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A Joint Physics-Based Statistical Deformable Model
for Multimodal Brain Image Analysis
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Abstract—A probabilistic deformable model for the represen- I. INTRODUCTION
tation of multiple brain structures is described. The statistically
learned deformable model represents the relative location of N MEDICAL image analysis, deformable models offer
different anatomical surfaces in brain magnetic resonance images a powerful approach to accommodate the significant

(MRIs) and accommodates their significant variability across ariability of biological structures over time and across dif-
different individuals. The surfaces of each anatomical structure Ya'@diity lologt uctu ver 1 :

are parameterized by the amplitudes of the vibration modes of ferent individuals [1]. A survey on deformable models as a
a deformable spherical mesh. For a given MRI in the training promising computer-assisted medical image analysis technique
set, a vector containing the largest vibration modes describing has recently been presented in [2]. Deformable models have
the different deformable surfaces is created. This random vector incinally been used to describe and characterize pathological
is statistically constrained by retaining the most significant h def ti 31 4] t ist inal dal i
variation modes of its Karhunen—Loéve expansion on the training shape deformations [3], [4], to regls er single mo al Images
population. By these means, the conjunction of surfaces are [5], [6], to label and segment different anatomical structures
deformed according to the anatomical variability observed in the [7]-[9], or to track temporal structure deformations [10].

training set. Two applications of the joint probabilistic deformable We present a three-dimensional (3-D) statistical deformable

model are presented: isolation of the brain from MRI using the ; ; ; ; ;
probabilistic constraints embedded in the model and deformable model (SDM) carrying information on multiple anatomical

model-based registration of three-dimensional multimodal (mag- Structures for multimodal brain image processing. The anatom-
netic resonance/single photon emission computed tomography)lC&' structures taken into consideration are head (SkU" and
brain images without removing nonbrain structures. The multi-  scalp), brain, ventricles, and cerebellum. Our goal is to describe
object deformable model may be considered as a first step toward the spatial relations between these anatomical structures as well
the development of a general purpose probabilistic anatomical 4 he piological shape variations observed over a representative
atlas of the brain. . A

o o _ _ _ population of individuals.

Index'Terms—?l\r/laér;)lsorllatlpn,Hlmsge rdeglsftratlorg),l magr(;etllc Tesi In the proposed approach, the surfaces of the anatomical
onance imaging , physically based deformable model, single : . . _
photon emission computed tomography (SPECT), statistical shape structurgs of interest are f|r§t extracted fromla training set of$ D
models. magnetic resonance imaging (MRI). To this end, a 24-patient

training set is aligned in the same reference coordinate system
and segmented using semi-automatic segmentation algorithms.
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the statistically constrained model parts and the imad¢e a reference image using an unsupervised (robust) registra-
data. tion technique described in [16]. This initial registration step

As related to our work, we have to mention the seminabmpensates for 3-D rotation, translation and scaling, which
research of Cootest al. [12] on point distribution models are not taken into account in the statistical model variability.
(PDMs), which has strongly influenced the presented devélll images are then referenced in the same coordinate system.
opments. In the PDM, two-dimensional shapes are describks stated in [8], a major difficulty of application of statistical
by the statistical distribution (over a training population) oparametric models is the efficient establishment of correspon-
selected boundary points. The statistical training of PDM$ence between the different examples of the training set. A stan-
requires an exact point-to-point correspondence betwedard choice is the stereotactic reference coordinate system pro-
the boundary points selected on different shapes. Manyased by Talairach [8]. The use of this coordinate system re-
point-to-point correspondence [12] becomes tedious or ewvguires the identification of the symmetry plane of the brain, as
unfeasible for 3-D shapes. Therefore, 3-D extensions of PDMgll as the position of the anterior and posterior commissures
have been limited in practice to multislice models, but ndine (AC—PC), generally performed manually. To avoid tedious
to fully 3-D representations [7]. However, in the last twananual interaction on large data bases, we have resorted to au-
years, several techniques have been proposed to automatedhm@tic alignment procedures [16], which seem to provide a sat-
extraction of features to be used as input to a PDM [13], [14]isfactory alignment of the training volumes, as assessed by the

