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Abstract—A probabilistic real time tracking algorithm is
proposed. The distribution of the target is represented by a
Gaussian mixture model (GMM) and the weighted likelihood
of the target is maximized in order to localize it in an image
sequence. The role of the weight is important as it allows
gradient based optimization to be performed, which would not
be feasible in a context of standard likelihood representations.
The algorithm models both the object to be tracked and local
background elements and handles scale changes in target’s ap-
pearance. It is experimentally demonstrated that the algorithm
runs in real time, and it is at least at the same performance level
with the mean shift algorithm while it provides more accurate
target localization in non trivial scenarios (e.g. shadows).

I. INTRODUCTION

Visual tracking is the process of locating an object’s

position in the frames of an image sequence. As described

in [1], the trajectory of the object over time can be obtained

either a) by estimating the object’s position in a frame based

on the position in the previous frame or b) by detecting

the object in every frame and afterwards to associate the

detections between them. The algorithms of the first group

usually deal with one object whose location and appearance

obtained from the previous frame are updated based on

the observations of the current frame. The second group

usually handles many targets and the objective is both to

separate them in a single frame and find their correlation

between frames. These groups of algorithms can also be

further subdivided into categories, depending on the model

that is used to represent the target.

The simplest representation of an object is a vector which

defines the state. The state may be a combination of the

location, the velocity and the acceleration. Methods that

rely on filtering combine a prediction made from previous

states and an observation generated from the current frame

to estimate the current state. These methods include Kalman

filter [2] and particle filters [3] and they can estimate the

object’s position even if no observations are provided (e.g.

due to occlusions) but they assume a state evolution model

which must be defined accurately in advance.

Another category of methods assume that the object has

a relatively simple shape (e.g. an ellipse or a rectangle)

which is spatially masked with a kernel. These methods
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usually rely only on the observations to estimate the ob-

ject’s position. They start from an initial location (which

is usually the position of the object in the previous frame)

and use a gradient-decent based optimization procedure to

estimate the objects position. This optimization is performed

through a cost function which is usually a distance between

histograms, such as in the mean shift [4] and the Camshift

[5] algorithms, histogram signatures [6] or Gaussian mixture

models [7]. In [8] the author shows that the mean shift is

an EM algorithm if the kernel is gaussian and a generalized

EM if a non-gaussian kernel is used and in [9] the mean

shift is treaded as an EM-like algorithm in order to estimate

the orientation of the target in addition to the position and

the scale. One drawback of these methods is that they can

not handle total occlusions. Methods that combine these

techniques with algorithms such as Kalman filter [10] and

particle filters [11] have also been proposed in order to

overcome their limitations.

A more detailed representation of the shape of the target

can be achieved through level sets or active contours, which

were successfully used in tracking [12]. This representation

was employed to track multiple objects [13], [14] along

with its combinations with other approaches, such as particle

filters [15]. In [16], active contours are combined with

Bayesian filters to robustly segment the object from the

background.

The above methods assume an appearance model that

is initialized in the first frame and tracked in consecutive

frames. If the appearance of the object changes, the appear-

ance model must be updated too. Mixture models have been

combined with tracking algorithms in order to update the

appearance model in cases where the object is represented by

histograms [17] or level sets [18]. In [19], multiple instance

learning is used to update the appearance model in cases of

partial occlusion.

The majority of these algorithms deal with one object.

Although a distinct tracker can be used in order to track

many objects simultaneously, this is not the optimal solution

as these objects may partially or totally occlude each other

and this information is not handled by the tracker. Therefore,

more advanced algorithms have been designed in this frame-

work. In [20], graph cuts were used in order to segment the

frame into possible objects and associate them with objects

detected in previous frames. In [21], multiple objects are also
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detected in every frame and associating detections between

frames is converted into a linear programming problem

which is solved using the k-shortest path algorithm. Partially

occluded objects are also tracked in [22], where occlusion

maps and prior knowledge on the objects’ movement are

used.

In this work, we present a tracking algorithm relying on

the probabilistic representation of the object to be tracked

and its subsequent localization in the image sequence. It is

assumed that the appearance of the target may be described

by a Gaussian mixture model (GMM) instead of a histogram

or histogram signatures as it is the case, for instance, in

[4], [6] and [9]. Moreover, the pixels of the target do not

contribute equally to the likelihood of the target but they

are weighted with respect to their distance from the center

of the object. The localization of the target is obtained by

maximizing the weighted likelihood along the frames of the

image sequence. The numerical evaluation of the algorithm

showed that it provides, in general, more accurate target

localization than the Camshift algorithm [5] which is a

variant of the mean shift algorithm [4] in OpenCV [23].

In the remaining of the paper, the tracking algorithm re-

lying on the maximization of the weighted target likelihood

is described in section II, experimental results are presented

in section III and conclusions are drawn is section IV.

