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A Joint Physics-Based Statistical Deformable Model
for Multimodal Brain Image Analysis

Christophoros Nikou, Associate Member, IEEE, Gloria Bueno, Fabrice Heitz*, and Jean-Paul Armspach

Abstract—A probabilistic deformable model for the represen-
tation of multiple brain structures is described. The statistically
learned deformable model represents the relative location of
different anatomical surfaces in brain magnetic resonance images
(MRIs) and accommodates their significant variability across
different individuals. The surfaces of each anatomical structure
are parameterized by the amplitudes of the vibration modes of
a deformable spherical mesh. For a given MRI in the training
set, a vector containing the largest vibration modes describing
the different deformable surfaces is created. This random vector
is statistically constrained by retaining the most significant
variation modes of its Karhunen–Loève expansion on the training
population. By these means, the conjunction of surfaces are
deformed according to the anatomical variability observed in the
training set. Two applications of the joint probabilistic deformable
model are presented: isolation of the brain from MRI using the
probabilistic constraints embedded in the model and deformable
model-based registration of three-dimensional multimodal (mag-
netic resonance/single photon emission computed tomography)
brain images without removing nonbrain structures. The multi-
object deformable model may be considered as a first step toward
the development of a general purpose probabilistic anatomical
atlas of the brain.

Index Terms—Brain isolation, image registration, magnetic res-
onance imaging (MRI), physically based deformable model, single
photon emission computed tomography (SPECT), statistical shape
models.
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I. INTRODUCTION

I N MEDICAL image analysis, deformable models offer
a powerful approach to accommodate the significant

variability of biological structures over time and across dif-
ferent individuals [1]. A survey on deformable models as a
promising computer-assisted medical image analysis technique
has recently been presented in [2]. Deformable models have
principally been used to describe and characterize pathological
shape deformations [3], [4], to register single modal images
[5], [6], to label and segment different anatomical structures
[7]–[9], or to track temporal structure deformations [10].

We present a three-dimensional (3-D) statistical deformable
model (SDM) carrying information on multiple anatomical
structures for multimodal brain image processing. The anatom-
ical structures taken into consideration are head (skull and
scalp), brain, ventricles, and cerebellum. Our goal is to describe
the spatial relations between these anatomical structures as well
as the biological shape variations observed over a representative
population of individuals.

In the proposed approach, the surfaces of the anatomical
structures of interest are first extracted from a training set of 3-D
magnetic resonance imaging (MRI). To this end, a 24-patient
training set is aligned in the same reference coordinate system
and segmented using semi-automatic segmentation algorithms.
Each segmented surface is parameterized by the amplitudes
of the vibration modes of a physically based deformable
model [10], [11] and a joint model is constructed for the
different anatomical structures. The joint model is statistically
constrained by a Karhunen–Loève (KL) decomposition of the
vibration mode parameters. By these means, the spatial relation
between the different structures, as well as the anatomical
variability observed in the training set are compactly described
by a limited number of parameters. The resulting joint SDM
may be considered as a first step toward the development of
a general purpose probabilistic atlas of the brain, for various
applications in medical image analysis (segmentation, labeling,
registration, and pathology characterization).

Two preliminary applications of the probabilistic deformable
model are presented in this paper.

• The isolation of the brain [intracranial cavity (ICC)] from
MRI using the probabilistic constraints embedded in the
joint deformable model.

• The deformable model-based rigid registration of 3-D
multimodal (MR/SPECT) brain images by optimizing an
energy function relying on the chamfer distance between
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the statistically constrained model parts and the image
data.

As related to our work, we have to mention the seminal
research of Cooteset al. [12] on point distribution models
(PDMs), which has strongly influenced the presented devel-
opments. In the PDM, two-dimensional shapes are described
by the statistical distribution (over a training population) of
selected boundary points. The statistical training of PDMs
requires an exact point-to-point correspondence between
the boundary points selected on different shapes. Manual
point-to-point correspondence [12] becomes tedious or even
unfeasible for 3-D shapes. Therefore, 3-D extensions of PDMs
have been limited in practice to multislice models, but not
to fully 3-D representations [7]. However, in the last two
years, several techniques have been proposed to automate the
extraction of features to be used as input to a PDM [13], [14].

