj belongs to theith com-
ponent of the mixture:

zt+1
ij =

πt
ip(xj; µ

t
i, Σ

t
i, ν

t
i )

K∑

m=1

πt
mp(xj; µ

t
m, Σt

m, νt
m)

(12)

as well as the expectation of the weights for each observation:

ut+1
ij =

νt
i + d

νt
i + δ(xj, µt

i; Σ
t
i)

(13)

Maximizing the log-likelihood of the complete data provides the update equations
of the respective mixture model parameters:

πt+1
i =

1

N

N∑

j=1

zt
ij, (14)

µt+1
i =

N∑

j=1

zt
iju

t
ijxj

N∑

j=1

zt
iju

t
ij

, (15)

Σt+1
i =

N∑

j=1

zt
iju

t
ij(xj − µt+1

i )(xj − µt+1
i )T

N∑

j=1

zt+1
ij

. (16)

The degrees of freedomνt+1
i for theith component, at time stept+1, are computed

as the solution to the equation:

log

(
νt+1

i

2

)
−ψ

(
νt+1

i

2

)
+1−log

(
νt

i + d

2

)
+

N∑

j=1

zt
ij(log ut

ij − ut
ij)

N∑

j=1

zt
ij

+ψ

(
νt

i + d

2

)
= 0

(17)
whereψ(x) = ∂(lnΓ(x))

∂x
is the digamma function.

At the end of the algorithm, the data are assigned to the component with maximum
responsibility using a maximuma posteriori(MAP) principle.

The Student’st-distribution is a heavy tailed approximation to the Gaussian. It is
therefore, natural to consider the mean and covariance of the SMM components
to approximate the parameters of a GMM on the same data as it was described in
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the previous section. If the statistics of the images follow a Gaussian model, the
degrees of freedomνi are relatively large and the SMM tends to be a GMM with
the same parameters. If the images contain outliers, parametersνi are weak and the
mean and covariance of the data are appropriately weighted in order not to take into
account the outliers. Thus, the parameters of the SMM, computed on the reference
imageIref , are used as component parametersΘref

k in a straightforward way as
they generalize the Gaussian case by correctly addressing the outliers problem.
After projection of the pixel groups of the reference image to their corresponding
groups in the registered image, the parametersΘreg

k are computed using the sample
mean (4) and the sample covariance matrix (5).

Once model inference is accomplished, the Bhattacharyya distance between the
components of the Student’st-mixtures is minimized. The difference with respect
to the GMM is that the covariance matrices are properly scaled by the Gamma
distributed parametersu as it is defined in equations (7)-(8).

Finally, let us notice that the energy in (2) may be applied to both single and multi-
modal image registration. In the latter case, the difference in the mean values of the
distributions in (3) should be ignored, as we do not search to match the correspond-
ing Student’st-distributions in position but only in shape. In that case, the distance
in (3) becomes:

B(Θ1, Θ2) = ln


 |Σ1+Σ2

2
|√

|Σ1||Σ2|


 (18)

which is equivalent to a correlation coefficient between the two distributions.

4 Robust registration of point sets with mixtures of Student’st-distributions

An extension of the registration algorithm to handle point sets is described in this
section. Given two sets of pointsX andY such thatY is derived fromX after
applying a rigid transformationTS with parametersS, that isY = TS(X), the
problem consists in estimating the transformation parameters from the two data
sets without prior knowledge on any correspondence. In fact, in our formulation,
there could be no exact correspondence at all due to noise or outlying points.

Let us denotep(x) the density at a pointx ∈ X and assume that it is expressed by
a GMM of M components:

p(x) =
M∑

j=1

πx
jN (x|µx

j , Σ
x
j ). (19)
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By the same assumption, the density at a pointy ∈ Y is given by another GMM:

q(y) =
N∑

j=1

πy
jN (y|µy

j , Σ
y
j ). (20)

Considering the transformed point set distribution aspR,t(x), whereR is the rota-
tion matrix antt is the translation vector, that is

pR,t(x) =
M∑

i=1

πx
i N (x|Rµx

i + t, RΣx
i R

T ), (21)

we seek to minimize the energy function:

D(pR,t, q) =
∫

[pR,t(z)− q(z)]2dz (22)

with respect toR andt. More specifically, we seek to match the continuous shapes
of the mixturespR,t andq over their region of support. Equation (22) may be sim-
plified:

D(pR,t, q) =
∫ [

p2
R,t(z) + q2(z)− 2pR,t(z)q(z)

]
dz (23)

The first two terms are invariant under rigid transformation and therefore, the above
expression yields the maximum of the product of the two distributions over the
whole sets of points. This is equivalent to maximizing the correlation between the
pdfs. The cross term may be also expressed as[21]:

∫ ∫
pR,t(x)q(y)dxdy =

M∑

i=1

N∑

j=1

πx
i πy

jN (0|Rµx
i + t− µy

j , RΣx
i R

T + Σy
j ) (24)

meaning that given theith component from the frst mixture and thejth component
from the second mixture, each term of the sum is evaluated as a Gaussian pdf with
mean vectorRµx

i + t− µy
j and covariance matrixRΣx

i R
T + Σy

j atx = 0.

