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Abstract. A probabilistic framework using two random fields, DeTEC
(Detection of Touching Elongated Cells) is proposed to detect cells in
scanning electron microscopy images with inhomogeneous illumination.
The first random field provides a binary segmentation of the image to
superpixels that are candidates belonging to cells, and to superpixels that
are part of the background, by imposing a prior on the smoothness of the
texture features. The second random field selects the superpixels whose
boundaries are more likely to form elongated cell walls by imposing a
smoothness prior onto the orientations of the boundaries. The method
is evaluated on a dataset of Clostridium difficile cell images and is com-
pared to CellDetect.

1 Introduction

Cell detection is an important task in the analysis of microscopy images, with
many applications such as cell counting, quantification of cell wall integrity,
and deformation quantification. Despite the advances in scanning electron
microscopy (SEM), the acquired cell images are often noisy with low contrast.
In addition, inhomogeneously illuminated cells of various sizes may be touching,
making the detection of micron scale cells a challenging task. Standard methods
such as ellipse fitting and Hough transform [1] fail to detect cells in these types
of images due to the their challenging nature.

Recent computer vision methods in cell detection fall into three categories.
The first category assumes that cells differ significantly from their background.
A machine learning algorithm such as random forests [2] assigns a score to pixels
based on features extracted from a local neighborhood. Local extremum points
of the scores represent the cell centroids [3–6]. Other approaches define the score
based on the distance of each point to the nearest annotated cell centroid [2].
The second category includes methods that learn a mapping from global or local
appearances to a real-value [7–9]. These methods are sensitive to the density of
the cells in the image. Furthermore, their main focus is to count the number of
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Fig. 1. Overview of the method (the figure is best viewed in color). (a) Depiction of
a cell cluster in the original image. (b) Depiction of superpixel map (Top), and cell
wall probabilities predicted by random forest regression (Bottom). (c) A random field
defined over the superpixels provides potential cell regions (the nodes are represented by
black dots and the edges by red lines). (d) Depiction of output superpixel area provided
by the random field in (c). (e) A second random field defined over the remaining
superpixel boundaries detects elongated cells (the nodes are represented by red dots
and the edges by green lines). (f) Depiction of detected centroids (red), and cell walls
(green). (Color figure online)
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Algorithm 1. DeTEC algorithm.
Input : Original image, trained random forest for cell wall probability

estimation
Output: Cell centroids

1 Compute the superpixel map.
2 Compute the cell wall probability map.
3 begin First MRF: Cell candidate detection
4 For every superpixel i (i = 1, ..., n1), compute the feature vector f1i .
5 Apply Gaussian mixture model on f1 to compute parameter set T .
6 For every superpixel i compute the unary potentials as the negative log of

the Gaussian probability densities with parameter T .
7 Apply graph cut to find the set of superpixel labels L1 that minimizes

E1(L1).
8 For every superpixel i selected in L1 record the indexes of the superpixel

boundary segments bij in the adjacency matrix, j ∈ G1
i .

9 end
10 begin Second MRF: Elongated cell separation
11 For every superpixel boundary segment q (q = 1, ..., n2

2), selected by the first
MRF compute the feature vector f2q .

12 Apply Gaussian mixture model on f2 to compute parameter set O.
13 For every superpixel boundary segment q compute unary potentials as the

negative log of the Gaussian mixture model with parameter set O.
14 Apply graph cut to find the set of boundary segment labels L2 that

minimizes E2(L2).
15 Generate morphological connected components using the contours of the

selected superpixel boundary segments.
16 Compute the centroids of the remaining connected components.

17 end

cells rather than the localization of cells. The third category are the region-based
methods, where potential cell regions are first detected. Then, an optimization
algorithm selects the best candidates based on statistical texture and appear-
ances [10–15] or correlation clustering [16].

We propose a method capable of detecting touching and inhomogeneously
illuminated cells (Fig. 1). Our contributions are the following:

– We propose two random fields, combining texture and shape information to
detect elongated structures.

– We impose smoothness to the orientation between the segments of a contour
to estimate the cell wall of elongated cells.

– We introduce a new dataset of Clostridium difficile cells obtained by SEM
which is used for the evaluation of the method.

The rest of the paper is organized as follows: Sect. 2 describes DeTEC.
Section 3 discusses the experimental results, including comparison with CellDe-
tect [12].
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2 Two Random Fields for Elongated Cell Detection

As a pre-processing stage, we apply a random forest regression to estimate the
probability of a pixel belonging to a cell wall (Fig. 1(b), bottom). To train the
random forest, we compute a feature vector containing a set of rotation invari-
ant local binary patterns (LBP) [17], the response of the images to difference
of Gaussians of varying width ratios, and to a vessel enhancement filter [18]
(Fig. 1(b), bottom). Six images were manually annotated to provide the labels
for training the random forest.

The next step involves developing a method based on two random fields:
the first random field imposes texture smoothness while the second random field
imposes smoothness on the continuity of superpixel boundary segments. At first,
a cell image is divided into superpixels [19] and an MRF separates the cells from
the background at superpixel level. However, a standard MRF may not separate
clustered cells.