Physics-based shape parameterizations [11], [10], [15] over-
come these shortcomings by hierarchically describing a 3-D
structure as the ordered superimposition of vibrations (of dif-
ferent frequencies) of an initial mesh. This approach is akin
to the recent, independently published work of Kelemenet al.
[8], who make use of a truncated hierarchical shape representa-
tion based on spherical harmonics. In contrast to standard PDM
learning procedures, the shape statistics are calculated in the
space of shape parameters rather than on point coordinates. To
obtain a consistent learning of variability, all the shapes in the
training set are first aligned in a reference coordinate system
(the standard Talairach stereotactic system is for instance used
in [8]). Small remaining misalignments (in translation and rota-
tion) with respect to the reference coordinate system are learned
with the statistical model. The model is, thus, robust to small
misregistration in rotation and translation. The most prominent
distinction from [8] is that in [8] the different cerebral structures
are modeled and segmented independently, whereas in the pro-
posed model, the different 3-D cerebral structures are param-
eterized in conjunction and included in a single (joint) statis-
tical model. In the presented applications of the joint statistical
model, the spatial and statistical relationships between the dif-
ferent model parts (skull and brain in particular) are strongly
used to guide the segmentation and registration procedures.

The remainder of this paper is organized as follows: in
Section II, the parameterization of the anatomical structures
by the vibration modes of a spherical mesh is presented. The
statistical training procedure is described in Section III. The ap-
plications of the probabilistic model to 3-D segmentation (brain
isolation) and to multimodal (MRI/SPECT) image registration
are presented in Section IV. This section includes experimental
results on real data, with the 24-patients trained model. The
performances of the model for 3-D image segmentation and
multimodal volume registration have been assessed on 25
MRI/SPECT image pairs not belonging to the training set.

II. THREE–DIMENSIONAL PHYSICS-BASED DEFORMABLE

MODELING

A. Pre-Processing of the Data Base

To provide a training set, a representative collection of 24
3-D MRI volumes of different patients have first been registered

to a reference image using an unsupervised (robust) registra-
tion technique described in [16]. This initial registration step
compensates for 3-D rotation, translation and scaling, which
are not taken into account in the statistical model variability.
All images are then referenced in the same coordinate system.
As stated in [8], a major difficulty of application of statistical
parametric models is the efficient establishment of correspon-
dence between the different examples of the training set. A stan-
dard choice is the stereotactic reference coordinate system pro-
posed by Talairach [8]. The use of this coordinate system re-
quires the identification of the symmetry plane of the brain, as
well as the position of the anterior and posterior commissures
line (AC–PC), generally performed manually. To avoid tedious
manual interaction on large data bases, we have resorted to au-
tomatic alignment procedures [16], which seem to provide a sat-
isfactory alignment of the training volumes, as assessed by the
experimental results. The same alignment is also applied to all
the patient data processed in Section IV. We currently investigate
other approaches for an automatic definition of the reference co-
ordinate system and of the model parameterization to obtain an
underlying Gaussian (zero mean) parameter distribution (as ex-
pected in the KL decomposition) [17].

Another issue concerns the cut-off of the bottom of the head.
As can be seen on Fig. 4, this cut-off is highly variable, since it
depends only on the position of the patient in the scan. At the
present time, we have only a reduced number of 24 representa-
tive available examples in the training data base. The variability
generated by head cut-off was, thus, not represented in the statis-
tical model. All the training and patient data were, thus, normal-
ized, by cutting all heads approximately at the same location.

The four considered anatomical structures (head, brain, ven-
tricles, cerebellum) were then segmented, for each volume of the
data base, using region-growing and semi-automatic techniques
based on binary and grey-level morphological tools [18].

B. Parameterization by Physics-Based Deformation Modes

Each segmented anatomical structure was separately pa-
rameterized by the amplitudes of the vibration modes of a
physics-based deformable model [10]. Following the approach
of Nastaret al. [10], the model for a given structure consists of
3-D points sampled on a spherical surface, following a quadri-
lateral cylinder topology in order to avoid singularities due to
the poles (we refer to [10] for details on this representation).
Each node has a massand is connected to its four neighbors
with springs of stiffness . The model nodes are stacked in
vector

(1)

where is the number of points in the direction of the geo-
graphical longitude and is the number of points in the di-
rection of the geographical latitude of the sphere. The physical
model is characterized by its mass matrix, its stiffness matrix

and its dumping matrix and its governing equation may be
written as [11]