II. TRACKING BY WEIGHTED LIKELIHOOD

We assume that the object, which is represented by an

ellipse, is known in the first frame of the image sequence.

Using color and intensity features inside this ellipse a GMM

is constructed by employing the EM algorithm.

Let y be a vector representing the coordinates of the

center of the ellipse and h be a vector with components

being the lengths of the major and minor axes of the ellipse.

The coordinates of the n-th pixel is represented by xn and

the corresponding feature (i.e. color) by In. We assign a

weight wn(y) to every pixel by masking the ellipse with a

kernel k(·):
wn(y) = k (f (xn;y,h)) , (1)

where

f (xn;y,h) =

(
x
(1)
n − y(1)

h(1)

)2

+

(
x
(2)
n − y(2)

h(2)

)2

(2)

where the superscripts 1 and 2 denote the horizontal and

vertical coordinates respectively. Function f eliminates the

drawback of different axis length.

We now define the weighted log-likelihood function of

the set of pixels inside an ellipse with center y:

L(I,w(y);π,μ,Σ) =

N∑
n=1

wn(y)Ln (3)

where N is the number of pixels inside the ellipse, I =
{In}n=1,...,N , w(y) = {wn(y)}n=1,...,N , where wn(y)

denotes the importance of the n-th pixel to the model and

the term

Ln = ln
K∑

k=1

πkN (In;μk,Σk) (4)

denotes the log-likelihood of a pixel described by a GMM

of K components with mixing proportions πk, mean vectors

μk and covariance matrices Σk, for k = 1, . . . ,K.

At first, the GMM parameters describing the target are

computed by employing the EM algorithm for maximizing

the weighted log-likelihood (3), leading to the following

update formulas:

E-Step:

zk,n = wn(y)
πkN (In|μk,Σk)∑K
l=1 πlN (In|μl,Σl)

. (5)

M-Step:

Nk =
N∑

n=1

zk,n, (6)

μk =
1

Nk

N∑
n=1

zk,nIn, (7)

Σk =
1

Nk

N∑
n=1

zk,n (In − μk) (In − μk)
T
, (8)

πk = Nk
1∑N

n=1 wn

. (9)

The above two steps are executed repeatedly until the log

-likelihood (3) of two consecutive iterations do not change

significantly or a maximum number of steps is reached. The

initialization of the GMM parameters is done by using the

K-means algorithm.

We consider that in the first frame the position of the

target y and its size h are known and the tracking procedure

consists in estimating y and h in the next frames. Computing

the gradient of the weighted likelihood (3) with respect to

y we obtain:

dL

dy
=

dL(I,w(y)|π,μ,Σ)

dy
=

N∑
n=1

df (xn;y,h)

dy
Ln, (10)

where

df (xn;y,h)

dy
=

[
df (xn;y,h)

dy(1)
,
df (xn;y,h)

dy(2)

]T
. (11)

By defining the negative derivative of the kernel function as

g(x) = −dk(x)
dx , we have:

df (xn;y,h)

dy
= 2An(y)g (f (xn;y,h)) , (12)

where

An(y) =

[
x
(1)
n − y(1)

h(1)2
,
x
(2)
n − y(2)

h(2)2

]T
, (13)
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leading to:

dL

dy
=

N∑
n=1

2An(y)g (f (xn;y,h))Ln. (14)

Once (14) is computed, we move along the gradient vector

to one of its 8 neighboring pixels, as it is proposed in [6]

in order to ensure a smooth motion between frames. An

alternative would be to use the exact values of the gradient

vector in case smooth motion is not a prerequisite. The

advantage of using the weighted log-likelihood in (3) is that

we obtain the gradient in (14) which depends on the target

location y. This is in contrast with a standard GMM-type

likelihood (without the weight), which would not provide

a gradient dependent on y and therefore the likelihood

maximization with respect to it would not be feasible.
Due to the fact that the log-likelihood function (3) depends

on the number of pixels N , we can not use it directly to

evaluate the scale of the target. To overcome this drawback

the number of pixels N , inside the ellipse, where the

likelihood is evaluated must be constant. To this end, we

only consider pixels in a certain grid. The distance of

neighboring pixels in this grid may be increased or decreased

in relation with the size of the ellipse. By these means, the

number of pixels N remains constant. This scale adaptation

is performed independently in the horizontal and vertical

directions and demands less computational resources com-

pared to the computation of the position which necessitates

the whole number of pixels inside the ellipse. The overall

tracking procedure is described in the weighted likelihood

tracking (WLT) algorithm 1.

Algorithm 1 WLT algorithm

1: function WLT(Image sequence)

2: Input: an image sequence consisting of T frames.

3: Output: the ellipse center y at each frame.

