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Abstract. In this paper, the task of gender and age recognition is per-
formed on pedestrian still images, which are usually captured in-the-wild
with no near face-frontal information. Moreover, another difficulty origi-
nates from the underlying class imbalance in real examples, especially for
the age estimation problem. The scope of the paper is to examine how
different loss functions in convolutional neural networks (CNN) perform
under the class imbalance problem. For this purpose, as a backbone, we
employ the Residual Network (ResNet). On top of that, we attempt to
benefit from appearance-based attributes, which are inherently present
in the available data. We incorporate this knowledge in an autoencoder,
which we attach to our baseline CNN for the combined model to jointly
learn the features and increase the classification accuracy. Finally, all of
our experiments are evaluated on two publicly available datasets.

Keywords: Gender classification · Age estimation · Deep imbalanced
learning

1 Introduction

Gender and age classification has been studied in the literature over the last
decade and recently has gained much more interest due to the large availability
of data [2,7,12]. In recent years, deep learning methods, such as CNNs, have been
gradually applied to age estimation and have achieved better results than hand-
crafted features. Yi et al. [20] introduced a relatively shallow CNN architecture
and a multi-scale analysis strategy to learn in an end-to-end manner the age
label of a facial image. Niu et al. [11] formulated the age estimation problem as
an ordinal regression problem using a series of binary classification tasks. Chen
et al. [2] proposed a ranking-CNN framework, in which a series of basic CNNs
were employed and their binary outputs were aggregated. A separate CNN for
each ordinal age group was learned, allowing each sub-CNN to capture different
patterns for different age groups.
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Several hybrid methods predicting age and gender simultaneously with other
facial attributes have also been reported in the literature [5]. Levi et al. [8] were
the among first to use a CNN architecture for the problem of age and gender
classification with a relatively shallow architecture. Rodriguez et al. [13] intro-
duced the visual attention mechanism to discover the most informative and reli-
able parts in a face image for improving age and gender classification. Dual
et al. [4] integrated a CNN for feature extraction and an extreme learning
machine (ELM) [6] for classifying the intermediate results. It is yet another
popular idea to make use of body-part information and jointly utilize global
CNN features with person, object and, scene attributes [18].

Visual attention mechanism has also been used in pedestrian attribute recog-
nition. Sarfraz et al. [17] introduced a model with view guidance to make view-
specific attribute predictions to overcome the variance of patterns from different
angles. In [16], Sarafianos et al. extracted and aggregated visual attention masks
at different scales and establish a weighted-variant of the focal loss to han-
dle both under-represented or uncertain attributes. Although attention-based
methods improve recognition accuracy, they are attribute-agnostic and fail to
consider the attribute-specific information.

Other approaches are regarded as relation-based and exploit semantic rela-
tions to assist attribute recognition. Wang et al. [19] proposed a CNN-RNN based
framework to exploit the interdependence and correlation among attributes. In
[15], Sarafianos et al. leveraged curriculum learning, by learning first the strongly
correlated attributes in a multi-task learning setup and then used transfer learn-
ing to additionally learn the weakly-correlated attributes. However, these meth-
ods require manually defined rules, e.g., prediction order and attribute groups,
which are hard to determine in real-world applications.

In practice, numerous factors affect the classification performance and make
the task of gender and age classification far from trivial. Datasets with gender
and age annotations are usually captured in-the-wild, where often no near-frontal
information is available. Also, images are taken under different illumination con-
ditions and different camera viewing angles, providing poor visual quality. To
this end, we employ CNNs and we conduct all of the experiments with the
ResNet architecture as the backbone [1]. Another concern about CNNs is that
they require datasets to be composed of balanced class distributions. However,
datasets with gender and age labels are inherently imbalanced. To examine how
a loss function affects the performance of a model, we study the performance of
four different loss functions. Having the ResNet architecture as the baseline, an
autoencoder is added in parallel to benefit from the appearance-based attributes,
and the whole network is trained end-to-end. We consider that this combined
model can learn more powerful relationships among the attributes and poten-
tially lead in a better performance.

