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Abstract: Automated detection of touching cells in images with inhomogeneous illumination is a challenging problem.
A detection framework using a stack of two conditional random fields is proposed to detect touching elongated
cells in scanning electron microscopy images with inhomogeneous illumination. The first conditional random
field employs shading information to segment the cells where the effect of inhomogeneous illumination is re-
duced. The second conditional random field estimates the cell walls using their estimated cell wall probability.
The method is evaluated using a dataset of Clostridium difficile cells. Finally, the method is compared with
two region-based cell detection methods, CellDetect and DeTEC, improving the F-score by at least 20%.

1 INTRODUCTION

Developments in scanning electron microscopy
(SEM) have facilitated the acquisition of digital im-
ages of micron level cells, leading to improvements in
cell quantification for pharmaceutical and medical re-
search studies (Endres et al., 2016). However, micro-
scopic images may have inhomogeneous illumination
and are often degraded due to noise. Furthermore,
the cells have various sizes and are clustered together,
making the problem of cell detection challenging.

Recent cell detection methods fall into two cat-
egories. The first category assumes that the cells
are easily separable from the background. In this
family of methods, features are extracted from im-
age patches and are forwarded to a classifier, such as
random forests, to identify the cell centroids (Kainz
et al., 2015) using several distance metrics for the
classification score (Wu and Nevatia, 2009; Way-
alun et al., 2012; Saiyod and Wayalun, 2014; Minaee
et al., 2014). The second category includes region-
based detection methods. At first, cell candidate re-
gions are detected based on shape or statistical texture
descriptors. Then, the best candidates are selected
based on correlation clustering (Zhang et al., 2014),
optimization-based (Arteta et al., 2012; Arteta et al.,
2016; Memariani et al., 2016; Browet et al., 2016), or
heuristic methods (Keuper et al., 2011; Santamaria-

Pang et al., 2015).
DeTEC (Memariani et al., 2016) applied a se-

quence of two Markov random fields (MRF) to detect
touching elongated cells. The first MRF segments the
cells from the background using texture features. The
second MRF separates the touching cells by estimat-
ing the cell walls. However, DeTEC has the follow-
ing drawbacks: (i) It relies only on texture features
and cell wall probabilities to separate cells from their
background. Since the algorithm is unsupervised, the
features have the same level of importance. However,
inhomogeneous illumination may alter the local tex-
ture and hence decrease the accuracy of the segmen-
tation. (ii) It applies a number of edge detectors to
train a random forest, estimating the cell wall prob-
abilities. However, edge detectors are not robust to
noise. In case a cell is eroded due to a laboratory
treatment, the random forest detects the erroneous cell
walls. (iii) Noisy estimation of cell wall probabilities
leads to poor classification of cell walls. (iv) It relies
on superpixels; Inhomogeneous illumination hinders
the extraction of superpixels whose boundaries match
with the cell walls.

Deep neural networks have been applied to mi-
croscopy images. DeepCell (Van Valen et al., 2016)
applied convolutional neural networks (CNN) to learn
the features. However, training a CNN requires a
large dataset to tune the parameters and hyperpa-
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Figure 1: Application of DETCIC to a Clostridium difficile cell image acquired via SEM imaging with 10,000x magnification.
(i) Depiction of original image. (ii) Illumination normalization is applied on original image. (iii) A random forest estimates
the cell wall probabilities. (iv) Image is divided into superpixels. (v) The first CRF is defined onto superpixels, which
segments the cells from their background. (vi) The first CRF segments the cells from their background. (vii) The second CRF
is imposed on superpixel boundary components to estimate the cell walls. (viii) The second CRF estimates the cell walls. (ix)
Detected cell centroids and their boundaries are shown.

rameters of the networks, which remains a challenge
specifically for images obtained by scanning electron
microscopy (SEM).

In this paper, DETCIC a detector of elongated
cells is proposed which improves the performance
of DeTEC with respect to the drawbacks mentioned
above. Specifically, (i) DETCIC considers shading
along with texture for feature extraction. (ii) it em-
ploys a shearlet based edge detector (King et al.,
2015) that is robust to noise to enhance the detection
of the cell wall pixels. (iii) DETCIC applies a stack
of two conditional random fields, which is a super-
vised method, in contrast to the MRF formulation of
DeTEC. (iv) DETCIC applies illumination normaliza-
tion, reducing the effect of inhomogeneous illumina-

tion.
The rest of the paper is organized as follows.