Replacing the GMMs by the more robust SMMs in the above equations (19) and
(20) leads to a better modeling of the point sets. Figures 2 and 3 illustrate the
performance of a mixture of Student’st-mixture with respect to a standard GMM
to model a2D point set. In the original set, both methods correctly captured the
shape of the data (fig. 2). On the other hand, when a small amount of outliers (5%)
was present in the set the GMM failed to provide a satisfactory solution while the
heavier tailed SMM correctly modeled the point sets (fig. 3). Thus, SMM seems to
be a preferable model for density-based point set registration.

An alternative approach would be to provide a model for the outliers using a GMM
with a background component or, generally, a probabilistic a model for false ob-
servations [29,6]. However, as it will be shown in the experimental results, if the
background outliers are not uniformly or normally distributed this approach has its
limitations.
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Fig. 2. A 2D point set and the obtained models (a) GMM and (b) SMM.
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Fig. 3. The point set of figure 2 with5% outliers and the obtained models by (a) GMM and
(b) SMM. Notice that the GMM solution is affected by the outliers while the SMM is more
robust.

Let us denote that the above formulas also apply for the registration of point sets us-
ing the mixtures of Student’st-distributions by properly computing the components
mean vectors and covariance matrices following the definition of the distributions
(7)-(8) and the respective EM algorithm described in section 3.

5 Experimental results

A large number of interpolations are involved in the registration process. The ac-
curacy of the rotation and translation parameter estimates is directly related to the
accuracy of the underlying interpolation model. Simple approaches such as the
nearest neighbor interpolation are commonly used because they are fast and simple
to implement, though they produce images with noticeable artifacts. More satis-
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factory results can be obtained by small-kernel cubic convolution techniques. In
our experiments, we have applied a cubic interpolation scheme, thus preserving the
quality of the image to be registered.

The Matlab optimization toolbox was used to perform optimization. In particular
we tested the algorithm with a derivative free optimization algorithm (simplex) and
a Quasi-Newton algorithm (BFGS) with a numerical calculation of the derivatives.
Notice that the methods mentioned perform only local optimization, thus depending
the final result highly with the initial starting point. Global optimization methods
may also be considered but they are highly time consuming.

5.1 Image registration

In order to evaluate the proposed method, we have performed a number of exper-
iments in some relatively difficult registration problems. Registration errors were
computed in terms of pixels and not in terms of transformation parameters. Regis-
tration accuracies in terms of rotation angles and translation vectors are not easily
evaluated due to parameter coupling. Therefore, the registration errors are defined
as deviations of the corners of the registered image with respect to the ground truth
position. Let us notice that these registration errors are less forgiving at the corners
of the image (where their values are larger) with regard to the center of the image
frame.

At first, we have simulated a multimodal image registration example. The image
in 4(a) is an artificial piecewise constant image. The image in 4(b) is its negative
image. The image in 4(a) was degraded by uniformly distributed noise in order
to achieve various SNR values (between14 dB and−1 dB). The degraded im-
ages underwent several rigid transformations by rotation angles varying between
[0, 20] degrees and translation parameters between[−15, 10] pixels. To investigate
the robustness the proposed method to outliers we have applied the algorithm with
K = 3 components considering both GMMs and SMMs, and 256 histogram bins
in the case of the normalized MI. Figure 5 illustrates the average registration errors
for the different SNR values. For each SNR, four different transformations were
applied to the image and the average value of the registration error is presented.
For comparison purposes, the performance of the MI method is also shown. As it
can be observed, both the GMM and the SMM-based registration methods outper-
form the MI which fails when the SNR is low. Moreover, the heavier tailed SMM
demonstrates better performance for considerable amounts of noise.

Furthermore, let us notice that the proposed energy function involving the Bat-
tacharyya distances is convex around the true minimum (fig. 6) as it is also the case
for the MI [32].

