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Abstract. The established paradigm in handwriting recognition tech-
niques involves supervised learning, where training is performed over
fully labelled (transcribed) data. In this paper, we propose a weak super-
vision technique that involves tuning the trained network to perform
better on a specific test set, after having completed its training with the
standard training data. The proposed technique is based on the notion
of a reference model, to which we refer as the “Oracle”, which is used for
test data inference and retraining in an iterative manner. As test data
that are erroneously labelled will be a hindrance to model retraining,
we explore ways to properly weight Oracle labels. The proposed method
is shown to improve model performance as much as 2% for Character
Error Rate and 5% for Word Error Rate. Combined with a competitive
convolutional-recurrent architecture, we achieve state-of-the-art recogni-
tion results in the IAM and RIMES datasets.

Keywords: Weak supervision · Handwriting recognition ·
Transductive learning

1 Introduction

Today, the vast majority of state-of-the-art methods for document image pro-
cessing tasks are learning-based methods [17]. This rule has very few exceptions
[19], while the form of learning employed in most cases is supervised learning.
Handwriting Text Recognition (HTR) adheres to this rule, and the most succes-
ful HTR methods can be described as supervised deep learning methods. The
immediate implication is that large labelled sets are required for succesful train-
ing. Labels in HTR are manually created transcriptions that can be accurate in
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terms of correspondence to the image data up to the level of either word, line
or character, depending on the specifics of the method at hand. Creating large
annotated datasets is understably time-consuming, and even more so if one takes
also into account the labour required to manually record token pixel boundaries.

Using deep and supervised models for HTR comes thus with the shortcom-
ing that large annotated datasets are required for model training. An issue of
no lesser importance than this first issue, is that of model transferability. In
particular, we cannot be a priori certain that our model trained on set A will
generalize well enough to be practically applicable on set B. For example, set B
may be written using a style that is not covered by the writing styles included
in set A, or the topic of the text in set B may be such that a language model
trained on set A does not apply to B well enough, and so on.

A multitude of techniques have been proposed to create more transferable
models, either in or out of the context of document image processing [20,25]. A
strategy that can be helpful is to treat test data as if they were unlabelled train-
ing data, and proceed to employ techniques from the arsenal of semi-supervised
learning. This strategy is referred to as transductive learning [28], and is closely
related to self-training [4] and (standard) semi-supervised learning [21]. The main
difference from the latter strategies is that the unlabelled data is not necessarily
the test data. In all cases, care must be taken as using unlabelled data may just
as well lead to a degradation of performance [2].

Concerning the application of transductive learning, let us note that the
character of the task does play a role with respect to whether this type of learning
can be effective. In HTR in practice, a test set is available for inference by
the learning machine as a whole: for example, the test set can be made up of
consecutive scanned lines of a given manuscript. This is not the case in other
tasks, where the norm is to have test data appearing sequentially to the inference
pipeline. Hence, HTR can be categorized as a task where we realistically have
the option to treat our test set as a whole, instead of a disjoint set of objects.
In the context of using transductive learning this is important, as it enables the
option to adapt the initial model to the domain represented by the test set.

In this work, we propose and explore the applicability of a transductive learn-
ing technique, suitable for HTR. The proposed technique is based on multiple
iterations of using the test data with updated labels. Also, we experiment on
using a weight term on newly labelled text lines, in order to formulate a rule
for including in the transduction retraining loss. We explore two different ways
to perform weighting, and compare versus not using any weighting and includ-
ing all new labels for retraining. We show that the proposed iterative, weighted
transductive learning method can significantly improve results for a competitive
CNN-RNN architecture. Our experiments show that the proposed model leads to
state-of-the-art performance for HTR line recognition on the IAM and RIMES
datasets.

This paper is structured as follows. In Sect. 2, we review related work for
transductive learning and HTR. In Sect. 3, we present the proposed method
and the base HTR architecture that we use for our experiments, presented and
discussed in Sect. 4. We close the paper with concluding remarks in Sect. 5.
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Fig. 1. Employed model architecture. We use a CNN-RNN architecture, with a column-
wise max pooling layer forming the link between the convolutional and the recurrent-
sequential component.