2 Methodology

In this work, we focus on recognizing the gender and age attributes, which are
physical, adhered human characteristics belonging to the soft biometrics. Our
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method relies on still images of pedestrians without the presence of clear-shot
face-frontal information. We opt for a three-stage strategy; (i) we first only con-
sider the problem of gender classification, (ii) then the problem of age clas-
sification, and (iii) finally, the problem of multi-label classification, where we
try to predict both attributes simultaneously. The main challenge we focused
on is the class imbalanced distributions, which are inherently present in the
available datasets. For all experiments, we use the ResNet50 architecture [1] as
the backbone to investigate how four different loss functions perform under the
class imbalance problem. Its power comes from its special architecture, which
comprises of skip or shortcut connections to jump over the stacked convolu-
tional layers. Finally, we build a model, adding an autoencoder on top of the
ResNet, which we feed with appearance-based attributes. We consider that a
combined model can leverage this additional information to make more accurate
predictions.

2.1 Gender Classification

Consider there are N pedestrian images X = {xi}N
i=1, labeled with the gender

attribute yi ∈ {0, 1}. The features extracted from the ResNet are pooled and
passed through a binary classifier to determine the pedestrian’s gender. Our
approach employs a global average pooling, which takes the average of each of
the feature maps obtained from the ResNet. The output of the model is one
neuron with the sigmoid activation function, representing the probability of the
pedestrian being “male” or “female”.

In the presence of class imbalance, the loss due to the frequent class may
dominate total loss and cause instability. Hence, to see how different loss func-
tions perform under the class imbalance problem, we explore the performance of
four different loss functions. The first one is the standard binary cross-entropy,
formulated as:

Lbce = −y log ŷ − (1 − y) log(1 − ŷ) , (1)

where y and ŷ are the ground truth and predicted labels, respectively. Such a loss
function ignores completely the class imbalance, assigning the same weight to
the two classes. Aiming to alleviate this problem, we employ a weighted-variant
of the binary cross-entropy, called the binary focal loss [10], defined as:

Lbfl = −y (1 − ŷ)γ log ŷ − (1 − y) ŷγ log(1 − ŷ) , (2)

where γ ≥ 0 is a focusing parameter. Focal loss is a cross-entropy loss that
weighs the contribution of each example to the loss based on the classification
error. With this strategy, the loss is made to implicitly focus on the problematic
cases by extending the range in which an example receives low loss. For instance,
when γ = 2, an example classified with ŷ = 0.9 would have 100× lower loss and
with ŷ = 0.968 it would have 1000× lower loss compared with cross-entropy.
Finally, we also employ two variants of the binary cross-entropy and the binary
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focal loss. These two variants are the weighted binary cross-entropy and the
weighted binary focal loss and are respectively defined as:

Lwbce = −w
[
y log ŷ + (1 − y) log(1 − ŷ)

]
, (3)

Lwbfl = −w
[
y (1 − ŷ)γ log ŷ + (1 − y) ŷγ log(1 − ŷ)

]
, (4)

w =

{
1

1−pf
if y = 0

1
pf

if y = 1
, (5)

where w is the loss weight according to the gender label and pf is the proportion
of the females in the training set.

For the problem of gender recognition, we developed a model that can benefit
from annotations already present in the available data. Specifically, instead of
treating an image independently, we consider inference with help from additional
attributes. We claim that introducing this kind of information into a model,
gender prediction would be performed with more confidence. For instance, most
datasets provide attributes related to pedestrian appearance, upper and lower
body clothing styles, and accessories. We incorporate these attributes in a binary
vector, hence, each pedestrian image xi is assigned with an K-length binary
vector yi, where yil ∈ {0, 1} denotes the presence of the k-th attribute in xi.
Then, we employ an autoencoder to learn the “compressed” representation of
the original attribute input vector. The autoencoder is a one-hidden-layer neural
network, with the size of the “bottleneck” layer and the size of the output layer
to be the same as the size of the input vector (=K). The problem that the
autoencoder is trying to solve is a multi-label classification problem hence, we
use the sigmoid activation function for each of the output neurons. We also
employ the binary cross-entropy loss of Eq. (1) and the binary focal loss of Eq.
(2) slightly modified to account for all K attributes:

Lae = −
K∑

k=1

[
yk log ŷk + (1 − yk) log(1 − ŷk)

]
, (6)

Lae = −
K∑

k=1

[
y (1 − ŷ)γ log ŷ + (1 − y) ŷγ log(1 − ŷ)

]
, (7)

where K is the number of attributes and yk, ŷk are the ground truth and pre-
dicted labels for the k-th attribute.

