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Abstract

The Horn-Schunck (HS) optical flow method is
widely employed to initialize many motion estimation
algorithms. In this work, a variational Bayesian ap-
proach of the HS method is presented where the mo-
tion vectors are considered to be spatially varying Stu-
dent’s t-distributed unobserved random variables and
the only observation available is the temporal image
difference. The proposed model takes into account the
residual resulting from the linearization of the bright-
ness constancy constraint by Taylor series approxima-
tion, which is also assumed to be a spatially vary-
ing Student’s t-distributed observation noise. To infer
the model variables and parameters we recur to varia-
tional inference methodology leading to an expectation-
maximization (EM) framework in a principled proba-
bilistic framework where all of the model parameters
are estimated automatically from the data.

1 Introduction

The estimation of optical flow is one of the funda-
mental problems in computer vision as it provides the
motion of brightness patterns in an image sequence. A
large family of optical flow methods are the global or
variational techniques, relying on an energy minimiza-
tion framework, with their main representative being
the Horn-Schunck method [7], which optimizes a cost
function using both brightness constancy and global
flow smoothness and has also led to many variants of
the basic idea. However, the spatial smoothness of
the flow field assumed in the above techniques results
in many cases to blurred flow boundaries. To over-
come this drawback, many researchers proposed vari-
ous approaches. The related literature being abundant,
we may name methods such as robust statistics [10],
variational methodologies [5], the integration of spa-

tial priors [13], the segmentation of the image pixels
or the motion vectors [15] and learning from ground
truth data [14]. Moreover, efforts to combine local and
global adaptive techniques were also proposed such as
the technique in [3].

A significant issue in the variational methods is the
relative importance between the brightness constancy
term and the smoothness term which is usually con-
trolled by a parameter determined by the user remaining
fixed during the whole process. This is the case not only
for the early algorithm of Horn-Schunck [7] but also for
the latest versions of this category of methods. Another
shortcoming is the linearization of the brightness con-
stancy constraint which results in omitting the higher
order terms of the Taylor series expansion [7].

In this paper, we propose a probabilistic formulation
of the optical flow problem by following the Bayesian
paradigm. The proposed model has intrinsic proper-
ties addressing the above mentioned shortcoming. More
specifically, we consider the motion vectors in the hor-
izontal and vertical directions to be independent hid-
den random variables following a Student’s t- distri-
bution. This distribution may model, according to its
degrees of freedom, flows following a dominant model
(spatial smoothness) as well as flows presenting outliers
(abrupt changes in the flow field or edges). Therefore,
to account for flow edge preservation with simultane-
ous smoothing of flat flow regions, the parameter of the
t-distribution is also considered to be spatially varying
and its value depends on pixel location.

Furthermore, the proposed model takes into ac-
count the residual resulting from the linearization of
the brightness constancy constraint. The higher order
terms of the Taylor series approximation are also rep-
resented by a spatially varying Student’s t-distributed
observation noise. It turns out that the update solution
for the motion field has a form analogous to the update
equations of the Horn-Schunck method [7], with the
involved quantities being automatically estimated from
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the two images due to the principled probabilistic mod-
eling. Numerical results revealed that the method pro-
vides better accuracies not only with respect to standard
optical flow algorithms [7, 8] which are used to initial-
ize more sophisticated methods, but also to a recently
proposed version of their joint combination [3].

2 A prior for the motion vectors

Let I(x) be the first image frame (target frame) con-
taining the intensity values lexicographically and let
also J(x) be the second image frame (source frame)
where x = (x, y) represents the 2D coordinates of a
pixel. The brightness constancy constraint at a given
location is expressed by:

∂I

∂x
ux +

∂I

∂y
uy +

∂I

∂t
= 0, (1)

where we have removed the independent variable repre-
senting the location x for simplicity. In (1),ux and uy

are the motion vectors in the horizontal and vertical di-
rections respectively, ∂I/∂x and ∂I/∂y are the spatial
gradients of the target image and ∂I/∂t is the temporal
difference between the two images (J(x)− I(x)).

For convenience, we compactly represent the opti-
cal flow values at the i-th location by uk(i), for i =
1, . . . ,N where k ∈ {x, y} and N is the number of im-
age pixels. We now assume that uk(i) are i.i.d. zero
mean Student’s t-distributed, with parameters λk and νk:

uk(i) ∼ St (0, λk, νk) , ∀i = 1, ..., N, ∀k ∈ {x, y}. (2)

The Student’s-t distribution implies a two-level gen-
erative process [4]. More specifically, ak(i), k ∈ {x, y}
are first drawn from two independent Gamma distri-
butions: ak(i) ∼ Gamma (νk/2, νk/2). Then, uk(i),
k ∈ {x, y} are generated from two zero-mean Normal
distributions with precision λkak(i)Q

T
i Qi according to

p(uk(i)|ak(i)) = N (0, (λkak(i)Q
T
i Qi)

−1), where Qi

is the matrix applying the Laplacian operator to the flow
field at the i-th location. Based on the assumption that
the flow field should be smooth, it is common to as-
sume this type of prior privileging low frequency mo-
tion fields [11].