2 Related Work

Techniques that are closely related to transductive learning come from the
domain of semi-supervised learning. As a notable example, self-training has been
previously in the context of semi-supervised learning and HTR [4]. The trained
model is used to first infer labels on unlabelled data, of which the most confident
labels are used for retraining the original model. Different retraining rules are
tested, according to which part of the newly labelled words are picked to train
the model. These rules use a different confidence threshold, ranging from a more
conservative value to a rule that simply uses all words for retraining.

Transductive learning in HTR, in the sense of including a training subpro-
cess that uses labelled test data (in constrast to classical semi-supervised learn-
ing, that assumes a separate subset that is used for that purpose) has been
shown to be especially useful in cases where the size of the dataset considered
is very limited [6]. Concerning character-level recognition, transductive learning
has been shown to improved performance for the task of digit recognition on the
well-known MNIST dataset [12]. A more recent work for Tibetan handwritten
character recognition has validated the usefulness of transductive learning [9],
by modifying a number of semi-supervised and domain adaptation algorithms in
the task context. Along with domain adaptation-based approaches, the authors
use self-supervision and a method based on adversarial training.
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Fig. 2. Proposed learning pipeline. Left: a model suitable for HTR is trained on the
training set (see Fig. 1 for details about the model architecture). This model will subse-
quently be the “Oracle model”. Right: the Oracle is used to produce labels for the test
set. These labels are used as to train a copy of the Oracle. After training completes,
the newly trained model replaces the Oracle, which in turn produces updated test set
labels.

3 Proposed HTR Model and Transductive Learning
Technique

In this section, we describe a transduction-based technique. We start by the
assumption of a specific HTR architecture, the results of which will be shown to
be further improved with the proposed technique.

3.1 Proposed Model Architecture

The model that we will use to test the proposed technique can be characterized
as a CNN-RNN architecture (overview in Fig. 1). CNN-RNN can be broadly
defined as a convolutional backbone being followed by a recurrent head, typically
connected to a CTC loss. CNN-RNN variants have given routinely very good
results for HTR [3,24].

In our model, the convolutional backbone is made up of standard convo-
lutional layers and ResNet blocks, interspersed with max-pooling and dropout
layers. In particular, we have a 7 × 7 convolution with 32 output channels, a
series of 2 3 × 3 ResNet blocks with 64 output channels, 4 3 × 3 ResNet blocks
with 128 output channels and 4 3 × 3 ResNet blocks with 256 output chan-
nels. The standard convolution and the ResNet blocks are all followed by ReLU
activations, Batch Normalization 2 × 2 max pooling of stride 2 and dropout.
Overall, the convolutional backbone accepts a line image and outputs a tensor
of size h×w×d. This output is then squashed by column-wise max-pooling into
a w × d-sized tensor. With this operation, the feature map is ready to be pro-
cessed by the recurrent component, while achieving model translation invariance
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in the vertical direction [24]. The recurrent component consists of 3 stacked Bidi-
rectional Long Short-Term Memory (BiLSTM) units of hidden size 256. These
are followed by a linear projection layer, which converts the sequence to a size
equal to the number of possible tokens, nclasses. Finally, the softmax output
which tops the recurrent head converts these feature sequence into a sequence
of probability distributions. The softmax output, sized w×nclasses, is fed into a
Connectionist Temporal Classification (CTC) loss. Note that the CTC logic pro-
vides translation invariance in the horizontal sense, complementing the vertical
invariance that is related to the pooling operation at the end of the convolutional
backbone. Decoding of the output during evaluation is performed by a greedy
selection of the characters with the highest probability at each step.

3.2 Transductive Learning Cycle

The motivation behind the proposed methodology is clear: adapt an already
trained network to the test set characteristics (e.g. writing style) by iteratively
re-training a new network with labels generated by the pre-trained network. Of
course, we cannot be guaranteed that the generated labels are correct. Therefore,
such an approach has an important prerequisite regarding the performance of
the pre-trained network. Specifically, the network should be able to recognize
an adequately large percentage of the existing characters. Having a model that
provides more character hits than misses, i.e. a per-character percentage of over
50% accuracy, can potentially improve the overall performance. We consider that
such a bound can be easily achieved by modern HTR systems.