An open issue in mixture modeling is the determination of the number of com-
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(a) (b) (c)

(d) (e) (f)

Fig. 4. (a) A three-class piecewise constant image with intensity values30, 125 and220,
and (b) its negative image (corresponding values,225, 130 and35). (c) The image in (a)
degraded by uniform noise at14 dB. This image was then registered to the image in (b).
The bottom line shows the registration errors for the compared methods. The ground truth
solution is0 deg for the rotation and zero translation (the original image). (d) MI, (e)
GMM, (f) SMM. The errors present the difference between the noise free registered image
and the reference image. the values are scaled for better visualization.
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Fig. 5. Mean registration error versus signal to noise ratio (SNR) for the 3-class registration
experiment of figure 4.

ponents. In our experiments, in the case of non artificial images, the number of
components is unknown. If the number of components of the mixtures is neither
to high (overfitting) nor to low (underfitting) with respect to the ground truth the
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Fig. 6. The objective function in eq. (2) for the registration of the image of figure 4(a) with
its counterpart rotated by 20 degrees and translated by 10 pixels.

Table 1
Statistics on the registration errors for the images in fig. 7 with varying number of mixture
components. The errors are expressed in pixels.

Registration errors - Cell images

K mean st. dev. median max min

MI 256 bins 3.663 0.957 4.019 4.25 1.461

SMM 2 3.157 0.009 3.153 3.178 3.150

SMM 3 2.955 0.636 3.148 3.178 1.146

SMM 4 2.956 0.604 3.159 3.101 1.146

SMM 5 2.953 0.640 3.152 3.177 1.132

registration accuracy is not affected by that parameter. In order to demonstrate it,
we have performed the experiments involving non artificial images by varying the
number of components in the experiments.

In that framework, the proposed registration method was tested on a multimodal
image pair such as the cell images in fig. 7. The complimentary but not redundant
information carried by the multimodal images increases the difficulty of the reg-
istration process. In both experiments we have applied 20 rigid transformations to
one of the images, for each configuration of the transformation parameters, with
rotation angles varying between[0, 20] degrees and translation parameters between
[−15, 10] pixels.

The experiments in the case of the images in figure 7 were realized with the number
of components varying fromK = 2 to K = 5. For the MI we used 256 histogram
bins. Table 1 summarizes the statistics on the registration errors. As it can be ob-
served, the SMM method achieves highly better registration accuracy. Also, the
number of components did not significantly affect the registration accuracy.
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(a) (b)

Fig. 7. A pair of NIH 3T3 electron microscope images (400x magnification) of rat cells
under (a) normal and (b) fluorescent light.

(a) (b)

Fig. 8. (a) Image of Europe on 8 January 2007 at 01h00, provided by MeteoSat. (b) Image of
Europe on 9 January 2007 at 01h00, provided by MeteoSat (by courtesy of Meteo-France).
Notice the large amount of outliers (cloudy regions in different locations in the image pair)
introducing important difficulties in the registration process.

A last experiment demonstrating the ability of the proposed SMM method to deal
with outliers is the registration of a remotely sensed image pair. The meteorolog-
ical images of Europe in fig. 8 were acquired at different dates. The image in fig.
8(b) underwent 20 rigid transformations for each parameter instance, with values
of rotation angle uniformly sampled in the interval[0, 20] degrees and translations
between[−15, 10] pixels. The experiments were realized with the number of com-
ponents varying betweenK = 2 andK = 6 for GMM and SMM and 256 bins for
the MI.

The large amount of clouds at different locations in the image pair introduce dif-
ficulties in the registration procedure. It is worth commenting that the MI method
failed to register the images and systematically provided registration errors of the
order of6 pixels. The SMM method produced very small registration errors which
are summarized in table 2.
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Table 2
Statistics on the registration errors for the images in fig. 8 with varying number of mixture
components. The errors are expressed in pixels.

Registration errors - Satellite images

K mean st. dev. median max min

MI 256 bins 6.742 1.493 7.463 7.733 3.565

SMM 2 2.975 0.013 2.979 2.991 2.951

SMM 3 1.857 1.202 1.251 3.653 1.283

SMM 4 2.129 2.289 2.960 3.651 1.359

SMM 5 1.208 0.237 1.142 1.999 1.141

SMM 6 1.210 0.238 1.145 2.001 1.142

5.2 Registration of point sets

In order to evaluate the proposed point set registration method we have performed
three types of experiments. At first, a 2D set of 600 points was generated from three
different Gaussian distributions with means(−16, 9), (0, 5) and18, 9 and spherical
covariance matrices with the standard deviation being2 in each dimension. The
point set underwent rotations varying between[−90◦, 90◦] and translations varying
between[−100, 100] in both dimensions. In all of the cases the proposed algorithm
provided solutions close to the true transformation parameters. The registration er-
ror was measured as the average distance between the points transformed by the
true parameters and the points obtained by the estimated transformation. In all
cases, the order of the registration error was approximatively10−6. This experi-
ment was repeated for increased number of non overlapping components and the
previous results were confirmed.