The probability density function in (2) may be writ-
ten as p (uk(i)) =

∫∞
0

p (uk(i)|ak(i)) p (ak(i)) dak(i),
where the variables ak(i) are hidden because they are
not apparent in (2) since they have been integrated out.
As the degrees of freedom parameter νk → ∞, the pdf
of ak(i) has its mass concentrated around its mean. This
in turn reduces the Student’s-t pdf to a Normal distribu-
tion, because all uk(i), k ∈ {x, y} are drawn from the
same normal distribution with precision λk, since ak(i)

= 1 in that case. On the other hand, when νk → 0 the
prior becomes uninformative. In general, for small val-
ues of νk the probability mass of the Student’s-t pdf is
more ”heavy tailed”.

We assume that the horizontal and vertical mo-
tion fields are independent at each pixel loca-
tion. This assumption makes subsequent calculations
tractable and is common in Bayesian image analy-
sis. By defining the N × N diagonal matrices Ak =
diag[ak(1), . . . ,ak(N)]T , k ∈ {x, y}, the pdf of the hor-
izontal and vertical motion fields may now be expressed
by p (uk|Ak) = N

(
0,

(
λkQ

TAkQ
)−1

)
, where Q

is the Laplacian operator applied to the whole image
and 0 is a N × 1 vector of zeros. Then, the over-
all pdf of the motion field u = [ux,uy]

T is given by
p(u) = p(ux|Ax)p(uy|Ay), or equivalently:

p
(
u|Ã

)
= N

(
0,

(
λQ̃T ÃQ̃

)−1
)
, (3)

where the 2N × 1 vector λ = [λx, λy]
T , the 2N × 2N

matrix Ã =
[

Ax 0
0 Ay

]
, the 2N × 2N matrix Q̃ =[

Q 0
0 Q

]
and 0 is a zero matrix of size N × N .

Hence, following (3), the marginal distribution p(u) has
a closed form.

The optical flow equation (1) may be written in
matrix-vector form as:

[
Gx Gy

] [ ux

uy

]
+w = d. (4)

where the block diagonal N × 2N matrix G =[
Gx Gy

]
, with Gx = diag

[
∂I(x1)
∂x , . . . , ∂I(xN )

∂x

]T
,

Gy = diag
[
∂I(x1)
∂y , . . . , ∂I(xN )

∂y

]T
contains the spa-

tial derivatives in the horizontal and vertical di-
rections lexicographically and the N × 1 vector
d = [I(x1)− J(x1), . . . , I(xN )− J(xN )]

T contains
the temporal image differences. In order to take into
account higher order terms of the Taylor series expan-
sion of the brightness constancy constraint, we add a
noise term w to (1) which is assumed to have spatially
varying Student’s t-statistics w ∼ N

(
0, (ληB)

−1
)

,
where ληB is the noise precision matrix and B =
diag[b(1), . . . ,b(N)]T . The t-distribution implies that
b(i) ∼ Gamma (µ/2, µ/2).

Following the optical flow matrix-vector formulation
in (4) and the noise modeling, we come up with the
probability of the temporal image differences given the
motion vectors: p(d|u) = N

(
Gu, (ληB)

−1
)

.
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Figure 1. Graphical model for optical flow.

The above probabilistic formulation of the optical
flow problem is represented by the graphical model of
figure 1. As it may be observed, d is the vector contain-
ing the observations (temporal differences), denoted by
the double circle, u = [ux,uy]

T , ax, ay , b, are the
hidden variables of the model, denoted by the simple
circles and λx, λy , λη, νx, νy and µ are the model’s pa-
rameters. Notice that all of the variables and the obser-
vations are of dimension N except of the vector u col-
lecting the horizontal and vertical motions. This shows
the ill-posedness of the original optical flow problem
where we seek 2N unknowns (vectors ux and uy) with
only N observations (vector d).

3 Model inference

In the fully Bayesian framework, the complete data
likelihood, including the hidden variables and the pa-
rameters of the model, is given by p

(
d,u, Ã,b; θ

)
=

p
(
d|u, Ã,b; θ

)
p
(
u|, Ã,b; θ

)
p
(
Ã; θ

)
p (b; θ)

where θ = [λη, λx, λy, µ, νx, νy] gathers the pa-
rameters of the model. Estimation of the model
parameters could be obtained through maximization of
the marginal distribution of the observations p (d; θ):

θ̂ = argmax
θ

∫ ∫ ∫
p
(
d,u, Ã,b; θ

)
du dÃ db.

However, in the present case, this marginalization is not
possible, since the posterior of the latent variables given
the observations p(u, Ã,b|d) is not known explicitly
and inference via the Expectation-Maximization (EM)
algorithm may not be obtained. Thus, we resort to the
variational methodology [2, 4] where we have to max-
imize a lower bound of p

(
u, Ã,b

)
by employing the

mean field approximation [4]. Due to lack of space, the

details of the derivation are given in [6]. The update
equations for the motion vectors are given here.

