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Abstract

Visual attributes, from simple objects (e.g., backpacks,

hats) to soft-biometrics (e.g., gender, height, clothing) have

proven to be a powerful representational approach for many

applications such as image description and human iden-

tification. In this paper, we introduce a novel method to

combine the advantages of both multi-task and curriculum

learning in a visual attribute classification framework. In-

dividual tasks are grouped based on their correlation so

that two groups of strongly and weakly correlated tasks are

formed. The two groups of tasks are learned in a curricu-

lum learning setup by transferring the acquired knowledge

from the strongly to the weakly correlated. The learning

process within each group though, is performed in a multi-

task classification setup. The proposed method learns better

and converges faster than learning all the tasks in a typical

multi-task learning paradigm. We demonstrate the effec-

tiveness of our approach on the publicly available, SoBiR,

VIPeR and PETA datasets and report state-of-the-art results

across the board.

1. Introduction

Moments after the Boston marathon bombing, the FBI

gathered almost 10TB of photos and videos, looking for a

“backpack-carrying man, wearing a white hat”. In suspect

descriptions, humans tend to rely on visual attributes since

(i) they can be composed in different ways to create descrip-

tions; (ii) they are generalizable as with some fine-tuning

they can be applied to recognize objects for different tasks;

and (iii) they are a meaningful semantic representation of

objects or humans that can be understood by both comput-

ers and humans. Given an image of a human, a question

that arises is how can someone effectively predict the corre-

sponding visual attributes?

In this work, we propose CILICIA (CurrIculum Learn-

ing multItask ClassIfication Attributes) to address the prob-

lem of visual attribute classification from images of hu-

mans. Instead of using low-level representations which

Figure 1: Can we do better in visual attribute multi-task

classification? Wouldn’t it be great if we could find a way to

learn the attributes in a more semantically meaningful way

instead of all at the same time? Our approach aspires to

combine the advantages of curriculum learning and multi-

task classification to predict the visual attributes of humans.

would require extracting hand-crafted features, we propose

a deep learning method to solve multiple binary classifica-

tion tasks. CILICIA differentiates itself from the literature

as: (i) it performs end-to-end learning by feeding a single

ConvNet with the entire image of a human without making

any assumptions about predefined connection between body

parts and image regions; and (ii) it exploits the advantages

of both multi-task and curriculum learning. Tasks are split

into two groups based on their cross-correlation. The group

of the strongly correlated attributes is learned first, and then

the acquired knowledge is transferred to the second group.

When Vapnik and Vashist introduced the learning using

privileged information (LUPI) paradigm [31], they drew in-

spiration from human learning. They observed how sig-

nificant the role of an intelligent teacher was in the learn-

ing process of a student, and proposed a machine learning

framework to imitate this process. Employing privileged in-

formation from an intelligent teacher at training time has re-

cently received significant attention from the scientific com-

munity with remarkable results [15, 20, 25, 27, 32, 33].

Our work also draws inspiration from the way students
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learn in class. First, students find it difficult to learn all tasks

at once. It is usually easier for them to acquire some basic

knowledge first, and then build on top of that, by learning

more complicated concepts. This can be achieved by learn-

ing in a hierarchical way as in the method of Yan et al. [34]

or with a curriculum strategy. Curriculum learning [2, 14]

(presenting easier examples before more complicated and

learning tasks sequentially, instead of all at the same time)

imitates this learning process. It has the advantage of ex-

ploiting prior knowledge to improve subsequent classifica-

tion tasks but it cannot scale up to many tasks since each

subsequent task has to be learned individually. However

to maximize students’ understanding a curriculum might

not be sufficient by itself. Students also need a teaching

paradigm that can guide their learning process, especially

when the task to be learned is challenging. The teaching

paradigm in our method is the split of visual attribute clas-

sification tasks that need to be learned into strongly and

weakly correlated. In that way, we exploit the advantages of

both multi-task and curriculum learning. First, the ConvNet

learns the strongly correlated tasks in a multi-task learning

setup, and once this process is completed, the weights of the

respective tasks are used as an initialization for the more di-

verse tasks. During the training of the more diverse tasks,

the prior knowledge obtained is leveraged to improve the

classification performance. An illustrative example of our

method is depicted in Figure 1.

In summary, this paper has the following contributions.