4: Initialization:

5: Determine the initial position y1 and the size h1 of

the target

6: Compute the parameters πk, μk and Σk of the GMM

describing the target using (7), (8) and (9)

7: Tracking:

8: for frame t = 2, . . . , T do
9: yt = yt−1

10: ht = ht−1

11: while the likelihood in (3) increases do
12: Move to yt using (14)

13: end while
14: Estimate horizontal and vertical sizes of the

target ht = [h
(1)
t , h

(2)
t ]T

15: end for
16: end function

In this framework, the advantage of weighting the likeli-

hood is twofold. Firstly, following the assumption adopted

in kernel-based tracking methods [4], [6], [23], it considers

that pixels near the center are more probable to belong to the

object and they contribute more to the total likelihood. On

the other hand, pixels which are more distant from the center

may be part of the background and their contribution to the

object’s likelihood relatively smaller. Secondly, the main ad-

vantage of the weighted likelihood is that the weight at each

pixel depends on the target location and the maximization

of the likelihood is easily obtained with respect to it. This is

not the case for a standard GMM likelihood function which

cannot be employed in this framework.

III. EXPERIMENTAL RESULTS

The evaluation of the proposed tracking algorithm was

performed using six real datasets. The image sequences

Seq1, Seq2, Seq3 and Seq4 are taken from the PETS’01

database while the datasets Seq5 and Seq6 are taken from

PETS’06 database. In all of these image sequences the

targets change their position and size simultaneously. The

ground truth for these image sequences was manually deter-

mined (both for the size and the position of the target). Let us

notice that although we show the ground truth delimited by

rectangles, the WLT algorithm employs the inscribed ellipse.

As each object is represented by an ellipse, in order to

evaluate the performance of a tracking algorithm we use

the center and the size of the ellipse axis. We employ the

evaluation criteria that were used in [6]. The first criterion

is the number of frames in which the object is correctly

tracked. An object is considered to be correctly tracked

in a frame if the estimated rectangle covers at least 25%
of the area of the target in the ground truth. The second

criterion is the position error which is the Euclidian distance

between the center of the object in the ground truth and

the estimated target center, divided by the diagonal of the

ground truth rectangle. Finally, the size error is defined as

the Euclidian distance between the ground truth and the

estimated vectors (with components being the width and the

height of the ellipse), normalized by the ground truth length

of the objects diagonal. The division with the diagonal of

the object eliminates the problems due to different object

sizes.

Let us notice that the choice of the kernel function k(x)
may theoretically affect the gradient of the log-likelihood

(14). If we use a kernel with an exponential profile:

k(x) =

{
e(−x/σ) if x ≤ 1
0 otherwise

(15)

then the derivative of (14) becomes:

dL

dy
=

N∑
n=1

An(y)wn(y)Ln (16)

which involves wn(y). On the other hand, if we use an
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Table I
THE PERFORMANCE OF THE WLT METHOD IN TERMS OF AVERAGE POSITION ERROR AND AVERAGE SIZE ERROR FOR AN EXPONENTIAL AND AN

EPANECHNIKOV KERNEL. THE BOLD NUMBERS INDICATE THE BEST PERFORMANCE.

Seq. Frames Tracked Position Error Size Error
Exponential Epanechnikov Exponential Epanechnikov Exponential Epanechnikov

Seq1 499/499 499/499 0.102 0.193 0.230 0.357
Seq2 199/199 173/199 0.137 0.144 0.320 0.260
Seq3 299/299 299/299 0.182 0.116 0.211 0.239
Seq4 309/309 304/309 0.122 0.146 0.205 0.303
Seq5 129/129 98/129 0.130 0.097 0.337 0.201
Sqe6 169/169 169/169 0.149 0.167 0.274 0.335

Table II
THE PERFORMANCE OF THE WLT METHOD IN TERMS OF AVERAGE

POSITION ERROR AND AVERAGE SIZE ERROR FOR DIFFERENT NUMBERS

OF COMPONENTS K EVALUATED FOR THE DATASET Seq2.

K Frames Tracked Position Error Size Error
2 199/199 0.135 0.273
3 199/199 0.137 0.320
4 199/199 0.136 0.292
5 199/199 0.134 0.302
6 199/199 0.116 0.254
7 199/199 0.137 0.318
8 199/199 0.129 0.304

Epanechnikov kernel:

k(x) =

{
1
2 (1− x) if x ≤ 1
0 otherwise

(17)

then the derivative of (14) is simplified and becomes:

dL

dy
=

N∑
n=1

An(y)Ln. (18)

In our experiments we used (15) and (16) with σ = 1 as the

performance for this kernel type is slightly better (Table I).