The features from the autoencoder’s bottleneck layer are concatenated with
the features obtained from the last fully connected layer of ResNet to form a new
model. At the top, we add a binary classifier and we train this combined model,
which we call ResNet+AE, with the best performing loss function from the
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Fig. 1. The ResNet+AE model for (a) gender classification, (b) age classification and
(c) multi-label classification.

single-ResNet architecture. The illustration of the ResNet+AE model is depicted
in Fig. 1(a). This combined model is trained end-to-end and the overall loss is a
combination of the autoencoder’s loss and the loss arising from the ResNet:

Lcombined = Lae + LResNet . (8)

where Lae is one of the Eqs. (6), (7) and LResNet is one of the Eqs. (1), (2), (3),
or (4), whichever performs the best in the case of gender classification.

2.2 Age Classification

We also study the problem of age recognition, where the model should predict
one of M classes corresponding to M age categories. The age label vector is a
one-hot vector y, and each element of that vector is represented as ym ∈ {0, 1},
with m = 1, · · · ,M . We now employ the ResNet architecture, with the difference
that the top classifier now predicts one of M possible classes. The M output
neurons use the softmax activation function, to model a probability distribution
consisting of M probabilities.

For the problem of age classification, we adopt the categorical cross-entropy
loss, formulated as:

Lcce = −
M∑
i=1

yi log ŷi . (9)

where M is the number of classes, and yi, ŷi are the one-hot encoded ground
truth and predicted labels for the i-th class. Since the ground-truth labels are
one-hot encoded only the positive class keeps its term in the loss, discarding the
elements of the summation which are zero due to zero target labels. In addition
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to the categorical cross-entropy loss, we also explore the performance of the
categorical focal loss and their weighted variants, which can be extended to the
multi-class case easily:

Lcfl = −
M∑
i=1

yi (1 − ŷi)γ log ŷi , (10)

Lwcce = −
M∑
i=1

wi yi log ŷ , (11)

Lwcfl =
M∑
i=1

−wi y (1 − ŷ)γ log ŷ , (12)

where the weighting factor wi =
nargmaxi∈{1,··· ,M} ni

ni
is the weight loss assigned to

the age group i and ni is the number of examples of the i-th age group in the
training set. Finally, nargmaxi∈{1,··· ,M} ni

is the number of examples of the most
representative class. Besides, we conduct experiments with the combined model
for the problem of age recognition, which is depicted in Fig. 1(b). The overall
loss is the summation of the loss originating from the autoencoder and the loss
originating from the ResNet and it is in the form of Eq. (8).

2.3 Multi-label Classification

Finally, we consider the multi-label recognition problem, in which both
attributes, gender and age, are predicted simultaneously. Now, each pedestrian
image is labeled with a (M +1)-length vector, with the first element referring to
the pedestrian’s gender and the remaining M referring to the pedestrian’s age
range. For the multi-label recognition problem, we use the sigmoid activation
function for the M + 1 output neurons and conduct experiments with the four
loss functions, which for the multi-label case are reformulated as:

Lbce = −
M+1∑
i=1

yi log ŷi + (1 − yi) log(1 − ŷi) , (13)

Lbfl = −
M+1∑
i=1

yi (1 − ŷi)γ log ŷi + (1 − yi) ŷi
γ log(1 − ŷi) , (14)

Lwbce = −
M+1∑
i=1

wi

[
yi log ŷi + (1 − yi) log(1 − ŷi)

]
, (15)
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Lwbfl = −
M+1∑
i=1

wi

[
yi (1 − ŷi)γ log ŷi + (1 − yi) ŷi

γ log(1 − ŷi)
]
, (16)

wi =

{
epi if y = 0
e1−pi if y = 1

, (17)

where yi, ŷi are the ground truth and predicted labels for the i-th attribute,
respectively, wi is the loss weight assigned to attribute i and pi is the proportion
of the positive labels for the attribute i in the training set. The multi-label case
is depicted in Fig. 1(c).