(2)
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where stands for the nodal displacements of the initial mesh
. The image force vector is based on the Euclidean distance

between the mesh nodes and their nearest contour points [19].
Since (2) is of order , where is the total number

of nodes of the spherical mesh, it is solved in a subspace corre-
sponding to the truncated vibration modes of the deformable
structure, [10], [11]. The number of vibration modes retained
in the object description, was chosen so as to obtain a compact
but adequately accurate representation. A typicala priori value
covering many types of standard deformations is the quarter of
the number of degrees of freedom (DOFs) in the system (i.e.,
25% of the modes were kept). The number of DOFs of the
original mesh, for all of the considered surfaces, 4, was

4 3 100 100 120 000. In the vibra-
tion modes subspace, this number was then reduced to

3 10 000 30 000.
To solve (2) in the subspace corresponding to the truncated

vibration modes the following change of basis is used:

(3)

where
vector;
matrix;
th column of ;
th scalar component of vector.

By choosing as the matrix whose columns are the eigenvec-
tors of the eigenproblem

(4)

and using the standard Rayleigh hypothesis [10], matrices,
, and are simultaneously diagonalized

(5)

where is the diagonal matrix whose elements are the eigen-
values and is the identity matrix.

An important advantage of this formulation is that the eigen-
vectors and the eigenvalues of a quadrilateral mesh with cylinder
topology have an explicit expression [20] and they do not have
to be computed by slower eigendecomposition techniques (gen-
erally matrices and are very large). The eigenvalues are
given by

(6)

and the eigenvectors are obtained by

(7)

with and .
Substituting (3) into (2) and premultiplying by yields

(8)

where and .

In many computer vision applications [11], when the initial
and the final state are known, it is assumed that a constant load

is applied to the body. Thus, (2) is called the equilibrium
governing equation and corresponds to the static problem

(9)

In the new basis, (9) is, thus, simplified to scalar equa-
tions

(10)

In (10), designates theth eigenvalue, the scalar is the am-
plitude of the corresponding vibration mode (corresponding to
eigenvector ). Equation (10), indicates that instead of com-
puting the displacements vector from (9), we can compute
its decomposition in terms of the vibration modes of the orig-
inal mesh.

Fig. 1 shows the vibration modes based parameterization of
the four different anatomical surfaces considered here, for a
subject belonging to the training set. The 25% lowest frequency
modes were retained for this representation. Although not
providing a high-resolution description of the surfaces, this
truncated representation provides a satisfactory compromise
between accuracy and complexity of the representation. The
spherical model is initialized around the structures of interest
[Fig. 1(a), (d), (g), and (j)]. The vibration amplitudes are
explicitly computed by (10), where rigid body modes ( 0)
are discarded and the nodal displacements may be recovered
using (3). The physical representation is finally given
by applying the deformations to the initial spherical mesh
[Fig. 1(b)–(c), (e)–(f), (h)–(i), and (k)–(l)]

(11)

Thus, the different surfaces of a particular patient are hierar-
chically described in terms of vibrations of an initial spherical
mesh. The next step consists in applying the above parameteri-
zation to each patient of the training set and to perform statistical
learning for the anatomical structures taken into consideration.

III. STATISTICAL TRAINING: THE JOINT MODEL

For each image ( 24) in the training set,
a vector containing the lowest frequency vibration modes
describing the different 4 anatomical structures is created

(12)

where

(13)

with . In the joint statistical model con-
structed here, the first structure ( 1) corresponds to the head,
the second to the brain, the third to the ventricles and the last one
( 4) to the cerebellum.

Random vector is statistically constrained by retaining the
most significant variation modes in its KL transform [12], [21],
[15]

(14)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1. Parameterization of the different anatomical structures from 3-D MRI. The first column shows the initial spherical mesh superimposed on the structures
to be parameterized. Structures are shown in a multiplanar (sagittal, coronal, transversal) view. The middle column presents a multiplanar view of the deformable
models at equilibrium (25% of the vibration modes are kept). The last column shows 3-D renderings of the physically based models. The rows from top to bottom
correspond to: (a)–(c) head, (d)–(f) brain, (g)–(i) ventricles and(j)–(l) cerebellum.

where

(15)

is the average vector of vibration amplitudes of the structures
belonging to the training set, is the matrix whose columns

are the eigenvectors of the covariance matrix

(16)

and

(17)

are the coordinates of in the eigenvector basis.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Deformations of the 3-D joint model by varying the first two statistical modes in vectorb between�
p

� and
p

� ; i = 1, 2.� designates theith
eigenvalue of the covariance matrix�. Each image shows a multiplanar (sagittal, coronal, transversal) view of the 3-D model. (a)b[1] = �3

p
� . (b)b[1] = 0.