Cell walls have a key role in the detection of cells and the separation of
adjacent cells. Every superpixel boundary segment has a likelihood of belonging
to a cell wall. Moreover, neighboring superpixel boundary segments are more
likely to have a small variance in orientation if they form an elongated cell wall.
These two observations are key-issues in the proposed cell detection method.

Cell Candidate Detection: The first random field is imposed onto the super-
pixels adjacency graph (Fig. 1(c)). A graph cut provides a binary segmentation
of superpixels with the following objective function:

E1 =
∑

i

u1
i (f

1
i |L1, T ) +

∑

i

∑

j∈G1
i

v1
i,j(l

1
i , l

1
j ), (1)

where the first term is the sum of unary potentials u1
i , consisting of a mixture of

two Gaussians with parameter set T = {θ0, θ1}, modeling the foreground and the
background with superpixel label set L1 = {l1i ∈ {0, 1}|i = 1, ..., ns}. The feature
vector f1i comprises a vector of orientation invariant LBPs, along with the mean,
median, and standard deviation of pixels belonging to the ith superpixel. The
second term is the pairwise potential where G1

i is the set of superpixel neighbors
of the ith superpixel.

In the standard MRF formulation, the pairwise term enforces the superpixels
to have the same labels as their neighbors. However, when two cells are close
to each other but not touching (e.g., they are separated by a small number
of background pixels), the pairwise term forces the small background region
between the two cells to be labeled as part of a cell. To avoid these false positives,
we define a new pairwise penalty involving the probability of the boundary
separating neighboring superpixels to be part of a cell wall [20,21]. Therefore,
we define the pairwise potential between neighboring superpixel labels l1i and
l1j by:

v1
i,j(l

1
i , l

1
j ) =

{
− log(π1

ij) , if l1i �= l1j
0 , if l1i = l1j

, (2)
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Fig. 2. (a) Depiction of the superpixel map (green) is overlaid onto the cell wall prob-
ability map. (b) Zoomed visualization of the area inside the red square in (a). The
gray angle is between the largest connected component in the probability map (white)
and the superpixel boundary segments (green). (c) The mean cell wall probabilities
π2
ij of the image depicted in (a). (d) Depiction of the standard deviations of cell wall

probabilities.(a) Depiction of the superpixel map (green) is overlaid onto the cell wall
probability map. (b) Zoomed visualization of the area inside the red square in (a). The
gray angle is between the largest connected component in the probability map (white)
and the superpixel boundary segments (green). (c) The mean cell wall probabilities
π2
ij of the image depicted in (a). (d) Depiction of the standard deviations of cell wall

probabilities. (Color figure online)

where π1
ij is the probability indicating whether the boundary between the ith

and jth superpixels is on a cell wall:

π1
ij =

1
|Nij |

∑

x∈Nij

px. cos αij , (3)

where Nij is the set of all pixels at the border of the two superpixels indexed by
i and j, and px is the probability of a pixel x belonging to a cell wall. This value
is obtained from the random forest (Fig. 1(b), bottom).

In Eq. (3) αij is the angle between the superpixel boundary component and
the corresponding connected component in the probability map in a neighbor-
hood around position x (Fig. 2(b)). Thus, a superpixel boundary receives a high
cell wall score when it is parallel to a real cell wall. If the boundary segment is
more likely to be part of a cell wall, then the two touching superpixels are less
likely to have the same labels.

This MRF model segments the cell regions from the background (Fig. 1(d)).
However, when the cells are clumped together, every cluster of cells is segmented
as one connected component. The second MRF takes the boundary segments of
the cell superpixels and detects a set of boundary components that are more
likely to form an elongated cell wall to detect elongated cells and separate the
clustered cells. The second random field considers only the selected candidate
superpixels. Therefore, the number of boundary segments in the second layer
is much smaller than the total number of boundary segments in the original
superpixel map.
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Elongated Cell Separation: The second random field is defined over the
superpixel boundary segments selected by the first random field. The objective
of this step is to cluster these boundaries into two categories: boundaries that
belong to elongated cell walls, and the rest of the boundaries. The energy function
to be minimized is:

E2 =
∑

q

u2
q(f

2
q |L2,O) +

∑

q

∑

r∈G2
q

v2
q,r(l

2
q , l

2
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The unary term represents the potential of the superpixel boundary component
to be part of a cell wall. Similar to the first layer, u2

q is modeled by a Gaussian
mixture model parameterized by O and L2 = {l2q ∈ {0, 1}|q = 1, ..., n2

2}. The fea-
ture vector f2q comprises the mean π2

ij (defined similarly as π1
ij in Eq. (3) and the

standard deviation of the cell wall probabilities for the qth superpixel boundary
components (Fig. 2). The second term models the pairwise potential enforcing
the elongation of the qth boundary segment with respect to its neighbors in G2

q :

v2
q,r(l

2
q , l

2
r) =

{
cos (βqr) if l2q �= l2r

0 if l2q = l2r

, (5)

where βqr is the angle between superpixel boundary segments q and r, and is
computed by taking the minimum angle between the estimated orientations of
q and r. When two adjacent boundary components have different orientations,
they are less likely to have the same label. The extracted superpixel boundary
components form the detected cell walls that separate the cell regions (Fig. 1(f)).