A second experiment consisted in comparing the SMM not only to a typical GMM
but also to a GMM having an extra background component (called GMMb) in or-
der to model the outliers. This is a standard technique to capture the distribution
of outliers and it is also proposed in [29,6]. We have observed that when the out-
liers are normally or uniformly distributed the performance of the two approaches
(GMMb and SMM) is similar because the fourth component is a good model for
outliers. However, if the outliers aresignal-dependentthe fourth component does
not provide the optimal solution.

In our experiments, the previous point set was corrupted by outlying data from
1% up to 15%. Each of the three set of points was corrupted by a uniform noise
having range the double of the initial range of the points generated by the respec-
tive component. By these means, the outliers are sparsely distributed around each
component. Also,1% extra outliers were globaly added to make the problem more
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challenging. For each configuration of the percentage of the outliers,5 registration
experiments were performed with random translation and rotation parameters. A
representative example for9% of points being contaminated is shown in figure 9.
In figure 10, the results for the registration errors are summarized. As it can be
observed, although the GMMb performs better than the standard GMM due to its
background component, the SMM provides smaller registration errors consistently.
This behavior is easily explained by the shapes of the ellipses in figures 9(b) and
9(c). Both the GMMb and the SMM estimated small covariances but in GMMb
the orientations of the ellipses diverge more from the noise-free case. Finally, it
is worth noticing that the standard ICP registration algorithm fails in all cases to
provide an acceptable registration.
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Fig. 9. Example of a set of points used in the experiments. (a) A point set (presented by dots)
was generated by 3 Gaussians with means(−16, 9), (0, 5), (18, 9) and spherical covariance
matrices of standard deviation2. The points were corrupted with9% outliers. The resulting
modeling of the noisy set by (b) a 3-component GMM, (c) a 4-component GMM with the
fourth component modeling the distribution of outliers and (d) a 3-component SMM.

Finally, we have tested the efficiency of the proposed method to the registration
of shapedor structuredpoint sets, contrary to the scattered points of the previ-
ous example. This type of problems may come up from many computer vision
applications such as comparison of trajectories in object tracking or shape dis-
crimination and the presence of outliers makes registration difficult even if a good
initialization is provided. To this end, we have applied the registration algorithm
to data from theGaitor Bait 100data base (as provided by the Department of
Computer and Information Science and Engineering, University of Florida, USA,
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Fig. 10. Registration error as a function of outliers for the experiment presented in figure 9.

http://www.cise.ufl.edu/).

In this experimental setting, we begin by illustrating the differences of the com-
pared methods (GMM and SMM) in capturing the data. At first, the same shape,
was modeled by a GMM (fig. 11(a)) and an SMM (fig. 11(b)) both withK = 30
components. The methods employed the same initialization by the the K-means
clustering algorithm. As it can be observed, both methods provided similar approx-
imations. Consequently, the registration algorithm is not affected and the compared
methods (GMM and SMM) provide equivalently good performances.

We then eliminated a certain amount of points by to simulate missing data and
added outliers to the remaining points. In that case, we also used the the same
K-means initialization which naturally provided a certain number of centers that
captured the structure of the outliers. However, in any case, the SMM modeled
the degraded data better than the GMM by eliminating the majority of erroneous
centers, due to its heavier tails. A representative example is presented in figures
11(c) and 11(d) where the missing data percentage is20% and the percentage of
outliers is10%. In these figures, one can observe that the GMM finally provided
two noisy components of relatively large covariance. On the other hand, due to the
heavier tails of the SMM components, not only more outlier points were absorbed
by the components located on the fish shape, but also the erroneous component
has smaller support. This is important in a registration procedure because theL2

distance in eq. (24) will be less influenced in the case of the SMM, as indicated by
the experiments that follow.