Considering the task at hand, the proposed transductive learning can be
described as follows. First off, we assume that a training set with labelled data
(text lines) is available, along with a test set with unknown labels. The CNN-
RNN model is first trained on the training data, whereupon after training is
complete, we freeze this model’s weights and from now this model is referred to
as the “Oracle” model. We use the Oracle on the test set on inference mode, in
order to produce labels for the test set. The test set adaptation is performed by
training a new network with identical architecture to the Oracle. Note that the
only prior information about the text manifold, i.e. the character distributions, is
induced by the Oracle model. Training a new network with the generated labels
may lead to performance degradation if this manifold cannot be preserved to
some extend. To this end, the new network is initialized with the Oracle weights.
Thus, its initialization is already a local optimum with respect to the training
set, which encodes information about that set’s character manifold. Learning
rate selection is crucial in order to attain a well-performing adapted network.
Small learning rates could trap the network to the initial local optimum of the
Oracle, while large learning rate could, as usual, lead to convergence issues. In
practice, we used 5× larger learning rate compared to the one used for the initial
Oracle, proven to be capable of discovering nearby local optima corresponding
to adapted manifolds.



592 G. Retsinas et al.

Generated Labels and Losses: Considering the unique aspects of the hand-
written text, we adopt the CTC loss along with a greedy decoding on the out-
put of the Oracle in order to generate the corresponding labels. Therefore, a text
string is generated for each text line, following the typical HTR training logic. An
alternative approach to the CTC-based strategy is the usage of the per-column
(of the RNN input feature map) character probability scores, as produced by the
softmax operation over the output of the network. Since we can generate per-
column character predictions using the Oracle network, such formulation can be
addressed by a cross-entropy loss, minimizing these predictions.

As misclassified data are harmful for using with the transduction cycle, pre-
vious works have opted to use a criterion that selects only part of the data for
retraining [4]. In this work, we avoid using a hard decision threshold, and instead
we use a weighted version of the aforementioned loss based on the confidence of
the Oracle predictions. This way we take into account possible unseen writing
styles which score poorly with the Oracle model.

Considering the CTC loss, we cannot straightforwardly define a per-character
weight. Nevertheless, we can generate a holistic score over the entire text line
using the CTC loss and the produced decoding/label. Consequently, the new
model will tend to be optimized with respect to the more confident decod-
ings, while less confident decodings will contribute less to the total. In order
to incorporate these scores into a weighted average formulation (considering
batches of line images, as feed to the optimized) we apply a softmax operation
to them. Given a set (batch) of images {Ii} and their corresponding decodings
{si} (i = 1, . . . , N) and the networks h(·) and ho(·), which correspond to the
training network and the Oracle network respectively, the weighted CTC formu-
lation can be expressed as follows:

ai = LCTC(h(Ii), si) (1)

wi =
e−c·ai

∑
i e

−c·ai
(2)

loss =
∑

i

wi · LCTC(ho(Ii), si) (3)

The c parameter of the softmax operation defines the divergence of the weights.
We select a value of 0.1 in order to avoid extreme values which resemble a hard
thresholding operation.

The weighted version of cross-entropy variant is rather intuitive, since each
per-column prediction already has a clear-defined Oracle output probability
score, which is used as a weight. Scaling is therefore performed on a per-column
instead of a per-datum basis.

Iterative Re-Training: If training with generated labels produced by the Ora-
cle can successfully improve the network’s performance, it is natural to extend
the rationale by simply iteratively performing the same scheme in order to further
increase performance. Specifically, the proposed method is proposed in training
cycles. During each cycle the Oracle network is fixed and used only to produce
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the labels. At the end of the cycle the new model is fully trained and, ideally,
has better performance than the Oracle. Therefore the Oracle is replaced by
the trained model and a new model is trained during the next cycle using the
enhanced Oracle network. This iterative procedure is executed until a predefined
number of cycles or until no further loss improvement is observed. The entire
proposed procedure is depicted in Fig. 2.

Additionally, the initialization of the new network to be trained at the start of
each cycle may affect this iterative approach. At the start of the whole procedure,
the network to-be-trained is initialized with the same weights as the Oracle.
Similarly, one may choose to have both Oracle and the new network initialized
with the same parameters at each cycle. Typically, according to this strategy, the
new network retains the weights of the previous cycle and thus no initialization
is applied. However, we proposed a different approach; at the start of each cycle
the network to-be-trained is initialized according to the initial Oracle, trained
on the train set. The reasoning behind this choice is related to the manifold
properties that we already mentioned. Specifically, if we continuously shift the
initial underlying manifold by using as starting point the newly trained weights,
we may considerably diverge from the initial distribution of the characters and
lose important information from the train set. Therefore, if we consider the
initial pre-trained network as the starting point of our method, we can converge
to nearby solutions with similar properties, while using the updated labels of the
iterative process. In other words, the proposed initialization acts as an implicit
constraint on the structure of the final solution with respect to the character
manifold on the initial train set.