We have also tested the proposed method for different

numbers of components K (Table II). For this particular

example, the number of components K does not seem to

affect the performance of the algorithm. Even though the

results presented in Table II correspond to Seq2 dataset,

the WLT method has similar performance for the rest of

the datasets used in our experiments. The objects in these

examples have few color components. For objects with more

color components small values for K may not be sufficient.

On the other hand, the time needed by the tracking algorithm

increases when the number of components increases. The

representation of a target by a GMM is an efficient tool

as a GMM may represent both the foreground and local

background elements using different components.

We also compared our method with the OpenCV’s im-

plementation of Camshift algorithm [5], [23] which is a

robust version of the mean shift algorithm [4] with scale

adaptation. For Camshift, we used a 16 bin histogram for

the hue component. We also did not take into account pixels

with low or high brightness or low saturation (we apply

thresholds equal to 10% of the maximum pixel value) as it

is suggested in [5]. For comparison purposes, we did not

search for the rotation of the target in Camshift in order to

have a common baseline. For the WLT algorithm we used

K = 3 as it provides a relatively good tradeoff between the

time needed and the flexibility of the GMM (Table II).

In Table III, the quantitative results of the compared

methods are presented. The initial position in every sequence

was manually determined in every algorithm. In Seq1 and

Seq2, where the targets are cars viewed from a fixed position

camera, both algorithms successfully track the objects with

Camshift having a slightly better performance. This results

from the fact that the illumination conditions are the same

for the whole image sequence. In Seq3 and Seq4, the target

is a car viewed from the rear from a moving camera under

different illumination conditions. In Seq3, the color of the

car is similar with the color of the road and Camshift

did not estimate the position of the object accurately (the

rectangle representing the target scaled up and included both

the road and the car). Although we consider that Camshift

tracked the target (the ground trough rectangle is inside

the rectangle computed by Camshift), the position and size

errors are large. In Seq4, Camshift fails to track the object

after the half of the image sequence due to the fact that

the color of the target is similar with the color of the

background mountains. In contrast, WLT successfully tracks

the objects in Seq3 and Seq4 despite these difficulties. The

image sequences Seq5 and Seq6 are taken inside a subway

using fixed position cameras with different viewpoint angles

and show persons walking. In Seq5, a partial occlusion

happens as another person walks between the camera and

the target and in Seq6 another person passes very close to the

target. Both approaches successfully track the objects, with

WLT showing a significantly better performance in terms of

position and size errors.

In Fig. 1 and Fig. 2, qualitative result are presented. For

every sequence, we demonstrate the ground trough which

was used for evaluation (top row of each sequence) and

the results obtained by using WLT (bottom row of each

sequence). The left frame is the first frame of the sequence,

while the other frames are uniformly sampled from the
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Table III
THE PERFORMANCE OF THE COMPARED METHODS IN TERMS OF

AVERAGE POSITION ERROR AND AVERAGE SIZE ERROR. THE BOLD

NUMBERS INDICATE THE BEST PERFORMANCE.

Seq. Frames Tracked Position Error Size Error
Camshift WLT Camshift WLT Camshift WLT

Seq1 499/499 499/499 0.072 0.102 0.230 0.230
Seq2 199/199 199/199 0.080 0.137 0.234 0.320
Seq3 299/299 299/299 2.358 0.182 8.262 0.211
Seq4 165/309 309/309 3.000 0.122 3.316 0.205
Seq5 129/129 129/129 0.259 0.130 0.445 0.337
Seq6 169/169 169/169 0.262 0.149 0.421 0.274

sequence. As we can see, the results of WLT are close to

the ground truth.

In these image sequences, the rectangles which represent

the targets have dimensions around 150 × 70 pixels. For

these target sizes, our algorithm, which is developed using

OpenCV, runs in real time, as the average time needed for

each frame is around 0.015 sec (or equivalently 65 fps). The

computer used during the experimental evaluation is a dual

core pc (even though in the implementations we do not use

the second core) at 1.83GHz with 2BG RAM at 667 MHz.

IV. CONCLUSION

From the point of view of the target modeling and

localization, the proposed algorithm belongs to the same

family as the histogram based methods [4], [5], [7], [6],

[23]. These methods minimize the distance between the

probability distribution of the model and the distribution

of the pixels at a candidate location in an image frame.

The mean shift family of methods [4], [5] minimizes the

Bhattacharyya distance while in [6], [7] the earth mover’s

distance is involved. The WLT method proposed herein,

maximizes the weighted log-likelihood of the model without

creating a second distribution in the image frame under con-

sideration. The key issue in estimating the target’s position

is the weight term depending on the location of the target.

The method, in its current form, addresses the problem of

single object tracking in real time. A perspective of this work

is to integrate it into more sophisticated schemes including

data association methods, for multiple object tracking and

dynamic model inference schemes (e.g. update of the GMM

parameters) to take into account changes in illumination

conditions or partial occlusions.
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