The original point set was artificially rotated, translated and corrupted by outliers
at 15%. The transformed point set was then registered to its original, noise free
counterpart. We have compared the proposed GMM and SMM algorithms with the
ICP by initializing them from the ground truth. The results are summarized in table
3, where it is clear that both of the proposed methods (GMM and SMM) perform

19



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

(a) (b)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(c) (d)

Fig. 11. Modeling of ashapedpoint set from theGator Bait 100data base by (a) GMM with
K = 30 components and (b) SMM withK = 30 components. Notice that the two models
provided similar solutions. The bottom row shows the modeling of the point set with20%
missing points and10% outliers by (c) GMM and (d) SMM. Notice that the solution of
the SMM was less affected. In all cases the mixtures were similarly initialized using the
K-means algorithm. The axes in (c) and (d) are normalized to the range of the outliers.

better than the ICP. Also, SMM is more accurate than the less robust GMM. It is
worth noticing that the ICP algorithm, as it is sensible to initialization, is always
trapped around the same minimum.

6 Conclusion

In this paper, we have shown how a mixture model consisting of Students’st com-
ponents may be efficiently used for registering images and point sets. We have
shown the effectiveness and accuracy of the proposed method especially with im-
ages presenting dissimilarities where the mutual information method fails to cor-
rectly register the two images. The same is confirmed for point sets where the stan-
dard ICP algorithm fails in such setups.
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Table 3
Registration errors for theshapedpoint set of figure 11 when it is corrupted by15%

outliers.

Method mean st. dev. median max min

ICP 40.3784 15.8546 43.6067 58.0508 10.3555

GMM (K = 15) 2.6950 1.5169 2.8450 5.1540 0.5894

SMM (K = 15) 2.1136 0.8052 1.8880 3.5104 1.2366

GMM (K = 20) 2.4334 1.1380 2.4886 4.5563 0.9656

SMM (K = 20) 1.9506 0.9084 2.0361 3.4830 0.5927

Let us also notice that Student’st-mixtures overcome the binning problem of his-
togram based methods and provide a continuous model of the image density. When
successfully trained, they produce a sensible approximation of the pdf of the im-
age intensity, by placing density components in a sensibledata-drivenway (i.e on
intensity regions exhibiting high density). Although there is still the problem of
specifying the number of components in finite mixture modeling, our experimen-
tal results indicated that our SMM-based method is robust from this point of view,
provided that the number of components is neither very big (overfitting) nor very
small (underfitting).

Vector valued images or point data are expected to benefit from this registration
technique where the employment of high-dimensional joint histograms makes the
use of standard methods prohibitive.

Important open questions for mixture-based registration are how the number of
model components can be selected automatically [7] and which features, apart from
image intensity, should be used. These are open issues of ongoing research [11].
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[16] F. Heitz, H. Mâıtre, C. de Couessin, Event detection in multisource imaging:
application to fine arts painting analysis, IEEE Transactions on Acoustic, Speech and
Signal Processing 38 (4) (1990) 695–704.

[17] P. Hellier, Consistent intensity correction of MR images, in: Proceedings of the 2003
IEEE International Conference on Image Processing (ICIP’03), vol. 1, Barcelona,
Spain, 2003.

[18] M. Herbin, A. Venot, J. Y. Devaux, E. Walter, F. Lebruchec, L. Dubertet, J. C.
Roucayrol, Automated registration of dissimilar images: application to medical
imagery, Computer Vision, Graphics and Image Processing 47 (1989) 77–88.

[19] G. Hermosillo, O. Faugeras, Dense image matching with global and local statistical
criteria, in: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’01), vol. 1, Los Alamitos, USA, 2001.

[20] J. R. Jensen, Introductory digital image processing: a remote sensing perspective, 3rd
ed., Prentice Hall, 2004.

22



[21] B. Jian, B. C. Vemuri, A robust algorithm for point set registration using mixture of
Gaussians, in: Proceedings of the10th International Conference on Computer Vision
(ICCV’05), Beijing, China, 2005.

[22] M. Leventon, E. Grimson, Multi-modal volume registration using joint intensity
distributions, in: Proceedings of the Medical Image Computing and Computer
Assisted Intervention Conference (MICCAI’98), Cambridge, Massachussetts, USA,
1998.

[23] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, Multimodality
image registration by maximization of mutual information, IEEE Transactions on
Medical Imaging 16 (2) (1997) 187–198.

[24] J. B. A. Maintz, M. A. Viergever, A survey of medical image registration techniques,
Medical Image Analysis 2 (1) (1998) 1–36.

[25] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, W. Eubank, Nonrigid
multimodality image registration, in: K. Hanson (ed.), Proceedings of the 2001 SPIE
Medical Imaging Conference, vol. 4322, San Diego, USA, 2003.

[26] G. McLachlan, Finite mixture models, Wiley-Interscience, 2000.
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