Connection to Knowledge Distillation: The main idea, i.e. (partially)
retaining the initial behavior of the network while training another network,
closely resembles knowledge distillation approaches [8]. In fact, identical to our
approach, distillation includes a pair of models: the teacher (corresponds to
the Oracle) and the student model. Distillation consists of two losses, the task
related one and the distillation loss, typically defined as the Kullback-Leibler
(KL) divergence:

KL(p|q) =
∑

i

pi log
pi
qi

(4)

where pi and qi are the softmax activations at the output of the models. Typ-
ical distillation methods scale the outputs, before the softmax operation, by a
temperature factor 1/T that “softens”, when T > 1, the comparison of the two
distributions. The distillation loss aims to bring the distributions of the models’
outputs as close as possible.

The per-column weighting variant of the proposed method can be viewed as a
distillation loss, since cross entropy is closely related to KL divergence: H(p, q) =∑

i pi log qi. Contrary to distillation logic, we want to mine existing, yet hidden,
knowledge and not retain the Oracle’s output distribution. Therefore the cross
entropy approach is a hard-assignment variant of distillation, or equivalently,
very small temperature factor values (T → 0) are considered. As an extension,
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the CTC version of the proposed algorithm can be viewed as an sequence-wise
alternative of a distillation loss1.

4 Experimental Evaluation

Evaluation of our methods is performed on two widely used datasets, IAM [15]
and RIMES [7]. The ablation study, considering different settings of the proposed
methodology, is performed on the challenging IAM dataset, consisted of hand-
written text from 657 different writers and partitioned into writer-independent
train/test sets.

All experiments follow the same setting: line-level recognition using a lexicon-
free greedy CTC decoding scheme. Character Error Rate (CER) and Word Error
Rate (WER) metrics are reported in all cases (lower values are better).

The pre-processing steps, applied to every line image, are: 1. All images are
resized to a resolution of 128 × 1024 pixels. Initial images are padded (using the
image median value, usually zero) in order to attain the aforementioned fixed size.
If the initial image is greater than the predefined size, the image is rescaled. The
padding option aims to preserve the existing aspect ratio of the text images. 2. A
simple global affine augmentation is applied at every image, considering only rota-
tion and skew of small magnitude in order to generate valid images. Additionally,
elastic net deformations are also applied, in order to simulate local spatial varia-
tion. 3. Each line transcription has spaces added at the beginning and at the end,
i.e. “He rose from” is changed to “ He rose from ”. This operation aims to assist the
system to predict the marginal spaces that exist in the majority of the images.2

Training is performed in two stages. 1) Training the initial Oracle, t = 0:
training for 240 epochs with cosine annealing and restarts every 40 epochs [13],
with learning rate 0.001. 2) Transductive learning cycle: each cycle consists of
20 epochs, while the learning rate is initialized at 0.005 and gradually reduced
according to cosine annealing. We set an increased learning rate compared to
the initial network in order to discover neighboring local optima and not be
constrained to the one found by the initial training.

In the following, we explore different settings of the proposed self-training
system, considering a variety of generalization schemes, losses and optimization
strategies. To further understand the capabilities of the proposed method, we
also consider sub-optimal pre-trained networks, trained only on a subset of the
initial train dataset. Finally, we compare our approach to other methods that
attain state-of-the-art accuracy on either the IAM and RIMES datasets.

4.1 Ablation Study

The impact of three different optimization aspects is explored for the case of a
single-cycle self-training step.
1 A detailed analysis on sequence-level knowledge distillation has been presented

in [10].
2 Note that during evaluation we do not take into account these added spaces, as this

would bias the result in favour of our method.
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Table 1. Impact of (a) generalization strategies and (b) part-optimization of the pro-
posed transductive method.