3 Experimental Results

To demonstrate the effectiveness of the proposed method, we compared with
several state-of-the-art methods in two publicly available benchmark datasets.
PEdesTrian Attribute (PETA) [3] dataset merges 10 consists of 19, 000 images,
each annotated with 61 binary attributes. PETA dataset is randomly parti-
tioned into three parts, of which 9, 500 for training, 1, 900 for validation, and
7, 600 for testing. Images are all captured from far view field and they exhibit
large differences in terms of lighting conditions, camera viewing angles, image
resolutions, background complexity, and indoor/outdoor environment. RAP v2
(Richly Annotated Pedestrian) [9] dataset has in total 84, 928 images and image
resolutions range from 36 × 92 to 344 × 554. Each image is annotated with 69
binary attributes.

For the problem of gender recognition, we used five metrics, namely accuracy,
precision, recall, F1 score, and mean accuracy. Accuracy quantifies the fraction
of predictions the model got right. For the problem of age classification, we
similarly use the accuracy, precision, recall, and F1 score, slightly modified, since
age classification is a multi-class problem. In this case, accuracy quantifies how
often predictions match the true labels by checking if the index of the maximal
true label is equal to the index of the maximal predicted label. Finally, for the
problem of multi-label recognition, accuracy, precision, recall, and F1 score are
calculated per-sample.

Finally, we used the pre-trained ResNet50 architecture, which has already
been trained on the ImageNet dataset [14]. All images were pre-processed and
resized to 256 × 128 since pedestrian images are usually rectangular. To avoid
overfitting, we employed some of the commonly used data augmentation tech-
niques. As for the optimizer, we used the mini-batch stochastic gradient descent
with momentum set to 0.9 and early stopping when the validation error was not
improving for five consecutive epochs. The batch size is 50 samples per iteration
and a dropout layer with a small dropout probability (i.e., 0.1) that may act as
a regularizer is added after the feature concatenation layer. Finally, we selected
γ = 2 for the focusing parameter in the focal loss and weighted focal loss.
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3.1 Gender Classification

Table 1 compares the performance of the four loss functions described for the
PETA dataset. Although the gender distribution is nearly balanced, it can be
seen that both weighted loss functions outperform their un-weighted counter-
parts. Specifically, WBCE performs 0.44% better in terms of the F1 score and
0.36% better in terms of the mAcc metric compared to BCE. Similarly, WBFL
is by 1.8% better in terms of the F1 score and by 1.41% better in terms of the
mAcc compared to BFL. Comparing the weighted loss functions, WBCE outper-
forms WBFL by 3.48% in the F1 score and by 3.16% in mAcc and subsequently,
it is used to train the ResNet+AE model.

Table 1. Performance comparison of the four loss functions and the ResNet+AE model
on the PETA dataset (in %).

Prec Rec F1 mAcc Acc

ResNet-BCE 88.80 86.07 87.42 88.57 88.81

ResNet-WBCE 87.86 87.89 87.86 88.93 89.03

ResNet-BFL 85.51 79.87 82.58 84.36 84.79

ResNet-WBFL 84.57 84.18 84.38 85.77 85.92

ResNet+AE 91.67 89.79 90.71 91.53 91.70

The proposed ResNet+AE model leverages the appearance-based attributes
in the gender classification scheme, achieving 90.71% and 91.53% in the F1 score
and mAcc, respectively, outperforming the single-ResNet architecture with any
of the loss functions.

The gender distribution in the RAP v2 dataset is quite imbalanced given
that the number of males is over twice the number of females. Table 2 compares
the performance of the four loss functions for the RAP v2 dataset. WBCE per-
forms 0.42% better in terms of the F1 score and 0.95% better in terms of the
mAcc metric compared to BCE. BFL is by 0.6% better in terms of the F1 score
compared to WBFL but WBFL is 0.25% better in terms of the mAcc compared
to BFL. Nevertheless, WBCE outperforms WBFL by 2.87% in the F1 score and
2.47% in mAcc and this is the loss function of choice for the ResNet+AE model.
The proposed ResNet+AE model performs comparably well achieving 91.72%
and 94.12% in F1 score and mAcc respectively but does not outperform the
single-ResNet architecture with the WBCE loss function.