Physics-based shape parameterizations [11], [10], [15] ovexperimental results. The same alignment is also applied to all
come these shortcomings by hierarchically describing a 3tBe patient data processed in Section IV. We currently investigate
structure as the ordered superimposition of vibrations (of difther approaches for an automatic definition of the reference co-
ferent frequencies) of an initial mesh. This approach is akardinate system and of the model parameterization to obtain an
to the recent, independently published work of Kelereeal. underlying Gaussian (zero mean) parameter distribution (as ex-
[8], who make use of a truncated hierarchical shape represenacted in the KL decomposition) [17].
tion based on spherical harmonics. In contrast to standard PDMAnother issue concerns the cut-off of the bottom of the head.
learning procedures, the shape statistics are calculated in Asecan be seen on Fig. 4, this cut-off is highly variable, since it
space of shape parameters rather than on point coordinatesd@&pends only on the position of the patient in the scan. At the
obtain a consistent learning of variability, all the shapes in tipesent time, we have only a reduced number of 24 representa-
training set are first aligned in a reference coordinate systdive available examples in the training data base. The variability
(the standard Talairach stereotactic system is for instance ugederated by head cut-off was, thus, not represented in the statis-
in [8]). Small remaining misalignments (in translation and rotaical model. All the training and patient data were, thus, normal-
tion) with respect to the reference coordinate system are leartietl, by cutting all heads approximately at the same location.
with the statistical model. The model is, thus, robust to small The four considered anatomical structures (head, brain, ven-
misregistration in rotation and translation. The most prominetricles, cerebellum) were then segmented, for each volume of the
distinction from [8] is that in [8] the different cerebral structureslata base, using region-growing and semi-automatic techniques
are modeled and segmented independently, whereas in the pased on binary and grey-level morphological tools [18].
posed model, the different 3-D cerebral structures are param-
eterized in conjunction and included in a single (joint) stati®8. Parameterization by Physics-Based Deformation Modes

tical model. In the presented applications of the joint statistical Each seamented anatomical structure was separatelv pa-
model, the spatial and statistical relationships between the dif- 9 P yp

O . ameterized by the amplitudes of the vibration modes of a
ferent model parts (skull and brain in particular) are strong . :
. X . X hysics-based deformable model [10]. Following the approach
used to guide the segmentation and registration procedures.

. ; : . "~ of Nastaret al.[10], the model for a given structure consists of
The remainder of this paper is organized as follows: g : . . .
-D points sampled on a spherical surface, following a quadri-

Section 1l, the parameterization of the anatomical structur S . . A -
L : . eral cylinder topology in order to avoid singularities due to
by the vibration modes of a spherical mesh is presented. tﬁe

statistical training procedure is described in Section lll. The a 1€ poles (we refer to [10] for details on th.'s represgntatlon).
ach node has a massand is connected to its four neighbors

pllcat!ons of the proba}blllstlc model to 3-D sc_agmentatu_)n (bralvr\]/ith springs of stiffnesst. The model nodes are stacked in

isolation) and to multimodal (MRI/SPECT) image registration
. . . L . elctor

are presented in Section IV. This section includes expenmenYa

results on real data, with the 24-patients trained model. The 6 o o o o -

performances of the model for 3-D image segmentation and Xo = (@1, Y15 215 - +» TN/N+ YN/NY ZNN) 1)

multimodal volume registration have been assessed on 25 . o o

MRI/SPECT image pairs not belonging to the training set. Where N is the number of points in the direction of the geo-

graphical longitude andv’ is the number of points in the di-

rection of the geographical latitude of the sphere. The physical
model is characterized by its mass mavix its stiffness matrix

K and its dumping matrixC and its governing equation may be
A. Pre-Processing of the Data Base written as [11]

Il. THREE-DIMENSIONAL PHYSICS-BASED DEFORMABLE
MODELING

To provide a training set, a representative collection of 24 ) )
3-D MRI volumes of different patients have first been registered MU+ CU+KU=F (2)
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whereU stands for the nodal displacements of the initial mesh In many computer vision applications [11], when the initial

Xo. Theimage force vectd is based on the Euclidean distancand the final state are known, it is assumed that a constant load

between the mesh nodes and their nearest contour points [18].is applied to the body. Thus, (2) is called the equilibrium
Since (2) is of ordeBN N’, whereN N’ is the total number governing equation and corresponds to the static problem

of nodes of the spherical mesh, it is solved in a subspace corre-

sponding to thé/, truncated vibration modes of the deformable KU=F. ©)

_structure_,s [10], [11_]. _The number of vibration mode_s retaineqn the new basis, (9) is, thus, simplified 36V N’

in the object description, was chosen so as to obtain a com

but adequately accurate representation. A tymagadiori value

covering many types of standard deformations is the quarter of Wit = fi. (10)

the number of degrees of freedom (DOFs) in the system (i.e.,

25% of the modes were kept). The number of DOFs of tHB (10),w; designates théh eigenvalue, the scalay is the am-

original mesh, for all of the considered surfacs= 4, was Plitude of the corresponding vibration mode (corresponding to

S x 3NN =4 x 3 x 100 x 100 = 120000. In the vibra- €igenvectorp;). Equation (10), indicates that instead of com-

tion modes subspace, this number was then reduced}g_, Puting the displacements vecttr from (9), we can compute

scalar equa-

M, = 3 x 10000= 30 000. its decomposition in terms of the vibration modes of the orig-
To solve (2) in the subspace corresponding to the truncaig@! mesh.
vibration modes the following change of basis is used: Fig. 1 shows the vibration modes based parameterization of
the four different anatomical surfaces considered here, for a
U=%U-= Z Ui by (3) subject belonging to the training set. The 25% lowest frequency
i modes were retained for this representation. Although not

providing a high-resolution description of the surfaces, this

whqe)re vector- truncated representation provides a satisfactory compromise
o matrix: between accuracy and complexity of the representation. The

spherical model is initialized around the structures of interest
[Fig. 1(a), (d), (9), and (j)]. The vibration amplitudes are
explicitly computed by (10), where rigid body modes & 0)