Therefore, in the variational E-step of the algorithm
the motion vectors are estimated by:

u(t+1)
x = λ(t)

η R(t)
x B(t)Gx

(
d−Gyu

(t)
y

)
(5)

u(t+1)
y = λ(t)

η R(t)
y B(t)Gy

(
d−Gxu

(t)
x

)
(6)

where t indicates the time step and the N ×N matrix

R(t)
x =

(
λ(t)
η GT

xB
(t)Gx + λ(t)

x QTA(t)
x Q

)−1

(7)

and its counterpart R(t)
y are computed using the Lanc-

zos method [12]. Moreover, in the variational E-step,
the expectations of the hidden random variables ax(i)
and ay(i) and the noise b(i) are updated. In the varia-

tional M-step, the lower bound of p
(
u, Ã,b

)
is maxi-

mized with respect to the model parameters (noise pre-
cision λη, flow precisions λx, λy , degrees of freedom
νx, νy , µ). The reader is referred to [6] for the expres-
sions of the respective update equations.

Let us notice that as we can see from (5) and (6),
there is a dependency between u

(t+1)
x and u

(t)
y , as well

as between u
(t+1)
y and u

(t)
x . This is also the case in

the standard Horn-Schunck method. The main contri-
bution of the proposed approach is that all of the model
parameters may be computed from the two images by
the variational EM algorithm. In the standard Horn-
Schunck methods and its variants these parameters are
set heuristically. This also includes the noise precision
λη which represents the error due to the linearization of
the brightness constancy constraint which is generally
omitted in standard optical flow estimation methods.

4 Experimental results

The method proposed herein is a principled Bayesian
generalization of the Horn-Schunck (HS) method [7].
Therefore, our purpose is to examine its appropriate-
ness to replace it in the initialization of more advanced
optical flow schemes. We have also included the well-
known and established rival algorithm of Lucas-Kanade
(LK) [8]. These are the two methods widely used for
initializing more sophisticated optical flow algorithms.
Moreover, we have included in the comparison the al-
gorithm proposed in [3], which combines the above two
algorithms for feature tracking.

The proposed method was tested on image sequences
including both synthetic and real scenes. A synthetic se-
quence included in our experiments consists of two tex-
tured triangles moving to different directions with dif-
ferent velocity magnitudes (Triangles). We have also
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applied our method to the Yosemite sequence as well as
to the Dimetrodon sequence obtained from the Middle-
bury database [1].

To evaluate the performance of the method two per-
formance measures were computed. The average an-
gular error (AAE) [13], which is the most common
measure of performance for optical flow and the av-
erage magnitude of difference error (AME) [9]. The
latter measure normalizes the errors with respect to
the ground truth and ignores normalized error vector
norms smaller than a threshold T . We have employed
T = 0.35 in our evaluation.

The numerical results are summarized in Table 1,
where it may be observed that the method proposed in
this paper provides better accuracy with regard to the
other methods. More specifically, our algorithm largely
outperforms the Lucas-Kanade method and is clearly
better than the Horn-Schunck algorithm. Notice that
the JLK algorithm is not very accurate as its behav-
ior depends partially on a Lucas-Kanade scheme which
fails in all cases (first table row). We conclude that JLK
which combines the two approaches may perform bet-
ter for sparse optical flow applied to features [3] but not
for dense flow estimation.

Table 1. Comparative Results.
Average Angular Error (AAE)

Method Triangles Yosemite Dimetrodon
LK [8] 8.58◦ 11.65◦ 27.52◦

HS [7] 5.57◦ 5.43◦ 8.50◦

JLK [3] 6.95◦ 7.97◦ 33.14◦

Proposed 3.93◦ 4.45◦ 4.31◦

Average Magnitude Error (AME)
Method Triangles Yosemite Dimetrodon
LK [8] 0.17 0.26 0.56
HS [7] 0.13 0.14 0.49
JLK [3] 0.18 0.18 0.65

Proposed 0.10 0.12 0.13

The proposed algorithm takes on average less than
a minute to converge o a standard PC running MAT-
LAB, depending on the number of image pixels (e.g. it
takes 80 seconds for the 584 × 388 sized Dimetrodon
sequence). More than half of this time is due to the
Lanczos method used for diagonalizing Rx in (7) (and
respectively Ry).

5 Conclusion

The optical flow estimation method proposed in this
paper relies on a probabilistic formulation of the prob-
lem along with a variational Bayesian inference ap-

proach. The spatially varying Student’s t-distribution
of the motion vectors achieves selective application of
smoothness leaving motion edges unaffected. Further-
more, any residuals of the linearization of the bright-
ness constancy constraint are also modeled leading to
better accuracy. A perspective of this study is to exten-
sively evaluate the use of the algorithm as an initializa-
tion method for methods capturing large motions which
incorporate more sophisticated constraints on the mo-
tion field, like the method in [5].
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