First, we introduce CILICIA, a novel method of exploiting

the advantages of both multi-task and curriculum learning

by splitting tasks into two groups based on their correla-

tion with the rest of the tasks. The tasks of each subgroup

are learned in a joint manner. Thus, the proposed method

learns better and converges faster than learning all the tasks

in a typical multi-task learning setup. Second, we propose

a scheme of transferring knowledge between the groups of

tasks which reduces the convergence time and increases the

performance. We performed extensive evaluations, ablation

studies and an analysis of the covariates in one small-scale

dataset and one medium-scale dataset and achieved state-

of-the-art results.

2. Related Work

Visual Attributes: Predicting the visual attributes of a hu-

man from an image is not a new concept as it has previously

been addressed in the literature in many contexts. Ferrari

and Zisserman [6] were the first to investigate the power of

visual attributes. They used low-level features and a prob-

abilistic generative model to learn these attributes and seg-

ment them in an image. Kumar et al. [17] proposed an auto-

matic method to perform face verification and image search

by training classifiers for describable facial visual attributes

(e.g., gender, hair color, and eyewear). Scheirer et al. [26]

proposed a novel method to construct normalized “multi-

attribute spaces” from raw classifier outputs. However, they

focused entirely on the score calibration without investigat-

ing the feature extraction part. Following the deep learning

renaissance, several papers [7, 8, 18] have addressed the vi-

sual attribute classification problem using ConvNets. Zhang

et al. [37] proposed an attribute classification method which

combines part-based models in the form of poselets [3], and

deep learning by training pose-normalized ConvNets. Their

method though, requires training a network for each poselet

which is a computationally expensive task. Zhu et al. [39]

introduced a method for pedestrian attribute classification.

They proposed a ConvNet architecture comprising 15 sep-

arate subnetworks (i.e., one for each task) which are fed

with images of different body parts to learn jointly the vi-

sual attributes. However, their method assumes that there is

a pre-defined connection between parts and attributes, and

that all tasks depend on each other and thus, learning them

jointly will be beneficial. Finally, a very interesting prior

work which focuses on the correlation of visual attributes is

the method of Jayaraman et al. [13]. While our work also

leverages information from correlated attributes in a multi-

task classification framework, it models co-occurrence be-

tween different groups of visual attributes instead of trying

to semantically decorrelate them.

Curriculum Learning: Solving all tasks jointly is com-

monly employed in the literature [4, 10, 39] as it is fast, easy

to scale, and achieves good generalization. For an overview

of deep multi-task learning techniques the interested reader

is encouraged to refer to the work of Ruder [23]. However,

some tasks are easier than others and also not all tasks are

equally related to each other [22]. Curriculum Learning was

initially proposed by Bengio et al. [2]. They argued that in-

stead of employing samples at random it is better to present

samples organized in a meaningful way so that less complex

examples are presented first. Pentina et al. [22] introduced

a curriculum learning-based approach to process multiple

tasks in a sequence and developed a method to find the best

order in which the tasks need to be learned. They proposed

a data-dependent solution by introducing an upper-bound

of the average expected error and employing an Adaptive

SVM. Such a learning process has the advantage of exploit-

ing prior knowledge to improve subsequent classification

tasks but it cannot scale up to many tasks since each subse-

quent task has to be learned individually.

3. Methodology

In our supervised learning paradigm, we are given tuples

(xi, yi) where xi corresponds to images and yi to the re-

spective visual attribute labels. The total number of tasks

will be denoted by T , and thus the size of yi for one image

will be 1 × T . Finally, we will refer to the parts of the net-

work that solve the strongly and the weakly correlated tasks
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Figure 2: Architecture of the ConvNet used in our framework for both strongly and weakly correlated tasks. The VGG-16

pre-trained part is kept frozen during training and only the weights of the last layers are learned. The two parts are learned

separately. However, when the weakly correlated tasks are trained, both tasks contribute to the total cost function.

as Cs and Cw, respectively.