(c) b[1] = 3
p

� . (d)b[2] = �3
p

� . (e)b[2] = 0. (f) b[2] = 3
p

� .

The joint deformable model is finally parameterized by the
most significant statistical deformation modes stacked in vector

. By modifying , the set of anatomical structures is deformed
in conjunction (Fig. 2), according to the anatomical variability
observed in the training set. The multiobject deformable model
describes the spatial relationships between the considered sur-
faces of a subject as well as their shape variations.

Given a set of 4 initial spherical meshes, corresponding
to the number of structures described by the joint model

... (18)

the SDM is, thus, represented by

(19)

Combining (14) and (19), we have

(20)

where

...
...

.. .
...

(21)

...
... (22)

In (21) and (22), the columns of any matrix
are the eigenvectors of the spherical mesh describing sur-

face . Each matrix describes also the statistical
dependencies between the structures deformations observed in
the training set. Each vector is of order and vector

has a low dimension .
As can be seen in Table I, with theKL representation, only

a few parameters are necessary to describe the variations in
the training population (Fig. 2). For instance, seven parameters
carry approximately 95% of the global information. In practice,
we keep parameters for this representation (another cri-
terion for ordering the deformation modes, based on maximal
local deformations is proposed in [8]).
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TABLE I
PERCENTAGE OF THEGLOBAL INFORMATION CARRIED BY THE DIFFERENT

EIGENVALUES ASSOCIATEDWITH THE STATISTICAL MODEL. THE NUMBER OF

NONZEROEIGENVALUES IS 24

Finally in theKL subspace the DOFs are reduced to
achieving a compression ratio of 12 000 : 1. This compression
ratio enables a compact description of shape variability, and
results in a tractable constrained deformable model for brain
image segmentation and registration, as described in Section IV.

IV. A PPLICATION TO3-D SEGMENTATION AND REGISTRATION

Several applications of the statistical model may be consid-
ered in brain image processing. The model may be used as a
simplified anatomical representation of the images belonging
to the training set. If the training set is representative enough
of a population, the model may also be used to analyze images
of patients not belonging to the training set. To this end, the 24
subjects of our data base were carefully selected, with the aid of
an expert neurologist. Additionally, the data base is conceived
in such a way that it can be incrementally augmented by new
elements.

We describe here two applications of the joint statistical
model: the isolation of the brain (the ICC) from 3-D MRI and
the registration of multimodal (MRI/SPECT) brain images.

Before presenting these two applications, let us notice that the
equation describing the configuration of the statistical model

(23)

may be separated into coupled equations describing the dif-
ferent anatomical parts of the model

...
...

... (24)

A. Deformable Model-Based Segmentation

In this section, we present a first application of the statis-
tical model, corresponding to the segmentation of the ICC, also
called brain isolation.

In order to segment the ICC from a patient MRI volume,
not belonging to the training set, the patient head is first pa-
rameterized by the physics-based model. The head structure is
easily segmented from its background by simple thresholding

and region growing algorithms. The segmented head surface is
parameterized by the amplitudes of the vibration modes of a
spherical mesh, as already explained in Section II. The spherical
mesh is initialized around the head structure and (2) is solved in
the modal subspace. Let us recall that for the formulation used
below, the head structure is considered as the first structure de-
scribed by the model ( 1). According to (10), the solution
for the vibration amplitudes describing the patient head surface
is

(25)

for . The head surface coordinates are obtained
by introducing vector in (11)

(26)

The next step consists in determining the statistical model
parameters that best describe the segmented head surface

(27)

System (27) is overconstrained: there are equations
(the head surface coordinates ) and unknowns (the com-
ponents of ). The overconstrained system is solved by standard
least-squares, yielding the following pseudoinverse solution for
the deformation parameter

(28)

The other patient anatomical structures surfaces (brain, etc.) are
then recovered by introducing the estimated parameterin
(24), describing the other parts ( 2, 3, 4) of the statistical
model

...
...