Sre discarded and the nodal displacements may be recovered
using (3). The physical representatidf(U) is finally given

K¢; = w?M; (4) by applying the deformat_ions to the initial spherical mesh
[Fig. 1(b)—(c). (e)—(f), (h)—(), and (k)-()]

X(U) =X, + ®U. (11)

¢;  ith column of®;

@;  ith scalar component of vectdy.
By choosing® as the matrix whose columns are the eigenve
tors of the eigenproblem

and using the standard Rayleigh hypothesis [10], matd€es
M, andC are simultaneously diagonalized

STM® — I Thus, the di_ffere_nt surfaces qf a p_articular pgti_e_nt are hi(_arar-

{ STKD __92 (5) chically described in terms of vibrations of an initial spherical
- mesh. The next step consists in applying the above parameteri-

whereQ? is the diagonal matrix whose elements are the eigef@tion to each patient of the training set and to perform statistical

valuesw? andI is the identity matrix. learning for the anatomical structures taken into consideration.

An important advantage of this formulation is that the eigen-

vectors and the eigenvalues of a quadrilateral mesh with cylinder ~ ll. STATISTICAL TRAINING: THE JOINT MODEL

topology have an explicit expression [20] and they do not havefFor each image = 1, ..., n (n = 24) in the training set,

to be computed by slower eigendecomposition techniques (9@nvectora; containing the lowest frequency vibration modes

erally matricesK andM are very large). The eigenvalues arglescribing the differenf = 4 anatomical structures is created
given by

k | a = (UL, 02 OF)T 12)
4k [ . pr Lo p'm
2 _ 2 2
ijp, = E <Slll ﬁ 4+ sin W) (6) Where
and the eigenvectors are obtained by U; = (4, 43, ..., Wiy, )i (13)
(2n — 1)pr 2n'p'n with 3 Ele M, < 12NN, In the joint statistical model con-
bp,p = { -+ COS N cos } (") structed here, the first structure£ 1) corresponds to the head,
the second to the brain, the third to the ventricles and the last one
withn € {1,2,..., N}andn' € {1, 2, ..., N'}. (s = 4) to the cerebellum.
Substituting (3) into (2) and premultiplying B§”" yields Random vectoa is statistically constrained by retaining the
.. o most significant variation modes in its KL transform [12], [21],
U+CU+QU=F (8) [15]

whereC = #7C® andF = &7F. a=a+Pb (14)
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(@) (b)

0) ® 0

Fig. 1. Parameterization of the different anatomical structures from 3-D MRI. The first column shows the initial spherical mesh superimposedatartee s

to be parameterized. Structures are shown in a multiplanar (sagittal, coronal, transversal) view. The middle column presents a multiplahardééovrobble
models at equilibrium (25% of the vibration modes are kept). The last column shows 3-D renderings of the physically based models. The rows frétortop to bo
correspond to: (a)—(c) head, (d)—(f) brain, (g)—(i) ventricles @ndl) cerebellum.

where are the eigenvectors of the covariance matrix
1« I'=F [(a— a)l(a— a)] (16)
__1 i 1
a - ; a; (15) and
b; =P%(a; —a) 17)

is the average vector of vibration amplitudes of the structures
belonging to the training sek, is the matrix whose columns are the coordinates ¢a — a) in the eigenvector basis.
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(b)

®

Fig. 2. Deformations of the 3-D joint model by varying the first two statistical modes in véctmtween—+/A; andv/A;, ¢ = 1, 2. A; designates théth
eigenvalue of the covariance matiix Each image shows a multiplanar (sagittal, coronal, transversal) view of the 3-D modslj(ay —3+v/A;. (b) b[1] = 0.

(©)b[1] = 3vA1. (d)b[2] = —=3VAs. (€)b[2] = 0. (f) b[2] = 3V Xz

The joint deformable model is finally parameterized bythe where

most significant statistical deformation modes stacked in vector

b. By modifyingb, the set of anatomical structures is deformed e 0 0
in conjunction (Fig. 2), according to the anatomical variability — 0 2 0
observed in the training set. The multiobject deformable model 2= (21)
describes the spatial relationships between the considered sur-
faces of a subject as well as their shape variations. 0 0 s
Given a set of5 = 4 initial spherical meshes, corresponding P a
to the number of structures described by the joint model
P= o, o a=| |, (22)
P a
X(l) S S
S (18) In (21) and (22), the columns of a®yV N’ x 3M, matrix
INIT &, are the eigenvectors of the spherical mesh describing sur-
X5 faces. Each3M, x m matrix P describes also the statistical
dependencies between the structures deformations observed in
the SDMX(a) is, thus, represented by the training set. Each vectay, is of order3M, x 1 and vector
b has a low dimensiom < 3%, M,.
As can be seen in Table |, with the representation, only
X(a) = Xsnr7 + 2a. (19) a few parameters are necessary to describe the variations in
the training population (Fig. 2). For instance, seven parameters
Combining (14) and (19), we have carry approximately 95% of the global information. In practice,
we keepmn ~ 10 parameters for this representation (another cri-
terion for ordering the deformation modes, based on maximal
X(b) = X;nr7 + P2+ &Pb (20) local deformations is proposed in [8]).
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TABLE | and region growing algorithms. The segmented head surface is

PERCENTAGE OF THEGLOBAL INFORMATION CARRIED BY THE DIFFERENT parameterized by the amplitudes of the vibration modes of a
EIGENVALUES ASSOCIATEDWITH THE STATISTICAL MODEL. THE NUMBER OF . . . . .