3.1. Multi­label ConvNet

To mitigate the lack of training data we employ the pre-

trained VGG-16 [28] network. VGG-16, is the network

from Simonyan and Zisserman which was one of the first

methods to demonstrate that the depth of the network is

a critical component for good performance. VGG-16 is

trained on ImageNet [24], the scale of which enables us

to perform transfer learning between ImageNet and our

tasks of interest. The architecture of the network we use

is depicted in Figure 2. We used the first seven convolu-

tional layers of the VGG-16 network and dropped the rest

of the convolutional and fully-connected layers. The rea-

son behind this is that the representations learned in the

last layers of the network are very task dependent [35] and

thus, not transferable. Following that, for every task we

added a batch-normalized [12] fully-connected layer with

512 units and a ReLU activation function. We employed

batch-normalization since it enabled higher learning rates,

faster convergence, and reduced overfitting. Although shuf-

fling and normalizing each batch has proven to reduce the

need of Dropout, we observed that adding a dropout layer

[29] was beneficial as it further reduced overfitting. The

Dropout probability was 75% for datasets with less than

1,000 training samples and 50% for the rest. For every task,

an output layer is added with a softmax activation function

using the categorical cross entropy.

Furthermore, we observed that the random initialization

of the parameters of the last two layers backpropagated

large errors in the whole network even if we used differ-

ent learning rates throughout our network. To address this

behavior of the network, which is thoroughly discussed in

the method of Sutskever et al. [30], we “freeze” the weights

of the pre-trained part and train only the last two layers for

each task in order to learn the layer weights and the param-

eters of the batch-normalization.

After we ensured that we can always overfit on the train-

ing set, which means that our network is deep enough and

discriminative enough for the tasks of interest, our primary

goal was to reduce overfitting. Towards this direction, we

(i) selected 512 units for the fully connected layer to prevent

the network from learning several weights; (ii) employed a

small weight decay of 0.0001 for the layers that are trained;

(iii) initialized the learning rate at 0.001 and reduced it by

a factor of 5 every 100 epochs and up to five times in total;

and (iv) augmented the data by performing random scaling

up to 150% of the initial image followed by random crops,

horizontal flips and adding noise by applying PCA to the

RGB pixel values as proposed by Krizhevsky et al. [16].

At test time, we averaged the predictions at three different

scales (100%, 125% and 150%) of five fixed crops and their

horizontal flips (30 in total) to obtain the predicted class la-

bel. This technique, which was also adopted in the ResNet

method of He et al. [11], proved to be very effective as it

reduced the variation on the predictions.

3.2. Correlation­based Group Split

Finding the order in which tasks need to be learned so

as to achieve the best performance is difficult and computa-

tionally expensive. Given some tasks ti, i = 1...T that need

to be performed, we seek to find the best order in which the

tasks should be performed so the average error of the tasks

is minimized:

minimize
S(ti)

1

T

T
∑

j=1

E(ŷtj , ytj ), (1)
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where S(ti) is the function that finds the sequence of the

tasks, ŷtj , ytj are the prediction and target vectors for task

j, and E the prediction error.

However, the fact that a task can be easily performed

does not imply that it is positively correlated with another

and that by transferring knowledge the performance of the

latter will increase. Adjeroh et al. [1] studied the correla-

tion between various anthropometric features and demon-

strated that some correlation clusters can be derived in hu-

man metrology, whereby measurements in a cluster tend to

be highly correlated with each other but not with the others.

The correlation between different sub-problems was also

exploited in the age estimation method of Niu et al. [21]

in an ordinal regression setup.

To address this problem we propose to find the total de-

pendency pi of task ti with the rest, by computing the re-

spective Pearson correlation coefficients:

pi =
T
∑

j=1,j 6=i

cov(yti , ytj )

σ(yti)σ(ytj )
, i = 1, ..., T (2)

where σ(yti) is the standard deviation of the labels y of the

task ti. After we compute the total dependencies for all

attributes, the obtained vector of size T ×1 (each value cor-

responds to one line of the Pearson correlation coefficient

matrix) is sorted in a descending order. Tasks with a top

50% of pi are strongly correlated with the rest, and thus

they are assigned to the strongly correlated group. The re-

maining tasks are assigned as weakly correlated and will

employ the information learned from the former group.

3.3. Multi­Task Curriculum Learning

In the scenario we are investigating, we solve multi-

ple binary unbalanced classification tasks simultaneously.