... (29)

Equation (29) providesa prediction of the location of the con-
sidered surfaces, obtained by exploiting the spatial relationships
between the head and the other anatomical structures, coded in
the learned statistical representation. This initial prediction may
be further refined by standard iterative refinement algorithms
such as energy-based approaches [22], iterative closest point
techniques [23] or grey-level profile matching [8]. This refine-
ment step has not been considered here, to separately evaluate
the contribution of the statistical information embedded in the
learned statistical representation.

To summarize, the overall segmentation algorithm is based
on the following steps.

1) Parameterization of the head surface using (25) and (26).
2) Estimation of the statistical deformation parameters

by solving the regularized overconstrained system (28).
3) Prediction of the brain (ICC) surface by (29).
4) Eventually iterative refinement of the solution to fit more

precisely the data grey-level profile.
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(a) (b) (c)

Fig. 3. Segmentation of a postoperative MRI. (a) Patient MR image with the initial spherical mesh superimposed. (b) Prediction of the different anatomical
structures surfaces using the head surface in (a) and the probabilistic deformable model. (c) Three-dimensional rendering of (b).

Steps 1)–3) take about 5 min cpu time on a standard (HP
9000/C200) workstation for a 128image volume.

B. Results and Validation of Segmentation

This section shows some results of ICC segmentation, on our
3-D database. Fig. 3 presents a typical example of the segmen-
tation from a 3-D MRI, corresponding to a patient not belonging
to the training set. The image in Fig. 3(a) is a postoperative
MRI (exhibiting missing data). In Fig. 3(b), the head surface is
segmented and parameterized by the physics-based deformable
model [eqs. (25) and (26)]. In Fig. 3(c), the head surface coordi-
nates combined with the probabilistic model provide a predic-
tion for the other anatomical structures. The statistical model is
not affected by missing data because its deformations are con-
strained by the statistical analysis of the shape variations ob-
served in the training population.

Experiments show that the initial prediction of the internal
brain structures given by the model requires further refinement
in order to obtain an accurate segmentation (this could be the
topic of a future work). However, the results concerning brain
(ICC) isolation were good enough to take them into considera-
tion, without further improvement of the initial solution.

ICC segmentations results may be qualitatively evaluated in
Fig. 4, on 12 typical MRIs not belonging to the training data
set. The estimated brain contours are superimposed onto the
original 3-D MRIs and the corresponding 3-D surfaces are dis-
played. Quantitative evaluation was carried out on 25 MRIs not
belonging to the training data base. The automatic ICC segmen-
tation obtained with the deformable model was compared with
the results given by expert manual segmentation (considered as
ground truth) using region growing and semi-automatic tech-
niques based on binary and grey-level morphological tools [18].

Several measures have been suggested, to assess the perfor-
mances of segmentation algorithms [8], [24]. Let (ground
truth), denote the segmented volume obtained by human
experts, its complement, the isolated brain obtained
by the SDM-based approach and the number of elements
(voxels) of a set . The following complementary quality
measures have been considered.

• Measures inspired by receiver operating characteristics in
statistical detection theory [24], [25]:
— the sensitivity (also called true positives fraction),

corresponding to the probability of detection defined
here by

(30)

— the specificity, defined as {1 false positives frac-
tion} corresponding to {1 probability of false
alarm}

(31)

— the accuracy defined as the fraction of objectand
background voxels which are segmented properly.
This measure is related to the previous ones by: ac-
curacy {sensitivity actual positives fraction
specificity actual negatives fraction}, and may be
computed by

(32)

• An overlap measure, proposed in [8], defined as

(33)

The overlap measure is also considered as a strong test for
segmentation accuracy, since for example two voxel cubes
of a volume of 10 10 10, shifted by one voxel along
the space diagonal direction results in only 57% overlap
[8].

Table II shows the mean and the standard deviation of these
different quality measures, for the 25 processed MRIs. As can
be seen, the expert segmentation and the automatic brain isola-
tion are in good agreement, for all quality measures. The initial
prediction, provided by the SDM is close to a semi-manual ex-
pert segmentation, without any further refinement.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a)–(f) Brain isolation on 3-D MRIs. The multiplanar view of the isolated brain is superimposed on the original MRI data. A 3-D rendering of the
corresponding surface is also displayed.

C. Multimodal Image Registration

The second application concerns the rigid registration of 3-D
multimodal (MR/SPECT) images. Registration of a multimodal
image pair consists in estimating the rigid transformation pa-
rameters (3-D rotation and translation parameters) that have to

be applied to the image to be registered (here the SPECT image)
in order to match the reference image (here, the MRI).