NONZERO EIGENVALUES IS 24 spherical mesh, as already explained in Section II. The spherical

mesh is initialized around the head structure and (2) is solved in

T the modal subspace. Let us recall that for the formulation used
Ak f’A‘bT (%) T%IT (%) below, the head structure is considered as the first structure de-
= = scribed by the models(= 1). According to (10), the solution
N 47,22 47 99 for the vibration amplitudes describing the patient head surface
As 14.96 62.18 is
Az 9.26 71.44 1
A4 9.09 80.53 i == ft (25)
As 6.39 86.92 wi
A 4.69 91.61 . .
b 3.86 95.47 fori =1, ..., 3M;. The head surface coordinates are obtained
. . _ by introducing vectolU! = (ug, 43, ..., g, )7 in (11)
A2s 0.00 100.0 X, (Ul) _ X(l) + ‘I)lUl. (26)

Finally in thekL subspace the DOFs are reducedta~ 10 The next step consists in determining the statistical model
achieving a compression ratio of 12000: 1. This compressiparameterd that best describe the segmented head surface
ratio enables a compact description of shape variability, and L _ .
results in a tractable constrained deformable model for brain X1(b) = X5+ @131 + &1P1b = Xy (U7). (27)

image segmentation and registration, as described in Section IVSystem (27) is overconstrained: there aféN’ equations

(the head surface coordinat¥s) and unknowns (the com-

ponents ob). The overconstrained system is solved by standard
Several applications of the statistical model may be consigast-squares, yielding the following pseudoinverse solution for

ered in brain image processing. The model may be used agh@ deformation parametéer

simplified anatomical representation of the images belonging .

to the training set. If the training set is representative enough b* = [(&:P1)" @1 P1] (&:P1)"

of a population, the model may also be used to analyze images oy 1 _

of patients not belonging to the training set. To this end, the 24 ' [XI(U )= Xo - ‘1’131} ' (28)

subjects of our data base were carefully selected, with the aidl?ﬂ

logist. Additionallv. the data b . . T1]e other patient anatomical structures surfaces (brain, etc.) are
an expert neurologist. Additionally, the data base Is CONCeIVRgy, 1ocovered by introducing the estimated paranistein

ienlesmugrr:ti way that it can be incrementally augmented by n?‘ﬂﬁ), describing the other parts & 2, 3, 4) of the statistical
' I

. . - ... mode
We describe here two applications of the joint statistical
model: the isolation of the brain (the ICC) from 3-D MRI and Xo(b*) = X§4 Bo@r 4 BPyb"
the registration of multimodal (MRI/SPECT) brain images.

IV. APPLICATION TO 3-D SEGMENTATION AND REGISTRATION

. . N (29)
Before presenting these two applications, let us notice that the
equation describing the configuration of the statistical model Xs(b*) = X5+ Psas+ PsPsb*.
X(b) = Xy + Pa+ 2Pb (23) Equation (29) providea prediction of the location of the con-

sidered surface®btained by exploiting the spatial relationships
may be separated int® coupled equations describing the difpetween the head and the other anatomical structures, coded in
ferent anatomical parts of the model the learned statistical representation. This initial prediction may
X1 (b) _ X} + &5, + . Pib be further refined by standard iterative refinement algorithmg
such as energy-based approaches [22], iterative closest point
(24) techniques [23] or grey-level profile matching [8]. This refine-
ment step has not been considered here, to separately evaluate
the contribution of the statistical information embedded in the
learned statistical representation.
A. Deformable Model-Based Segmentation To summarize, the overall segmentation algorithm is based

In this section, we present a first application of the statin the following steps.
tical model, corresponding to the segmentation of the ICC, also1l) Parameterization of the head surface using (25) and (26).
called brain isolation. 2) Estimation of the statistical deformation paramefets

In order to segment the ICC from a patient MRI volume, by solving the regularized overconstrained system (28).
not belonging to the training set, the patient head is first pa- 3) Prediction of the brain (ICC) surface by (29).
rameterized by the physics-based model. The head structure ig) Eventually iterative refinement of the solution to fit more
easily segmented from its background by simple thresholding  precisely the data grey-level profile.

Xs(b) = Xg—i-@sﬁs—i-@sPsb.
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(b) ©

Fig. 3. Segmentation of a postoperative MRI. (a) Patient MR image with the initial spherical mesh superimposed. (b) Prediction of the diffenérdlanato
structures surfaces using the head surface in (a) and the probabilistic deformable model. (c) Three-dimensional rendering of (b).