Thus, similar to Zhu et al. [38] we employ the categori-

cal cross-entropy function between predictions and targets,

which for a single attribute t is defined as follows:

Lt = −
1

N

N
∑

i=1

M
∑

j=1

(

1/Mj

∑M

n=1
1/Mn

)

· 1[yi = j] · log(pi,j),

(3)

where 1[yi = j] is equal to one when the ground truth

of sample i belongs to class j, and zero otherwise, pi,j is

the respective prediction which is the output of the softmax

nonlinearity of sample i for class j and the term inside the

parenthesis is a balancing parameter required due to imbal-

anced data. The total number of samples belonging to class

j is denoted by Mj , N is the number of samples and M the

number of classes.

However, in the method of Zhu et al. [38] the total loss

over all attributes is defined as Ls =
∑T

t=1 λt ·Lt, where λt

is the contribution weight of each parameter. For simplic-

ity, it is set to λt = 1/T , but this is problematic since there is

Algorithm 1: Multi-task curriculum learning training

Input : Training set X , training labels Y
1 Ys, Yw ← using the observations X , split labels Y by

maximizing Eq. (2)

2 Cs ← freeze Cw, train model using (X,Ys) by

minimizing the loss in Eq. (3)

3 Initialize Cw from Cs

4 Cw ← train model using (X,Yw) by minimizing the

loss in Eq. (4)

Output: Parameters of networks Cs and Cw for the

strongly and the weakly correlated tasks,

respectively

an underlying assumption that all tasks contribute equally to

the multi-task classification problem. To overcome this lim-

itation, a fully-connected layer with T units could be added

with an identity activation function after each separate loss

Lt is computed. In that way, the respective weight for each

attribute in the total loss function could be learned. How-

ever, we observed that for groups of tasks that consist of a

few attributes the difference in the performance was statis-

tically insignificant, and thus we did not investigate this any

further.

Once the classification of the visual-attribute tasks that

demonstrated a strong correlation with the rest is performed,

we use the learned parameters (i.e., weights, biases and

batch normalization parameters) to initialize the network for

the less diverse attributes. Its architecture remains the same,

with the parameters of VGG-16 being kept “frozen”. When

the number of tasks is odd, then an additional “branch” is

added at the end of the network to learn the task-specific pa-

rameters. Furthermore, by adopting the “supervision trans-

fer” technique of Zhang et al. [36] we leverage the knowl-

edge learned by backpropagating the following loss:

Lw = λ · Ls + (1− λ) · Lf
w, (4)

where Lf
w is the total loss computed during the forward

pass using Eq. (3) only over the weakly correlated tasks

and λ is a parameter that controls the amount of knowledge

transferred. Throughout our experimental investigation we

found that a 25% contribution of the already learned group

of strongly correlated tasks yielded the best results.

The process of computing the two groups of attributes

is performed once before the training starts. Since it only

requires the training labels of the tasks to compute the cross-

correlations and perform the split, it is not computationally

intensive. Finally, note that, the group split depends on the

training set and it’s possible that different train-test splits

might yield different groups of tasks which is why average

classification results are reported over five random splits.
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Table 1: Classification accuracy of different learning

paradigms on the SoBiR dataset. In individual learning,

each attribute is learned separately. In multi-task learning,

the average loss of all attributes is backpropagated in the

network. Attributes are in descending order based on their

cross-correlation. Those in the second group correspond to

the weakly correlated.

Soft Label SVM Individual

Learning

Multi-Task

Learning

CILICIA

Weight 57.7 67.7 71.0 73.6

Figure 57.8 68.7 68.6 71.8

Muscle build 58.5 73.3 74.5 73.6

Arm thickness 60.1 72.0 73.1 70.7

Leg thickness 56.7 68.9 71.0 73.0

Chest size 58.7 64.9 68.9 70.7

Age 58.5 62.6 61.9 59.7

Height 64.7 73.9 72.0 75.7

Skin color 59.2 66.8 68.0 67.8

Hair color 67.5 74.2 78.1 78.5

Hair length 71.8 78.9 79.2 79.6

Gender 72.1 81.4 79.6 81.3

Strongly Cor. 58.3 69.3 71.3 72.3

Weakly Cor. 65.6 73.0 73.2 73.7

Total Av. 61.9 71.2 72.3 73.1

4. Experiments

4.1. Results on SoBiR

Since the SoBiR dataset [19] does not have a baseline

on attribute classification we reported results using hand-

crafted features and an SVM classifier as well as three dif-

ferent end-to-end learning frameworks using our ConvNet

architecture. In all cases, images were resized to 128×128.