Strategy CER % WER%

Initial 4.55 15.71

None 4.51 15.47

Dropout 4.41 15.24

Augmentation 4.29 14.99

Dropout + Augmentation 4.24 14.75

(a)

CER % WER%

CNN Backbone 4.37 15.04

Recurrent Head 4.48 15.54

Whole Network 4.24 14.75

(b)

Impact of Generalization Strategies: We have first experimented on how the pro-
posed transductive method combines with two different strategies to boost the
model ability to generalize to new data. The strategies considered are Dropout
and Augmentation, and the corresponding models are compared on Table 1(a).
Conceptually, the proposed algorithm may benefit from an overfitting to the test
data in order to fully utilize the existing data and thus generalization scheme
may lead to worse performance. Nonetheless, from the results we can conclude
that these strategies together with the proposed method combine well. Espe-
cially augmentation provides a considerable boost in performance, hinting that
we may discover correct labels when slightly transforming the image, while we
can better formulate the underlying character manifold/distribution of the test
data by adding more (synthetically generated) instances.

Impact of Optimizing Parameters: Re-training the whole network may in prin-
ciple lead to worse-performing local optima, especially in the context of trans-
ductive learning. Keeping some layers fixed may act as a constraint in order to
retain desirable properties from the initial network. In order to check whether
one network component is more robust than the rest in this respect, we consider
re-training either the CNN-backbone part or the recurrent head part, while keep-
ing the other part fixed. Error rate results are presented in Table 1(b). Results
suggest that the best option is to leave no part of the model frozen.

Impact of Type and Weighting of the Loss Function: As described in Sect. 3.2, we
use a weighting scheme when using Oracle labels. We have experimented in using
each of the described alternatives: using CTC-based scores versus CE-based
scores. Also, we compare against using equal weights to all Oracle labels. The
results can be examined in Table 2. Weighting variants appear marginally better
than their unweighted counterparts. More importantly, CTC-based approaches
significantly outperform CE-based ones. This can be attributed to the fact that
the CE method assigns a label to each output column, including transitional
columns between two characters that may not correspond to a specific charac-
ter. Weighting does not appear to solve this problem, neither preliminary exper-
iments with predefined thresholds. On the other hand the CTC-based approach
is better suited for the problem at hand and it can be effective even when the
unweighted version is considered.
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Table 2. Comparison of weighting variants. CTC: Results using a CTC-based loss.
CE: Results using a CE-based loss. wCTC: Results using a CTC-based loss with each
datum loss weighted according to the Oracle CTC decoding score. wCE: Results using
a CE-based loss, with each feature map column loss weighted according to the Oracle
CE output.

Loss CER % WER %

Initial 4.55 15.71

CTC 4.24 14.75

CE 4.37 15.16

wCTC 4.23 14.74

wCE 4.35 15.09

4.2 Effect of Using Multiple Iterations

Theoretically, after performing a self-training cycle, we acquire a better-
performing network, ideal for acting as the new Oracle for an upcoming cycle, as
we have already described in Sect. 3. The ability of multiple iterations of the pro-
posed self-training approach (wCTC variant) to further increase the network’s
performance is observed in Table 3.

Table 3. HTR performance using different numbers of transductive cycle iterations.

Iteration CER % WER %

Initial 4.55 15.71

1 4.24 14.75

2 4.07 14.26

3 4.01 14.09

4 3.99 14.03

5 3.95 13.92

We further investigate the impact of the initial learning rate at the start
of each cycle. The results are presented in Fig. 3. As suggested, selecting small
learning rates provides a minor boost in performance. Note that both values of
5 · 10−3 and 10−2, provide a similar boost after first cycle. However, the latter
seems to diverge from meaningful solutions in the upcoming cycles.

4.3 Using a Suboptimal Oracle

Transductive learning has been proved to be a good option before, especially
when data is very limited [6,9]. In order to test how the proposed method fares
under a limited-resource paradigm, we have tested the method with Oracles that
were trained with only a small percentage of the originally available labelled
training data. We have trained our Oracle using a number of IAM training
lines that correspond to percentages equal to 10%, 25%, 50%. Results can be
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Fig. 3. Impact of learning rate for the iterative procedure. Different metrics are
depicted in (a) and (b).

examined in Table 4 and Fig. 4. In all cases, the proposed method is shown to
improve results, steadily up to a margin of 1–2% for CER and 3–5% for WER.

Table 4. Tests under conditions where the Oracle has trained on limited data. Per-
centages on the top row correspond to percentages of total training lines of the IAM
dataset that where used to train the Oracle. Per-row iterations and scores correspond
to different iterations of the transduction learning cycle.