Steps 1)-3) take about 5 min cpu time on a standard (HP ¢ Measures inspired by receiver operating characteristics in
9000/C200) workstation for a 128mage volume. statistical detection theory [24], [25]:
— the sensitivity (also called true positives fraction),
corresponding to the probability of detection defined

B. Results and Validation of Segmentation here by

This section shows some results of ICC segmentation, on our 1Seqg N GT|
3-D database. Fig. 3 presents a typical example of the segmen- sensitivity = W (30)
tation from a 3-D MR, corresponding to a patient not belonging
to the training set. The image in Fig. 3(a) is a postoperative — the specificity, defined as {1 false positives frac-
MRI (exhibiting missing data). In Fig. 3(b), the head surface is tion} corresponding to {1— probability of false
segmented and parameterized by the physics-based deformable alarm}
model [egs. (25) and (26)]. In Fig. 3(c), the head surface coordi-
nates combined with the probabilistic model provide a predic- specificity = 1 — |Seg — GT| 31)
tion for the other anatomical structures. The statistical model is |GTe|

not affected by missing data because its deformations are con-
strained by the statistical analysis of the shape variations ob-
served in the training population.

Experiments show that the initial prediction of the internal
brain structures given by the model requires further refinement
in order to obtain an accurate segmentation (this could be the
topic of a future work). However, the results concerning brain

the accuracy defined as the fraction of objecd
background voxels which are segmented properly.
This measure is related to the previous ones by: ac-
curacy = {sensitivity * actual positives fraction-
specificity x actual negatives fraction}, and may be
computed by

(ICC) isolation were good enough to take them into considera- |GT N Seg| + |GT* — (Seg — GT)|
tion, without further improvement of the initial solution. accuracy = IGT U GT*| (32)
ICC segmentations results may be qualitatively evaluated in
Fig. 4, on 12 typical MRIs not belonging to the training data < An overlap measure, proposed in [8], defined as
set. The estimated brain contours are superimposed onto the
original 3-D MRIs and the corresponding 3-D surfaces are dis- |GT N Seg|
overlap = (33)

played. Quantitative evaluation was carried out on 25 MRIs not
belonging to the training data base. The automatic ICC segmen-
tation obtained with the deformable model was compared with  The overlap measure is also considered as a strong test for
the results given by expert manual segmentation (considered as segmentation accuracy, since for example two voxel cubes
ground truth) using region growing and semi-automatic tech-  of a volume of 10x 10 x 10, shifted by one voxel along
niques based on binary and grey-level morphological tools [18].  the space diagonal direction results in only 57% overlap
Several measures have been suggested, to assess the perfor-[8].
mances of segmentation algorithms [8], [24]. K&t (ground Table Il shows the mean and the standard deviation of these
truth), denote the segmented volume obtained by humadifferent quality measures, for the 25 processed MRIs. As can
experts,GT* its complementSeg the isolated brain obtained be seen, the expert segmentation and the automatic brain isola-
by the SDM-based approach apl| the number of elements tion are in good agreement, for all quality measures. The initial
(voxels) of a setE. The following complementary quality prediction, provided by the SDM is close to a semi-manual ex-
measures have been considered. pert segmentation, without any further refinement.

|GT U Seg|



NIKOU et al: MULTIMODAL BRAIN IMAGE ANALYSIS 1033

Fig. 4. (a)—(f) Brain isolation on 3-D MRIs. The multiplanar view of the isolated brain is superimposed on the original MRI data. A 3-D rendering of the
corresponding surface is also displayed.

C. Multimodal Image Registration be applied to the image to be registered (here the SPECT image)

The second application concerns the rigid registration of 3B order to match the reference image (here, the MRI).

multimodal (MR/SPECT) images. Registration of a multimodal The registration relies on the head structure in the MRI and
image pair consists in estimating the rigid transformation p#ie brain surface in the SPECT image, which are easy to extract
rameters (3-D rotation and translation parameters) that haverum these two modalities (in contrast to the brain structure in
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(9)

(k) 0}

Fig. 4. Continued) (g)—(!) Brain isolation on 3-D MRIs The multiplanar view of the isolated brain is superimposed on the original MRI data. A 3-D rendering
of the corresponding surface is also displayed.

MRI). These structures do not overlap but the deformable modedad and brain surfaces) is used as a probabilistic atlas that con-
represents the relative location of the head and brain contoatsains the rigid registration of the image pair.

and accounts for the anatomical variability observed among theThe multimodal rigid registration method relies on the fol-
training population. The deformable model (restricted here kowing steps:
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TABLE I
VALIDATION OF THE RESULTSISOLATING THE BRAIN FROM 3-D HEAD MRIs
BY USING THE PROBABILISTIC DEFORMABLE MODEL. THE AVERAGE
AND THE STANDARD DEVIATION ARE DISPLAYED FOR THE DIFFERENT
CONSIDEREDQUALITY MEASURES

pto
Sensitivity 0.88 £0.11
Speci ficity 0.95 £ 0.07
Accuracy 0.96 £ 0.05
Overlap 0.74+0.14
1) Segmentation of the head structure in MRI and the brain (@

structure in SPECT from their backgrounds.