Section 2 describes the proposed algorithm. Exper-
imental results are presented in Section 3, comparing
the performance of DETCIC with the state-of-the-art
cell detection methods DeTEC and CellDetect (Arteta
et al., 2012). Finally, conclusions are drawn in Sec-
tion 4.

2 Methods

DETCIC consists of a stack of two conditional
random fields (CRF): the first CRF selects the cell
candidates from the background while the second
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Figure 2: Depiction of edge detector features used for estimation of cell wall probabilities: (a) Original image, (b) Difference
of Gaussians, (c) Application of a vessel enhancement filter (Frangi et al., 1998), (d) Roberts edge detector, and (e) A shearlet-
based edge detector (King et al., 2015).

CRF separates the touching cells. Estimating the cell
walls is an important step for both CRFs. Figure 1 de-
pits the steps of the algorithm. This section describes
how the cell walls can be estimated and how the cell
wall probabilities can be applied to form the poten-
tials of the two CRFs.

2.1 Estimation of the cell walls

Inhomogeneous illumination hampers the detection of
the cell walls. The illumination component is esti-
mated by smoothing the original image in the loga-
rithmic domain using a Gaussian filter. Then, the il-
lumination normalized image is obtained by dividing
the image intensities with the estimated illumination
in every image I:

In = exp(log(I +1)− log(I +1)∗G) , (1)

where, G is a Gaussian filter with standard devia-
tion σG. The underlying assumption in Eq (1) is the
Retinex model (Zosso et al., 2013) of illumination
which states that an acquired image I is a pointwise
product of illumination and reflectance. The illumi-
nation component is present mainly in coarse scales
and it can be estimated by appropriately smoothing
the image. The reflectance component captures struc-
tures lying, in general, in finer scales.

The illumination normalization highlights the cell
walls, reducing the effect of inhomogeneous illumi-
nation. A shearlet-based total variation method is ap-
plied to obtain the denoised image D, retaining the
cell boundaries (Easley et al., 2009).

A random forest estimates the probability of a
pixel belonging to a cell wall in D. We compute a
matrix of edge detector features Fr, including, differ-
ence of Gaussian, a vessel enhancement filter (Frangi
et al., 1998), Roberts, and a shearlet-based edge de-
tectors (King et al., 2015). The first two edge detec-
tors are selected because they create a narrow line for
cell walls though they may include some noise. On

the contrary, the last two features preserve the edges,
which have the shape of a curve, but they cover a
thicker area around the actual cell walls (Figure 2).
The random forest combines all the edge detectors to
provide robust boundaries representing the cell walls.

Next, a sequence of two CRFs is describe in which
the first CRF finds the cell candidate regions and the
second CRF separates cells by estimating their cell
walls.

2.2 Cell candidate segmentation

The denoised image D is divided into superpixels
(Mori, 2005). A CRF is applied onto the superpix-
els with the following objective function:
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The unary u1
ti and pairwise v1

ti j potentials are con-
sidered linear in the parameter w1. The feature vec-
tor f1

ti contains the mean of the shading (Zosso et al.,
2013) and intensity values of the ith superpixel.

The pairwise potential v1
ti j adds a penalty if the

neighboring superpixels have different labels. The
pairwise penalty is reduced if the boundary segment
between the superpixels i and j has a high probability
of belonging to cell wall:

P1
ti j =

1
|Nti j| ∑

x∈Nti j

px.cosαti j, (3)

where Nti j is the set of all pixels separating the su-
perpixels i and j in the image t of the training set,
and px is the probability of a pixel at position x be-
longing to a cell wall obtained by the trained random
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Figure 3: (a) Superpixel map (green color) is overlaid onto the cell wall probability map. (b) Zoomed visualization of the area
inside the red square in (a). The gray angle is determined by the largest connected component in the probability map (white
color) and the superpixel boundary segments (green color). (c) The mean cell wall probabilities of the image depicted in (a).
(d) Depiction of the standard deviations of cell wall probabilities.