The registration relies on the head structure in the MRI and
the brain surface in the SPECT image, which are easy to extract
from these two modalities (in contrast to the brain structure in
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(g) (h)

(i) (j)

(k) (l)

Fig. 4. (Continued.) (g)–(l) Brain isolation on 3-D MRIs The multiplanar view of the isolated brain is superimposed on the original MRI data. A 3-D rendering
of the corresponding surface is also displayed.

MRI). These structures do not overlap but the deformable model
represents the relative location of the head and brain contours
and accounts for the anatomical variability observed among the
training population. The deformable model (restricted here to

head and brain surfaces) is used as a probabilistic atlas that con-
strains the rigid registration of the image pair.

The multimodal rigid registration method relies on the fol-
lowing steps:
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TABLE II
VALIDATION OF THE RESULTSISOLATING THE BRAIN FROM 3-D HEAD MRIS

BY USING THE PROBABILISTIC DEFORMABLE MODEL. THE AVERAGE

AND THE STANDARD DEVIATION ARE DISPLAYED FOR THEDIFFERENT

CONSIDEREDQUALITY MEASURES

1) Segmentation of the head structure in MRI and the brain
structure in SPECT from their backgrounds.

2) Brain isolation from the MRI using the segmentation al-
gorithm presented in Section IV-A.

3) Registration of the estimated brain surface with the
SPECT brain surface by optimization of a cost function.

The first step is standard preprocessing for background noise
elimination. The second step estimates the brain surface from
the MRI using the head surface parameterization and the SDM.
By these means, multimodal image registration is also a mea-
sure for the accuracy of the segmentation process. Finally, the
third step brings into alignment the estimated MRI brain surface
and the SPECT image surface by optimization of an objective
function having as variables the rigid transformation parameters
between the two surfaces. Various cost functions may be used in
this step for the registration of binary surfaces. We have applied
the following energy function

(34)

where
rigid transformation with parameters

;
voxel of the SPECT image surface ;
chamfer distance transformation [19] of the part of the
statistical model describing the brain.

For all of the SPECT surface voxels, (34) counts the distance be-
tween a SPECT image surface point and its nearest point on the
deformable model surface. We have chosen chamfer distance
matching because it is fast and it is easily generalized to any
surfaces.

D. Results and Validation of Registration

Fig. 5 shows an example of a MRI/SPECT registration using
the proposed technique. The images in Fig. 5(a) show the two
volumes before registration. The SPECT contours are superim-
posed onto the MRI to qualitatively evaluate the registration.
Fig. 5(b) presents the head and brain surface recovery from the
MRI using the segmentation algorithm described in the previous
section. The matching of the SPECT volume to the part of the
model describing the brain is illustrated in Fig. 5(c). The images
in Fig. 5(d) show the two volumes after registration. As can be
seen, although the MRI and SPECT head and brain contours do
not overlap, the two images have been correctly registered using
the SDM. The whole registration procedure takes about 10 min
cpu time on a HP C200 workstation for a 128image volume.

(a)

(b) (c)

(d)

Fig. 5. MRI/SPECT registration using the deformable model. (a) MRI and
SPECT volumes before registration. The SPECT contours are superimposed
onto the MRI to illustrate the misalignment. (b) Parameterization of the head
structure and estimation of the brain surface of the MR image in (a) using the
statistically constrained deformable model. (c) Registration of the SPECT image
to the part of the statistical model describing the brain surface. (d) MRI and
SPECT volumes after registration. The registered SPECT image contours are
superimposed onto the MRI to illustrate the alignment of the two images.

To quantitatively assess the ability of the physics-based
SDM to handle multimodal image pairs, 15 SPECT image
volumes were manually registered to their corresponding MRI
volume (with the aid of an expert physician) to provide ground
truth. One of the manually registered SPECT volumes was
transformed using simulated translations between20 and

20 voxels and rotations between30 and 30 degrees.
By these means, 25 new images were generated, yielding 25
MRI-SPECT pairs with simulated transformations and 15
original pairs with real transformations and ground truth.