2) Brain isolation from the MRI using the segmentation a
gorithm presented in Section IV-A.

3) Registration of the estimated brain surface with t
SPECT brain surface by optimization of a cost function

The first step is standard preprocessing for background no
elimination. The second step estimates the brain surface fr
the MRI using the head surface parameterization and the SD
By these means, multimodal image registration is also a mq
sure for the accuracy of the segmentation process. Finally,
third step brings into alignment the estimated MRI brain surfa&®
and the SPECT image surface by optimization of an objective (b) (c)
function having as variables the rigid transformation parametg
between the two surfaces. Various cost functions may be use
this step for the registration of binary surfaces. We have appli
the following energy function

E®©)= > Ip(Te(p) (34)

pElsprCT

Te rigid transformation with parameters® =
{tl‘v tyv tzv 91‘7 eyv QZ};
p voxel of the SPECT image surfadepgcr; )

Ip  chamfer distance transformation [19] of the part of the o ,
.. L . Fig. 5. MRI/SPECT registration using the deformable model. (a) MRI and
statistical model describing the brain.

SPECT volumes before registration. The SPECT contours are superimposed
For all of the SPECT surface voxels, (34) counts the distance leto the MR to illustrate the misalignment. (b) Parameterization of the head
tween a SPECT image surface point and its nearest point on fjgcture and estimation of the brain surface of the MR image in (a) using the
. statistically constrained deformable model. (c) Registration of the SPECT image
deformable model _Su_rface' We haYe Cho_sen Cham.fer d'Staﬂpﬁle part of the statistical model describing the brain surface. (d) MRI and
matching because it is fast and it is easily generalized to ag§ECT volumes after registration. The registered SPECT image contours are
surfaces. superimposed onto the MRI to illustrate the alignment of the two images.

D. Results and Validation of Registration To quantitatively assess the ability of the physics-based

Fig. 5 shows an example of a MRI/SPECT registration usir§DM to handle multimodal image pairs, 15 SPECT image
the proposed technique. The images in Fig. 5(a) show the twalumes were manually registered to their corresponding MRI
volumes before registration. The SPECT contours are superivaotume (with the aid of an expert physician) to provide ground
posed onto the MRI to qualitatively evaluate the registratiotruth. One of the manually registered SPECT volumes was
Fig. 5(b) presents the head and brain surface recovery from thansformed using simulated translations betwee20 and
MRI using the segmentation algorithm described in the previoy20 voxels and rotations between30 and +30 degrees.
section. The matching of the SPECT volume to the part of tiBy these means, 25 new images were generated, yielding 25
model describing the brain is illustrated in Fig. 5(c). The imagddRI-SPECT pairs with simulated transformations and 15
in Fig. 5(d) show the two volumes after registration. As can lwiginal pairs with real transformations and ground truth.
seen, although the MRI and SPECT head and brain contours ddhe image pairs were then registered using three different
not overlap, the two images have been correctly registered usiaghniques, and statistics on the registration errors were com-
the SDM. The whole registration procedure takes about 10 npated from the different registrations. We have compared our
cpu time on a HP C200 workstation for a £2éhage volume. SDM-based technique with the maximization of the mutual
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TABLE I
MULTIMODAL REGISTRATION OF3-D MRI/SPECT IMAGES. A 3-D SPECT
IMAGE VOLUME MANUALLY PREREGISTERED BY ANEXPERT TOITS MRI
COUNTERPART WASARTIFICIALLY TRANSFORMEDUSING 25 DIFFERENT
TRANSLATION AND ROTATION PARAMETERS. THE AVERAGE AND THE
STANDARD DEVIATION OF THE REGISTRATION ERRORSARE PRESENTED FOR
THE DIFFERENTMETHODS TRANSLATION ERRORSARE GIVEN IN VOXELS AND
ROTATION ERRORS INDEGREES SEE TEXT FOR TECHNIQUE ABBREVIATIONS

MI RIU SDM
Aty | 1.33+1.16 | 0.47+0.41 0.89 £0.43
At, | 1.61+£1.06 | 1.13£0.90 0.86 + 0.88
At; | 1.06+£1.19 | 1.08 £0.74 1.05 £1.02
Af, [ 1.26£1.09 | 0.75 % 0.56 115+ 1.11
Af, | 1.6040.92 | 0.58 £0.44 1.28 £ 0.87
Ag, [ 0.99£0.86 | 1.04+0.78 1.29 + 0.67
TABLE IV

MULTIMODAL REGISTRATION OF3-D MRI/SPECT MAGES. A 3-D SPECT
IMAGE VOLUME MANUALLY PREREGISTERED BY ANEXPERT TOITS MRI
COUNTERPART WASARTIFICIALLY TRANSFORMEDUSING 25 DIFFERENT