The features used for training the SVMs consisted of: (i)

edge-based features, (ii) local binary patterns (LBPs), (iii)

color histograms, and (iv) histograms of oriented gradients

(HOGs). To preserve local information, we computed the

aforementioned features in four blocks for every image re-

sulting in 540 features in total. Furthermore, we investi-

gated the classification performance when tasks are learned

individually (i.e., by backpropagating only their own loss

in the network), jointly in a typical multi-task classification

setup (i.e., by backpropagating the average of the total loss

in the network), and using the proposed approach. We re-

port the classification accuracy (%) for all 12 soft biomet-

rics in Table 1. CILICIA is superior in both groups of tasks

to the rest of the learning frameworks. Despite the small

size of the dataset, ConvNet-based methods perform better

in all tasks compared to an SVM with handcrafted features.

Multi-task learning methods (i.e., multi-task and CILICIA)

outperform the learning frameworks when tasks are learned

independently since they leverage information from other

Figure 3: Convergence plot for both groups of CILICIA and

Multi-Task learning on the SoBiR dataset. Note that the first

group corresponds to the strongly correlated and the second

to the weakly correlated group of tasks.

Table 2: Performance comparison on the VIPeR dataset.

Attributes are in descending order based on their cross-

correlation. Those in the second group correspond to the

weakly correlated.

Visual Attribute Multi-Task

Learning

Zhu et al. [39] CILICIA

barelegs 79.6 ± 0.8 84.1 ± 1.1 82.9 ± 0.7

shorts 76.8 ± 1.1 81.7 ± 1.3 85.2 ± 0.3

nocoats 74.3 ± 1.3 71.3 ± 0.8 71.3 ± 0.5

skirt 67.2 ± 3.7 78.1 ± 3.5 86.2 ± 3.8

nolightdarkjeanscolor 87.1 ± 1.6 90.7 ± 2.0 96.7 ± 0.4

redshirt 79.2 ± 1.9 91.9 ± 1.0 95.1 ± 0.4

patterned 67.4 ± 3.5 57.9 ± 9.2 77.5 ± 4.3

hashandbag 66.9 ± 3.1 42.0 ± 6.5 81.5 ± 2.7

greenshirt 70.3 ± 2.4 75.9 ± 5.9 90.5 ± 2.3

lightshirt 79.5 ± 0.9 83.0 ± 1.2 84.0 ± 0.8

blueshirt 69.9 ± 1.7 69.1 ± 3.3 90.2 ± 0.7

lightbottoms 79.0 ± 1.0 76.4 ± 1.2 72.5 ± 0.4

hassatchel 72.5 ± 0.8 57.8 ± 2.7 72.8 ± 0.3

midhair 74.3 ± 1.3 76.1 ± 1.8 77.6 ± 1.4

male 71.5 ± 1.9 69.6 ± 2.6 71.5 ± 1.2

darkhair 70.1 ± 2.0 73.1 ± 2.1 64.9 ± 1.2

hasbackpack 68.4 ± 1.4 64.9 ± 1.2 70.2 ± 0.4

darkbottoms 68.1 ± 0.9 78.4 ± 0.7 75.2 ± 0.8

jeans 74.9 ± 0.7 77.5 ± 0.6 74.9 ± 0.6

darkshirt 71.0 ± 1.4 82.3 ± 1.4 84.3 ± 0.5

Strongly Cor. Av. 73.4 ± 2.6 75.7 ± 3.2 85.1 ± 1.0

Weakly Cor. Av. 71.9 ± 1.8 72.5 ± 1.7 74.8 ± 0.5

Total Av. 73.2 ± 1.2 74.1 ± 1.0 80.5 ± 0.7

attributes. By taking advantage of the correlation between

attributes, CILICIA demonstrated higher classification per-

formance than a typical multi-task learning scenario. How-

ever, estimating the “age” proved to be the most challeng-

ing task in all cases as its classification accuracy ranges

from 58.5% to 62.6% when it is learned individually us-

ing our ConvNet architecture. Finally for completeness and

to demonstrate the convergence of all learning schemes, we

provide in Figure 3 the convergence plots for both CILICIA

groups and Multi-Task learning.
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4.2. Results on VIPeR