Algorithm 1: DETCIC training
Input : Training images, cell annotations
Output: Trained random forest, CRF weight

parameters
1 begin
2 For every image It (t = 1, ...,nt ) in the

training set, compute the illumination
normalized image In

t , shearlet denoised
image Dt , superpixel map St , and edge
detector feature map Fr

t .
3 Given the feature map Fr train a random

forest to estimate the cell wall
probability P1

4 Given P1 and St train the first CRF on
superpixels, minimizing E1 to obtain
weights w1

5 For every St (t = 1, ...,nt ), extract SBCs
that belong to a cell wall.

6 Train the second CRF on SBCs,
minimizing E2 to learn the weights w2.

7 end

forest. The angle αti j is the angle between the su-
perpixel boundary component (SBC) and the corre-
sponding connected component estimated by the ran-
dom forest when the cell wall probability map is su-
perimposed onto the superpixel map (Figure 3).

The first CRF separates the cell regions from the
background by predicting the superpixel labels λ1

ti.
However, the cells may be clustered together. Thus,
A second CRF is imposed onto the SBCs of the se-
lected superpixels to estimate the cell walls and sepa-
rate cells.

2.3 Elongated cell separation

The second CRF is defined over the SBCs extracted
from the first CRF. The objective function aims to se-
lect SBCs that are probable to belong to a cell wall
and are elongated:
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Similar to the first CRF, the unary and the pair-
wise terms are linear combinations of features and
weight parameters that minimize the energy function
E2. The unary feature vector f2

tq includes the mean
and standard deviation of the cell wall probabilities
P2

t pq. The pairwise feature vector includes the differ-
ence between the two unary features and the cosine
of the angle Btqr between SBCs q and r. The pair-
wise potential v2

tqr penalizes the objective function if
the predicted labels λ2

q and λ2
r are different. However,

the penalty is reduced if the two SBCs have different
unary features or do not form an elongated structure.

2.4 DETCIC training and inference

The DETCIC training set includes images
It (t = 1, ...,nt ), which are annotated manually.

Cell wall labels to train the random forest are the
boundaries of the annotations.

Moreover, the CRF objective function
E1 is trained with the superpixel label set
L1

t = {l1
ti ∈ {0,1}|i = 1, ...,ns}, where ns is the

number of superpixels in the image. The first CRF
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Figure 4: Depiction of the effect of inhomogenous illumination: (a) Original image, (b) CellDetect (Arteta et al., 2012), (c)
DeTEC (Memariani et al., 2016), and (d) DETCIC.

Algorithm 2: DETCIC inference
Input : A new image Id , the parameters of

the random forest and CRFs
Output: Cell centroids

1 begin
2 For the cell image Id , compute the

illumination normalized image In
d , the

shearlet denoised image Dd , the
superpixel map Sd , and the edge
detector features Fr

d
3 Input Fr

d to the trained random forest to
compute the cell wall probability map
Pd

4 Given P1, Sd , and w1, apply graph cut to
obtain a segmentation on superpixels.

5 Extract the SBCs from the selected
superpixels.

6 Given P2, and w2, apply graph cut on
SBCs to estimate cell walls.

7 Use the estimated cell walls to create
morphological connected components.

8 Compute the cell centroids.
9 end

selects superpixels that are likely to belong to a
cell. The second CRF is trained with the label set
L2

t = {l2
t p ∈ {0,1}|p = 1, ...,nb}, where nb is the

number of SBCs extracted from the cell candidate
superpixels in the image t in the training set. Label
sets L1

t and L2
t are computed from the manual

annotations. Algorithm 1 outlines the training steps
for both CRFs. A graph cut provides the labels
for each CRF while a gradient-based optimization
method selects the best parameter configuration w
that minimizes the objective function E .

Algorithm 1 learns the parameters (w1,w2).
Given a new image Id , computing the cell wall prob-

abilities Pd requires computing the illumination nor-
malized image In

d and denoised image Dd similar to
the training images.

Then, DETCIC performs two graph cuts: the first
is applied to a rough segmentation of the cells from
the background and the second is applied to the SBCs
to determine the cell walls (Algorithm 2).