TRANSLATION AND ROTATION PARAMETERS. THE MEDIAN AND MAXIMUM

REGISTRATION ERRORS FOR THERIGID TRANSFORMATION PARAMETERS ARE

PRESENTED TRANSLATION ERRORSARE GIVEN IN VOXELS AND ROTATION

ERRORS INDEGREES SEE TEXT FOR TECHNIQUE ABBREVIATIONS

[ MI | RIU SDM

median(At) 1.35 | 0.63 0.54

maximum(At) | 4.24 | 3.05 2.63

median(A#f) 1.14 | 0.52 1.09

maximum(A#) | 4.35 | 2.47 3.52
TABLE V

MULTIMODAL REGISTRATION OFFIFTEEN ORIGINAL 3-D MRI/SPECT MAGES.
THE AVERAGE AND THE STANDARD DEVIATION OF THE REGISTRATION
ERRORSARE PRESENTED FOR THEDIFFERENT METHODS TRANSLATION

ERRORSARE GIVEN IN VOXELS AND ROTATION ERRORS INDEGREES
SEE TEXT FOR TECHNIQUE ABBREVIATIONS

MI RIU SDM
Aty [223+£1.19 | 2.38+£2.14 0.89+0.75
Aty | 156 £1.11 | 2.84+2.82 0.84+0.71
At, | 247+1.52 | 3.59%1.24 1.49 £0.22
Af, |1 1.38+£1.26 | 1.59+ 1.24 1.69 £ 1.48
Af, | 1.21£1.02 | 2.91+£1.29 1.85£1.60
Af, | 1.83+1.44 | 2.07+£1.47 0.81 +0.70
TABLE VI

MULTIMODAL REGISTRATION OF FIFTEEN ORIGINAL 3-D MRI/SPECT
IMAGES. THE MEDIAN AND MAXIMUM REGISTRATION ERRORS FOR THE
RIGID TRANSFORMATION PARAMETERS ARE PRESENTED TRANSLATION

ERRORSARE GIVEN IN VOXELS AND ROTATION ERRORS INDEGREES

SEE TEXT FOR TECHNIQUE ABBREVIATIONS

| MI [RIU] SDM
median(At) 2.08 | 2.93 1.01
maximum(At) | 4.20 | 4.73 1.64
median(A#) 147 | 2.19 1.11
maximum(Af) | 3.42 | 4.29 3.17

information (MI) [26] (currently considered as a reference [5]
method) and the robust interimage uniformity criterion (RIU), a
robust statistics voxel-based method, developed by the authorg,
[16]. Both of the latter techniques have been validated in

previous studies and are robust to missing data, outliers

an
large rotations. For each method, the estimated registratiog

parameters, that is the 3-D translatiots ¢, t.) and rotations
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(6, 8,, 6.) were compared with ground truth to determine the
accuracy of the registration.

Tables Il and IV show the mean, standard deviation, median,
and maximum of the registration errors for the different tech-
nigues applied on the 25 image pairs with simulated transforma-
tions. Tables V and VI show the same measures applied on the
15 original MRI-SPECT pairs. As can be seen, the deformable
model-based approach leads to a registration accuracy which is
close to or even outperforms the two other (reference) methods,
both on the simulated examples and on the real cases.

V. CONCLUSION

We have presented a physically based 3-D SDM embedding
information on the spatial relationships and anatomical vari-
ability of multiple anatomical structures, as observed over a
representative training population. The model has been used
to describe different brain structures (head, brain surface,
ventricles, and cerebellum). Preliminary applications of the
SDM included the automatic segmentation of the ICC (brain
isolation) as well as the automatic registration of MRI/SPECT
image pairs. Quantitative validation has shown that a 24-pa-
tients trained model was able to provide automatic accurate
brain isolations and MRI/SPECT registrations on individuals
not belonging to the training set.

The major advantage of statistical models is that they
naturally introducea priori statistical knowledge that provides
useful constraints for ill-posed image processing tasks, such as
image segmentation. Consequently, they are less affected by
noise, missing data or outliers. As an example, the SDM was
applied to the isolation of the brain structure from postoperative
images, in which missing anatomical structures lead standard
voxel-based techniques to erroneous segmentations. The regis-
tration of multimodal brain images was also handled without
performing any preprocessing to remove nonbrain structures.

The SDM presented in this paper may be considered as a first
step toward the development of a general purpose probabilistic
anatomical atlas of the brain, for 3-D segmentation, labeling,
registration and pathology characterization.

REFERENCES

[1] J. S. Duncan and N. Ayache, “Medical image analysis: Progress over
two decades and the challenges aheH#8FE Transactions on Pattern
Analysis and Machine Intelligengeol. 22, no. 1, pp. 85-106, Jan. 2000.

[2] T. Mclnerney and D. Terzopoulos, “Deformable models in medical
image analysis: A surveyMed. Image Anajvol. 2, no. 1, pp. 91-108,
1996.

[3] J. Martin, A. Pentland, S. Sclaroff, and R. Kikinis, “Characterization

of neuropathological shape deformation&§EE Trans. Pattern Anal.

Machine Intell, vol. 20, pp. 97-112, Feb. 1998.