3 Experimental Results

To evaluate our method, we employed a dataset containing 7 Clostridium difficile
cell images with a total of 78 cells acquired via SEM imaging with 10000X mag-
nification and resolution of 411×712 pixels. The images have low cell densities
but many cells are clustered together, making detection challenging. Further-
more, cells areas are highly inhomogeneously illuminated. This holds not only
between cells but mainly for pixels belonging to the same cell (Fig. 4). In some
cases, the cells are partially destroyed due to the biological treatment.

Table 1. Parameter settings used in DeTEC.

Parameter(s) Value(s)

DoG standard deviations σ1 = 1, and σ2 ∈{5,10}
Vessel enhancement filter [18] parameters Scale range = [1, 8], β1 = 0.5,

β2 = 15, and Scale ratio = 2

Distance from ground truth for true positives (d) 20 pixels
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Table 2. Comparative results between DeTEC, CellDetect, and CellDetect*. In
CellDetect*, a cluster of cells detected as one cell is considered a true positive.

Method Precision Recall F-score

CellDetect [12] 0.53 0.27 0.36

CellDetect* [12] 0.95 0.57 0.71

DeTEC 0.69 0.93 0.79

Cell centroids are manually annotated to establish the ground truth. A cen-
troid is considered to be detected if it lies within a distance d from an annotated
centroid. The distance is defined based on the length of the major axis of the
smallest cell in the dataset. False positives are defined accordingly. We used the
F-score for comparison.

Table 1 depicts the parameter settings for DeTEC. We compared the result
with CellDetect [12], which is a supervised region-based cell detection method.
CellDetect uses extremal regions [22] to detect candidate cell regions. Then, a
statistical model of the cell appearance evaluates the selected extremal regions.
The training and testing for CellDetect was based on a leave-one-out cross val-
idation. In many cases, CellDetect fails to separate touching cells. Therefore,
we considered two experiments for the comparison. The first experiment evalu-
ates the detection of individual cells. The second experiment, which is strongly
favorable to CellDetect, considers the attached cells as one object. In that case,
detected clustered cells would be considered true positives even if CellDetect
indicates the whole cluster as one cell.

Table 2 summarizes the performance of DeTEC against the two mentioned
experiments. As may be observed, DeTEC achieves a higher F-score even in the
case where detected clustered cells are considered as true positives for CellDe-
tect. Accepting clustered cells improves the precision of CellDetect significantly.
However, CellDetect fails to detect some cells due to the assumption of existing
extremal regions that can represent the cells [15].

Figure 3 depicts representative examples of CellDetect and the DeTEC. The
detected boundaries for an out-of-focus cell may not match the exact cell wall
(Fig. 3(c)) since superpixel boundaries may not fit the cell wall line due to poor
illumination. However, DeTEC could successfully estimate the centroid since
we employed the cell wall probabilities from a small neighborhood around the
superpixel boundaries.

DeTEC has a significantly higher F-score with respect to CellDetect [12]. This
is also true for its precision and recall values. It seems that precision could have
been better. However, this is due to the multiple cell centroids it detects in the
case of overlapping cells or cells having undergone a biological treatment (3).

Finally, Fig. 4 depicts samples of detected inhomogeneously illuminated cells
despite shadows and artifacts. Inhomogeneous illumination may cause the first
random field to include the superpixels around the cells in the segmentation due
to shadows and artifacts. However, the second random field examines whether
the selected superpixel boundary segments are likely to form a cell wall with
their neighbors, and eventually rejects them.
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Fig. 3. Detected centroids and boundaries for CellDetect [12] (Left), and the DeTEC
(Right). For DeTEC, annotated and detected centroids are shown in yellow and red,
respectively. (Color figure online)

Fig. 4. Inhomogeneous illumination creates shadows on the cell surface and a bright
area around the cell. Detected centroids for CellDetect [12] is shown (Top row).
Detected and true centroids for DeTEC are shown as squares and circles, respectively
(Bottom row).
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4 Conclusion

We proposed a method with two random fields to detect elongated cells in SEM
images that is robust for detecting inhomogeneously illuminated cells. The detec-
tion process is automatic, robust to inhomogeneous illumination, and suitable
for the analysis of high-throughput microscopy images. The method successfully
separates touching cells by estimating their cell walls. In general, our method
has better overall performance than CellDetect.

In this work, we did not consider the case of cross-overlapping cells, which
has been previously addressed by post-processing [6], deformable models [23],
or watersheds [24]. Our detection method was implemented using a graph cut
algorithm. However, the idea could be further extended to employ a supervised
approach such as conditional random fields.
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