3 Experimental Results

A dataset of Clostridium difficile cell images was
acquired via SEM imaging with 10,000x magnifica-
tion and 411×711 pixel resolution. A set of 19 im-
ages (211 cells) with similar contrast and cell density
were selected for the experiments. The cells are inho-
mogenously illuminated. Furthermore, cell densities
are low in most images but many cells are clustered
together, making the detection challenging. In some
cases, the cells are partially destroyed due to a labora-
tory treatment. A GUI is developped for the annotat-
ing the cells and the annotations were verified by the
expert.

Cell centroids are manually annotated to provide
the ground truth. A cell is considered to be detected
if the detected centroid lies within a distance d from
the ground truth. The distance is set to the length of
the smallest cell in the dataset. Precision, recall, and
F-score are computed to measure the performance of
detection.

Table 1 provides the comparison of the perfor-
mance of DETCIC with CellDetect and DeTEC. The
training was based on a leave-one-out cross valida-
tion. CellDetect is a supervised region-based cell de-
tection method which applies extremal regions to de-
tect candidate cell regions (Matas et al., 2004). Then,
a statistical model selects the best extremal regions.
However, CellDetect fails to detect a fair amount of



Figure 5: Depiction of the detected cell centroids and their estimated cell walls for CellDetect (Arteta et al., 2012) (Left),
DeTEC (Memariani et al., 2016) (Middle), and DETCIC (Right).

Table 1: Comparative results between DETCIC, DeTEC
(Memariani et al., 2016), and CellDetect (Arteta et al.,
2012), where the acceptable distance of detected centroids
from the ground truth is set to the length of the major axis
of the smallest cell in the dataset.

Method Precision Recall F-score
CellDetect 0.80 0.23 0.36
DeTEC 0.50 0.88 0.63
DETCIC 0.68 0.83 0.75

cells, assuming there should exist some extremal re-
gions that can represent the cells (Arteta et al., 2016).
Therefore, CellDetect achieves a lower recall index
compared to the other two methods. DeTEC is an un-
supervised region-based method that applies an MRF
to segment the cell candidates, and a second MRF to
separate the best cell walls to detect the centroids. Al-
though DeTEC detects most cells, the detected cell
walls are sensitive to erosion which may be caused by
a pharmaceutical treatment. Therefore, some cells are
broken into smaller pieces, increasing the number of
false positives which leads to low precision. DETCIC
significantly improves the cell break downs due to a
better estimation of cell wall probabilities which are

used to train the second CRF.
Figure 4 depicts an instance where inhomoge-

neous illumination created shadows on the cell body
as well as the area around the cell. CellDetect falsely
includes shadows around the cell as part of the cell
body. Furthermore, the shadow on the cell body cre-
ate two bright side on both sides of the cell. DeTEC
considers these sides as separate cells and fails to de-
tect the entire cell. However, DETCIC is able to re-
duce the effect of illumination and detect the cell wall
accurately.

Figure 5 depicts examples of detected cells.
CellDetect does not detect many cells while failing
to separate clusters of touching cells. On the contrary
DETCIC is able to detect most cells. However, a few
cells are missing due to large shadows which make
the cells merge into the background.

DeTEC is able to detect most cells or a portion of
them. However, DeTEC fails to estimate the correct
boundaries in many cases. Also, DeTEC fails to dis-
tinguish between cells and small background regions
surrounded by cells due to its unsupervised nature.

Furthermore, DeTEC is more sensitive to inho-
mogeneous illumination compared to DETCIC. More
specifically, DeTEC fails to clearly distinguish be-



tween cells and background in image regions where
cell walls are covered by shadows. Figure 4 depicts
the detection of a cell effected by inhomogeneous il-
lumination.

4 CONCLUSIONS

A cell detection method (DETCIC) is proposed,
that can be used to extract cell meta-data (e.g., num-
ber of cells, cell length, cell deformation, etc.). DET-
CIC is applied on SEM images with inhomogeneous
illumination to detect clostridium difficile cells. DET-
CIC successfully separates touching elongated cells
by estimating their cell walls.
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