Percentage 10% 25% 50%

Iteration CER % WER % CER % WER % CER % WER %

Initial 10.85 33.24 7.77 25.57 5.72 19.40

1 10.02 30.95 7.22 24.22 5.26 17.99

2 9.65 29.96 6.69 22.55 5.07 17.42

3 9.36 29.40 6.63 22.45 4.96 17.22

4 9.18 28.96 6.55 22.37 4.91 17.05

5 9.04 28.72 6.52 22.24 4.87 16.88

Figure 4 provides additional insights on the iterative approach and specifically
its behavior for a large number of transductive cycles. The performance gain is
quickly saturated, while small performance degradation can be observed for over
10 iterations. Such degradation is expected, since the Oracle may produce many
missclassified predictions for a specific character, but the degraded networks still
retain significantly better results than the initial network trained on the train
set. The case of 10% appears to be continuously improving up to 10 iterations,
unlike the other cases, due to the larger capability of improvement.

Furthermore, we evaluate the proposed initialization scheme, described in
Sect. 3, at the start of each transductive cycle. Initializing with the pre-trained
network or retaining the weights (no-init), appear to have similar performance
for most of the cases. Their difference can be detected at the more demanding
10% case as shown in Fig. 5, where the proposed method saturates slower than
the typical no initialization scheme.
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Fig. 4. Behavior of HTR performance when considering a large number of iterations.
Two different metrics are reported: (a) CER and (b) WER.

Fig. 5. Impact of initialization strategy at each cycle. Both metrics are considered: (a)
CER and (b) WER.

Finally, the per-character improvement is shown in Fig. 6 for two cases: 10%
and 100% (whole train set). Specifically we report the number of corrected char-
acters after 5 cycles of the proposed methodology. Negative values correspond to
worse performance compared to the initial pre-trained network. We can observe
that, as expected, large number of corrected characters are reported for the 10%
case. Nevertheless, there are characters that may further deteriorate their per-
formance. A characteristic case is the character i, where a notable decrease in
performance is observed. The sub-optimal initial network may often confuse i
with characters of similar appearance, such as j and l. Such behavior can be
intensified by the proposed iterative procedure.

4.4 Comparison with the State of the Art

Finally, we have compared the proposed HTR model with the proposed learning
scheme against state-of-the-art methods in the literature. The variant used for
the proposed method uses weighted CTC loss and 5 retraining iterations. Com-
parative results can be examined in Table 5. We can observe that the proposed
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Fig. 6. Per-character analysis of improvements using the proposed method. Results for
two settings are compared: using all of the IAM training set or a part of it (10%), in
order to simulate the case where training data are limited. The horizontal axis denotes
number of extra corrected characters using the proposed method versus not using it.
The vertical axis denotes each different character and number of total test instances.

Table 5. Performance comparison for IAM/RIMES datasets.

Architecture IAM RIMES

CER % WER % CER % WER %

Puigcerver [18] 6.2 20.2 2.6 10.7

Krishnan et al. [11] 9.78 32.89 – –

Dutta et al. [3] 5.8 17.8 5.07 14.7

Chowdhury and Vig [1] 8.10 16.70 3.59 9.60

Michael et al. [16] 4.87 – – –

Tassopoulou et al. [24] 5.18 17.68 – –

Yousef et al. [27] 4.9 – – –

Markou et al. [14] 6.14 20.04 3.34 11.23

Xiao et al. [26] 3.97 12.90 1.56 12.61

Proposed w/out transduction 4.55 15.71 3.16 11.09

Proposed w/ transduction, @5 iter 3.95 13.92 2.90 10.17
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CNN-RNN model is already very competitive, with or without the transduc-
tion scheme being applied. The proposed HTR architecture, combined with the
transduction scheme leads to results that are on par with the state of the art in
both IAM and RIMES.

5 Conclusion

We have proposed a transductive learning method for Handwriting Recogni-
tion models, and we have shown that by combining it with a competitive CNN-
RNN architecture the model reaches state-of-the-art recognition results. By using
repeated transduction iterations we have shown that results can further improve.
Furthermore, we have compared two weighting methods for more precise tuning
of the reference model loss. Regarding future work, a possible research perspec-
tive could be exploring transduction in terms of a projection between training
and test set geometry, or considering restating the method within a probabilistic
framework [21,23]. Also, we envisage testing the method on scripts with more
limited data available than latin [5,22].
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16. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence
models for handwritten text recognition. In: 2019 International Conference on Doc-
ument Analysis and Recognition (ICDAR), pp. 1286–1293. IEEE (2019)
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