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Abstract—Mean shift is a fundamental algorithm for visual
object tracking which is based on the minimization of the
distance between the discrete histogram of the target and the
discrete histogram of the neighborhood of a candidate image
location. While the algorithm performs well when the target’s
appearance and the lighting conditions are constant, it may fail
when these conditions are not met because the ideal histogram
is generally shifted with respect to the reference histogram. In
this work, we propose to compute the initial histogram of the
target using a Gaussian mixture model (GMM) rather than
impulses generated by simple counting. This mixture plays the
role of a weighting function, in the histograms computed in
subsequent frames, in order to make them smoother and increase
the overlapping area with the initial histogram. By these means,
sudden illumination changes between consecutive frames may
exhibit smoother transitions between the two histograms and the
involved distance is not trapped into local minima.

I. INTRODUCTION

Visual tracking is the procedure of generating an inference

about motion given a sequence of images. Based on a set

of measurements in image frames the object’s true position

should be estimated. Tracking algorithms may be classified in

two categories [1]. The first category is based on filtering and

data association, while the second family of methods relies on

target representation and localization.

The algorithms based on filtering assume that the moving

object has an internal state which may be measured and,

by combining the measurements with the model of state

evolution, the object’s position is estimated. A well known

method of that category is the Kalman filter which successfully

tracks objects even in the case of occlusion if the assumed

type of motion is correctly modeled [2]. Another approach

in this category are the particle filters [3] which include

the Condensation [4] algorithm which is more general than

Kalman filters, as it does not assume specific type of densities

and, using factored sampling, it has the ability to predict

an object’s location under occlusion as well. Also, in this

category, methods based on feature extraction and tracking

were also proposed [5]. The object is represented by a set of

scale invariant landmarks [6] which are tracked using optical

flow [7]. The major drawback of these methods is that the type

of object’s movement should be correctly modeled.

On the other hand, tracking algorithms relying on target

representation and localization employ a probabilistic model
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of the object appearance and try to detect this model in

consecutive frames of the image sequence. More specifically,

color or texture features of the object, masked by an isotropic

kernel, are used to create a histogram. Then, the object’s

position is estimated by minimizing a cost function between

the model’s histogram and candidate histograms in the next

image. A representative method in this category is the mean

shift algorithm [1] where the object is supposed to be inside

an ellipse and the histogram is constructed from pixel values

inside that ellipse. This category also includes DEMD tracking

algorithm [8] which represents the object by a histogram

signature and uses the earth mover’s distance (EMD) between

histogram signatures in order to locate the object. A similar

approach is presented in [9] where the object is represented

by a Gaussian mixture model (GMM).

One drawback of these methods is that they can not handle

total occlusions. Combinations of methods of the above two

categories have been proposed in order to overcome their

limitations. Mean shift combinations with Kalman filter [10]

or particle filter [11] have been proposed.

Usually, tracking methods assume a simple shape for the

object. A more detailed representation of the shape of the

target can be achieved through level sets or active contours,

which were successfully used in tracking [12]. Also, active

contours have been integrated into other tracking methods

such as particle filters [13] or into Bayesian filters to robustly

segment the object from the background [14].

In this work, we propose a variant of the mean shift

algorithm [1], in order to make the tracking procedure more

robust to uniform or nonuniform abrupt light changes, such

as flicker, light switch or shadow casts. In these cases, as the

whole image becomes darker or brighter, the histogram of the

target is shifted with respect to the initial histogram and the

affinity between them would be close to zero, thus, making the

mean shift algorithm to miss the object. In our approach, we

propose to estimate the initial histogram of the target in the

first frame by a Gaussian mixture model (GMM) and consider

this mixture as a weighting function for the calculation of

the histogram in the next frames. By these means, all of the

mixture components contribute to the value of a specific bin

and the histogram becomes smoother as its original values are

diffused to neighboring bins.

In the remaining of the paper, the mean shift method is

described in section II, the proposed evaluation of histogram
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is described in section III, experimental results are presented

in section IV and the conclusions are drawn is section V.