The proposed ResNet+AE model demonstrates inferior performance, achiev-
ing 1.19% in the F1 score, which indicates that the performance is degraded.
Therefore, the combined model cannot leverage the appearance-based attributes
for the age classification, and the single-ResNet architecture with the WBCE
being the best performing model.
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Table 2. Performance comparison of the four loss functions and the ResNet+AE model
on the RAP v2 dataset (in %).

Prec Rec F1 mAcc Acc

ResNet-BCE 93.18 91.81 92.49 94.38 95.35

ResNet-WBCE 91.00 94.91 92.91 95.33 95.49

ResNet-BFL 92.90 91.82 92.36 94.32 95.26

ResNet-WBFL 89.46 94.17 91.76 94.57 94.73

ResNet+AE 91.16 92.30 91.72 94.12 94.81

3.2 Age Classification

The age category distribution in the PETA dataset can be seen in Fig. 2(a).
There are five age classes to be predicted, <16, 16 − 30, 31 − 45, 46 − 60, and
>60, with distributions of 0.9%, 49.77%, 32.92%, 10.24%, 6.17%, respectively.
Hence, it is apparent that the age attribute suffers from a severe class imbalance.

Fig. 2. The distribution of the age categories in (a) the PETA dataset and (b) the
RAP v2 dataset.

Table 3 shows the performance of the four loss functions for the PETA
dataset. Although the weighted loss functions balance each example according to
the class it belongs to, giving more focus on the under-represented classes, they
seem to improve none of the metrics. We consider that this behavior is caused
by poor features since it is difficult for the ResNet to provide representative
features given that there is no near-face information and sometimes the pedes-
trian is standing backward. Also, since the optimization method is performed in
batches, it is not guaranteed that there are examples for each age group in each
batch, hence the model is overwhelmed by the majority class and cannot ensure
good discriminations among the five age categories. The categorical focal loss
performs slightly better than the categorical cross-entropy by 0.66% in terms of
the mF1 score and subsequently, it is used to train the ResNet+AE model.

The proposed ResNet+AE model outperforms the single ResNet architecture,
achieving 75.84% in terms of the mF1 score. This means that there is some
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Table 3. Performance comparison of the four loss functions and the ResNet+AE model
on the PETA dataset (in %).

mPrec mRec mF1 Acc

ResNet-CCE 85.55 66.76 73.19 77.29

ResNet-WCCE 67.37 70.53 68.72 70.76

ResNet-CFL 84.01 68.03 73.85 76.89

ResNet-WCFL 54.23 64.64 57.80 64.04

ResNet+AE 80.06 72.75 75.84 79.61

sort of interdependence among the appearance-based attributes, which helps
the ResNet+AE model to yield a better age classification performance.

The age category distribution in the RAP v2 dataset can be seen in Fig. 2(b).
There are five age groups to be predicted with distributions of 0.92%, 40.44%,
54.89%, 3.53%, and 0.22%, respectively. The distribution is heavily unbalanced
with the second and third age categories to be more represented compared to
the rest. Table 4 compares the performance of the four loss functions for the
RAP v2 dataset. Similarly, with the PETA dataset, the weighted loss functions
do not improve the performance compared to their un-weighted counterparts.
CFL is the best performing loss function, which outperforms the CCE by 8.36%
in the mF1 score, and it is used to consequently train the ResNet+AE model.

Table 4. Performance comparison of the four loss functions and the ResNet+AE model
on the RAP v2 dataset (in %).

mPrec mRec mF1 Acc

ResNet-CCE 41.73 29.97 31.45 65.71

ResNet-WCCE 26.27 49.92 24.51 39.36

ResNet-CFL 48.46 36.82 39.81 64.82

ResNet-WCFL 26.00 49.09 23.30 37.31

ResNet+AE 41.57 34.30 36.27 64.94

The proposed ResNet+AE model demonstrates inferior performance, achiev-
ing 36.27% in the mF1 score, which indicates that the performance is degraded.
Therefore, the combined model cannot leverage the appearance-based attributes
for the age classification, and the single-ResNet architecture with the CFL is the
best performing model.