P. Thompson, D. MacDonald, M. Mega, C. Holmes, A. Evans, and A.

Toga, “Detection and mapping of abnormal brain structure with a prob-

abilistic atlas of cortical surfaces]): Comput. Assist. Tomogvol. 21,

no. 4, pp. 567-581, 1997.

C. Davatzikos, “Spatial normalization of 3D brain images using

deformable models,J. Comput. Assist. Tomogwol. 20, no. 4, pp.

656665, 1996.

J. Gee, M. Reivich, and R. Bajcsy, “Elastically deforming 3D atlas to

match anatomical brain images]’ Comput. Assist. Tomogwol. 17,

no. 2, pp. 225-236, 1993.

7] N.Duta and M. Sonka, “Segmentation and interpretation of MR images

of the human brain,TEEE Trans. Med. Imagvol. 17, pp. 1049-1062,

June 1999.

(4]



NIKOU et al: MULTIMODAL BRAIN IMAGE ANALYSIS

(8]

9]

[10]

(11]

(12]

(23]

[14]

(15]

[16]

A. Kelemen, G. Szekely, and G. Gerig, “Elastic model-based segmentaf17]
tion of 3-D neuroradiological data setdEE Trans. Med. Imagvol.

18, pp. 828-839, Oct. 1999.

G. Székely, A. Kelemen, A. Brechbuhler, and G. Gerig, “Segmentation[18]
of 2D and 3D objects from MRI data using constrained elastic deforma-
tions of flexible Fourier contour and surface modeldgd. Image Ana).

vol. 1, no. 1, pp. 19-34, 1996. [19]
C. Nastar and N. Ayache, “Frequency-based nonrigid motion analysis:
Application to four-dimensional medical image$2EE Trans. Pattern  [20]
Anal. Machine Intell.vol. 18, pp. 1069-1079, Nov. 1996.

A. Pentland and S. Sclaroff, “Closed-form solutions for physically based[21]
shape modeling and recognitiodEEE Trans. Pattern Anal. Machine
Intell., vol. 13, pp. 730-742, July 1991.

T. F. Cootes, C. J. Taylor, and J. Graham, “Active shape models—Theif22]
training and application,Comput. Vis. Image Understandingl. 1, no.

1, pp. 38-59, 1995.

A. D. Brett and C. J. Taylor, “A framework for automated landmark
generation for automated 3D statistical model constructionPrioc.
16th Int. Conf. Information Processing in Medical Imagingsegrad,
Hungary, June 1999, pp. 376-381.

——, “Construction of 3D shape models of femoral articular cartilage [25]
using harmonic maps,” iffroc. Medical Image Computing and Com-
puter Assisted Intervention (MICCARittsburgh, PA, Oct. 11-14, 2000,

pp. 1205-1214. [26]
C. Nastar, B. Moghaddam, and A. Pentland, “Flexible images: Matching
and recognition using learned deformationSgmput. Vis. Image Un-
derstandingvol. 65, no. 2, pp. 179-191, 1997.

C. Nikou, J. P. Armspach, F. Heitz, I. J. Namer, and D. Grucker,
“MR/MR and MR/SPECT registration of brain images by fast sto-
chastic optimization of robust voxel similarity measurd$guroimage

vol. 8, no. 1, pp. 30-43, 1998.

(23]

[24]

1037

A. Kotcheff and C. Taylor, “Automatic construction of eigenshape
models by genetic algorithms,” imformation Processing in Medical
Imaging Berlin, Germany: Springer-Verlag, 1997, pp. 1-14.

G. Bueno, O. Musse, F. Heitz, and J. P. Armspach, “3D segmentation of
anatomical structures in MR images on large data sétagn. Reson.
Imag, vol. 19, pp. 73-88, 2001.

G. Borgefors, “On digital distance tranforms in three dimensions,”
Comput. Vis. Image Understandingl. 64, no. 3, pp. 368-376, 1996.

K. J. Bathe Finite Element Procedures Englewood Cliffs, NJ: Pren-
tice-Hall, 1996.

C. Kervrann and F. Heitz, “A hierarchical Markov modeling approach
for the segmentation and tracking of deformable shap@ssphical
Models Image Processingol. 60, no. 3, pp. 173—-195, 1998.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,”Int. J. Comput. Vis.vol. 4, no. 1, pp. 321-331, 1988.

J. Declerck, G. Subsol, J. P. Thirion, and N. Ayache, “Automatic retrieval
of anatomical structures in 3-D medical images,” INRIA, France, Tech.
Rep. 2485, Feb. 1995.

C. E. Metz, “Basic principles of ROC analysi§&min. Nucl. Medvol.

8, pp. 283-298, 1978.

X. Zeng, L. Staib, R. Schultz, and J. Duncan, “Segmentation and mea-
surement of the cortex from 3-D MR images using coupled-surfaces
propagation,IEEE Trans. Med. Imagvol. 18, pp. 927-937, Oct. 1999.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion,” IEEE Trans. Med. Imagvol. 16, pp. 187-198, Apr. 1997.