To demonstrate the superiority of the proposed approach

over normal multi-task learning approaches, we evaluate

in Table 2 its performance in comparison with the method

of Zhu et al. [39] and a typical multi-task learning frame-

work using the VIPeR dataset [9]. Employing the proposed

multi-task curriculum learning approach is beneficial for

the classification of visual attributes, as it outperformed the

previous state-of-the-art by improving the total results by

6.4%. Our method is superior in both groups but espe-

cially in the strongly correlated group of labels, in which

the improvement is almost 10%. CILICIA achieved better

results in most of the tasks, which demonstrates the effi-

cacy of our method over traditional multi-task learning ap-

proaches. The reason for this is that when some tasks are

completely unrelated then multi-task learning has a negative

effect as it forces the network to learn representations that

explain everything, which is not possible. Additionally, we

observed that color attributes tend to achieve higher perfor-

mance compared to other attributes. The reason for this is

that such attributes are highly imbalanced (sometimes more

than one to nine) due to the way annotation is provided (e.g.,

when the question is “is the human wearing a red t-shirt or

not” the answer is mainly negative).

5. Performance Analysis and Ablation Studies

The proposed approach outperformed the state-of-the-art

in all three datasets. We argue that the main reasons for this

are: (i) we exploited the correlation between different at-

tributes and learned a model to classify them in two steps;

(ii) the knowledge transfer from the strongly correlated to

the weakly correlated attributes which improved the per-

formance and reduced the required training time; and (iii)

the use of a pre-trained deep architecture with the first lay-

ers frozen which was not the case in the method of Zhu et

al. [39]. To assess the impact of both contributions and to

demonstrate their effectiveness we conducted two ablation

studies. We selected the four most correlated and the four

least correlated attributes of the PETA dataset so as to form

the two groups of strongly and weakly correlated attributes.

Effectiveness of knowledge transfer: In the first ablation

study we compare the classification accuracy of the selected

tasks with and without knowledge transfer. When no knowl-

edge is transferred we are simply training two multi-task

classification frameworks. We report the obtained results in

the last two columns of Table 3. Transferring knowledge

from the strongly to the weakly correlated group of tasks

improves the performance of the latter by 1.89% compared

to a typical multi-task classification learning framework.

Effectiveness of correlation-based split: In the second

study, we use the same eight selected attributes but in-

stead of grouping them based on their cross-correlation, we

Table 3: Ablation experiments to assess the effectiveness

of knowledge transfer and correlation-based split using the

four most and the four least correlated attributes of the

PETA dataset. In the random split column, the strongly and

weakly groups refer only to the learning sequence as the

split is not based on the correlation. CILICIA (w/o kt) refers

to learning in correlation-split groups, but without knowl-

edge transfer.

Group Random Split CILICIA (w/o kt) CILICIA

Strongly 65.36 76.01 76.01

Weakly 63.08 69.91 71.80

Total 64.22 72.95 73.91

randomly assign them to two groups. We follow exactly

the same two-stage process (i.e., learning one group first

and transferring knowledge to the second which is learned

right after) and report the obtained results in the first col-

umn of Table 3. We observe that learning in correlation-

based groups of tasks is beneficial as CILICIA with and

without knowledge transfer performs better than learning at

random. Additionally, transferring knowledge between at-

tributes that do not co-occur (or they are semantically com-

pletely different) has an adverse effect on the performance.

6. Conclusion

In this paper, we introduced CILICIA, a multi-task cur-

riculum learning method to address the visual-attribute clas-

sification problem. Given images of humans as an input,

we performed end-to-end learning by solving multiple bi-

nary classification problems simultaneously. Tasks were

grouped based on their cross-correlation so that two groups

of strongly and weakly correlated tasks are formed. The

attributes of each group are then learned in a multi-task

learning setup. During training of the weakly correlated

tasks, we leveraged the knowledge already learned from the

strongly correlated tasks. By these means, we combined

the advantages of both multi-task and curriculum learning

paradigms; since our method converges fast, it is effective

and employs prior knowledge. The obtained results demon-

strate the effectiveness and, at the same time, the great po-

tential of multi-task curriculum learning.
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