3.3 Multi-label Classification

The performance of the four different loss functions for the PETA dataset for the
task of multi-label classification, where the model classifies both the gender and
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the age attributes is summarized in Table 5. Since the gender attribute is nearly
balanced the heavy imbalance of the age attribute (Fig. 2(a)) overwhelms the dis-
tribution to be modeled. However, the performance is not degraded even though
the model now has to predict both attributes simultaneously. The weighted loss
functions manage to achieve better results compared to their un-weighted coun-
terparts. More specifically, WBCE is 0.87% and 1.23% better in F1 score and
mAcc respectively compared to the plain BCE. Similarly, WBFL performs bet-
ter by 1.66% in the F1 score and by 1.14% in mAcc compared to plain BFL. The
best among the four loss functions is the WBCE achieving 79.4% and 82.82% in
F1 score and mAcc respectively and this loss function is used to consequently
train the ResNet+AE model. The proposed ResNet+AE model outperforms
the single-ResNet architecture, achieving 80.41% in the F1 score and 84.49% in
mAcc.

Table 5. Performance comparison of the four loss functions and the ResNet+AE model
on the PETA dataset (in %).

Prec Rec F1 mAcc Acc

ResNet-BCE 79.20 77.88 78.53 81.59 91.40

ResNet-WBCE 79.22 79.58 79.40 82.82 91.09

ResNet-BFL 76.90 75.95 76.42 80.64 90.47

ResNet-WBFL 77.64 78.52 78.08 81.78 90.37

ResNet+AE 80.02 80.80 80.41 84.49 91.54

Table 6 depicts the performance of the four different loss functions for the
RAP v2 dataset when the model classifies both the gender and the age attributes.
It can be seen that the weighted loss functions perform slightly better than the
unweighted counterparts. Specifically, WBCE performs 0.26% better in terms
of the F1 score and 4.3% better in terms of the mAcc compared to BCE, and
WBFL performs 0.18% better in terms of the F1 score and 2.09% better in
terms of the mAcc compared to BFL. Overall, in the single ResNet architecture,
WBCE performs 1.51% better in terms of the F1 score, but WBFL performs
0.6% better in terms of the mAcc. We chose the WBFL as the best performing
loss function, as mAcc is a label-based metric and is a more important metric in
the multi-label classification case. Concerning the combined ResNet+AE model,
although it is quite similar in performance compared to most of the single-ResNet
architectures, it does not outperform the single-ResNet case with the WBFL loss
function.
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Table 6. Performance comparison of the four loss functions and the ResNet+AE
model on the RAP v2 dataset (in %).

Prec Rec F1 mAcc Acc

ResNet-BCE 71.08 70.63 70.85 63.56 88.40

ResNet-WBCE 70.71 71.52 71.11 67.86 88.25

ResNet-BFL 69.31 69.53 69.42 66.37 87.97

ResNet-WBFL 68.82 70.40 69.60 68.46 87.73

ResNet+AE 67.63 68.30 67.96 67.76 87.29

4 Conclusion

In this paper, we studied the problem of gender and age classification from
pedestrian images. The class imbalance which characterizes the datasets makes
the task quite challenging. We focused on examining how four different loss
functions perform under the class imbalance problem. We tested our model,
which concatenates the features from the ResNet backbone and the features from
an autoencoder, which is trained in parallel with appearance-based attributes.
Taken into consideration the experimental results, the gender classification is
an easier task, as the ResNet can extract representative features to make an
accurate classification. The age classification is a more challenging problem since
age categories are heavily imbalanced and with no near-face information. The
multi-label classification is also a challenging task, as the age category imbalance
overwhelms the distribution to be modeled. The experimental results showed
that high classification accuracy may be obtained when the appearance-based
attributes involve some sort of relationship.
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