The image pairs were then registered using three different
techniques, and statistics on the registration errors were com-
puted from the different registrations. We have compared our
SDM-based technique with the maximization of the mutual
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TABLE III
MULTIMODAL REGISTRATION OF3-D MRI/SPECT IMAGES. A 3-D SPECT

IMAGE VOLUME MANUALLY PREREGISTERED BY ANEXPERT TOITS MRI
COUNTERPART WASARTIFICIALLY TRANSFORMEDUSING 25 DIFFERENT

TRANSLATION AND ROTATION PARAMETERS. THE AVERAGE AND THE

STANDARD DEVIATION OF THE REGISTRATION ERRORSARE PRESENTED FOR

THE DIFFERENTMETHODS. TRANSLATION ERRORSARE GIVEN IN VOXELS AND

ROTATION ERRORS INDEGREES. SEE TEXT FORTECHNIQUEABBREVIATIONS

TABLE IV
MULTIMODAL REGISTRATION OF3-D MRI/SPECT IMAGES. A 3-D SPECT
IMAGE VOLUME MANUALLY PREREGISTERED BY ANEXPERT TOITS MRI
COUNTERPART WASARTIFICIALLY TRANSFORMEDUSING 25 DIFFERENT

TRANSLATION AND ROTATION PARAMETERS. THE MEDIAN AND MAXIMUM

REGISTRATION ERRORS FOR THERIGID TRANSFORMATIONPARAMETERS ARE

PRESENTED. TRANSLATION ERRORSARE GIVEN IN VOXELS AND ROTATION

ERRORS INDEGREES. SEE TEXT FOR TECHNIQUE ABBREVIATIONS

TABLE V
MULTIMODAL REGISTRATION OFFIFTEEN ORIGINAL 3-D MRI/SPECT IMAGES.

THE AVERAGE AND THE STANDARD DEVIATION OF THE REGISTRATION

ERRORSARE PRESENTED FOR THEDIFFERENTMETHODS. TRANSLATION

ERRORSARE GIVEN IN VOXELS AND ROTATION ERRORS INDEGREES.
SEE TEXT FOR TECHNIQUE ABBREVIATIONS

TABLE VI
MULTIMODAL REGISTRATION OFFIFTEEN ORIGINAL 3-D MRI/SPECT

IMAGES. THE MEDIAN AND MAXIMUM REGISTRATION ERRORS FOR THE

RIGID TRANSFORMATION PARAMETERS ARE PRESENTED. TRANSLATION

ERRORSARE GIVEN IN VOXELS AND ROTATION ERRORS INDEGREES.
SEE TEXT FOR TECHNIQUE ABBREVIATIONS

information (MI) [26] (currently considered as a reference
method) and the robust interimage uniformity criterion (RIU), a
robust statistics voxel-based method, developed by the authors
[16]. Both of the latter techniques have been validated in
previous studies and are robust to missing data, outliers and
large rotations. For each method, the estimated registration
parameters, that is the 3-D translations (, , ) and rotations

( , , ) were compared with ground truth to determine the
accuracy of the registration.

Tables III and IV show the mean, standard deviation, median,
and maximum of the registration errors for the different tech-
niques applied on the 25 image pairs with simulated transforma-
tions. Tables V and VI show the same measures applied on the
15 original MRI-SPECT pairs. As can be seen, the deformable
model-based approach leads to a registration accuracy which is
close to or even outperforms the two other (reference) methods,
both on the simulated examples and on the real cases.

V. CONCLUSION

We have presented a physically based 3-D SDM embedding
information on the spatial relationships and anatomical vari-
ability of multiple anatomical structures, as observed over a
representative training population. The model has been used
to describe different brain structures (head, brain surface,
ventricles, and cerebellum). Preliminary applications of the
SDM included the automatic segmentation of the ICC (brain
isolation) as well as the automatic registration of MRI/SPECT
image pairs. Quantitative validation has shown that a 24-pa-
tients trained model was able to provide automatic accurate
brain isolations and MRI/SPECT registrations on individuals
not belonging to the training set.

The major advantage of statistical models is that they
naturally introducea priori statistical knowledge that provides
useful constraints for ill-posed image processing tasks, such as
image segmentation. Consequently, they are less affected by
noise, missing data or outliers. As an example, the SDM was
applied to the isolation of the brain structure from postoperative
images, in which missing anatomical structures lead standard
voxel-based techniques to erroneous segmentations. The regis-
tration of multimodal brain images was also handled without
performing any preprocessing to remove nonbrain structures.

The SDM presented in this paper may be considered as a first
step toward the development of a general purpose probabilistic
anatomical atlas of the brain, for 3-D segmentation, labeling,
registration and pathology characterization.
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