II. MEAN SHIFT ALGORITHM

The mean shift [1] is a target representation and localization

algorithm trying to locate the object by finding the local

maximum of a function. Here we give a brief review. The

object target pdf is approximated by a histogram of m bins

q̂ = {q̂u}u=1...m,
∑m

u=1 q̂u = 1, with q̂u being the u-th

bin. To form the histogram, only the pixels inside an ellipse

surrounding the object are taken into account. The center of

the ellipse is assumed to be at the origin of the axes. Due to the

fact that the ellipse contains both object pixels and background

pixels, a kernel with profile k(x), k : [0,∞) → � is applied

to every pixel to make pixels near the center of the ellipse to

be considered more important. To reduce the influence of an

eventual difference in the length of the ellipse axes, the pixel

locations are normalized by dividing the pixel’s coordinates

with the ellipse’s semi-axes lengths hx and hy . Let {x∗
i }i=1...n

be the normalized pixel’s spatial location. The u-th histogram

bin is given by:

q̂u = C

n∑
i=1

k(‖x∗
i ‖2)δ[b(x∗

i )− u] (1)

where b : �2 → {1 . . .m} associates each pixel with each

bin in the quantized feature space, δ is the Kronecker delta

function and C is a normalization factor such as
∑m

u=1 q̂u = 1.

In the next image, the object candidate is inside the same

ellipse with its center at the normalized spatial location y.

Let {xi}1...n be the normalized pixel coordinates inside the

target candidate ellipse. The pdf of the target candidate is also

approximated by an m-bin histogram p̂(y) = {p̂u(y)}u=1...m,∑m
u=1 p̂u(y) = 1, with each histogram bin given by

p̂u(y) = D
n∑

i=1

k
(
‖y − xi‖2

)
δ[b(xi)− u] (2)

where D is a normalization factor such as
∑m

u=1 p̂u(y) = 1.

The distance between q̂ and p̂(y) is defined as:

d(y) =
√

1− ρ[p̂(y), q̂] (3)

where

ρ[p̂(y), q̂] =
m∑

u=1

√
p̂u(y)q̂u (4)

is the similarity function between q̂ and p̂(y) (Bhattacharyya

coefficient).

To locate the object correctly in the image, the distance

in (3) must be minimized, which is equivalent to maximize

(4). The ellipse center is initialized at a location ŷ0 which is

the ellipse center in the previous image frame. The probabil-

ities {p̂u(ŷ0)}u=1...m are computed and using linear Taylor

approximation of (4) around these values:

ρ[p̂(y), q̂] ≈ 1

2

m∑
u=1

√
p̂u(ŷ0)q̂u +

D

2

n∑
u=1

wik
(
‖y − xi‖2

)
,

(5)

where

wi =
m∑

u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u]. (6)

As the first term of (5) is independent of y, the second term

of (5) must be maximized. The maximization of this term may

be accomplished by employing the mean shift algorithm [1],

which yields the following update:

ŷ1 =

∑n
i=1 xiwig

(
‖ŷ0 − xi‖2

)
∑n

i=1 wig
(
‖ŷ0 − xi‖2

) , (7)

where g(x) = −k′(x). The complete algorithm [1] is summa-

rized in algorithm 1.

Algorithm 1 Mean shift tracking procedure

Input: The target model {q̂u}u=1...m and its location ŷ0 in

the previous frame.

1. Initialize the center of the ellipse in the current frame

at ŷ0, compute {p̂u(ŷ0)}u=1...m using (2).

2. Compute the weights {wi}i=1...n according to (6).

3. Compute the next location of the target candidate

according to (7).

4. If ‖ŷ1 − ŷ0‖ < ε Stop.

Otherwise set ŷ0 ← ŷ1 and go to Step 2.

III. TARGET MODELING BY A GMM

If global, uniform or nonuniform, illumination changes

take place, then the whole histogram p̂u(y) in (2) will be

(uniformly or not) shifted with respect to the initial histogram

q̂u in (1). For the sake of clarity, this issue is illustrated by

a simple example in figure 1, where the initial histogram is

shown in fig. 1(a) and the histogram of the target in the next

frame (under abrupt illumination change) is shown in fig. 1(b).

Notice that, ideally, this should be the histogram corresponding

to the maximum of (3). However, by simple inspection, this

distance is close to zero and the algorithm would respond

with an erroneous image location for the target due to the

influence of this distance in the computation of the weights

in (6). Although this issue could be overcome for simple

global uniform illumination changes (e.g. by subtracting the

mean image value) the problem becomes more intricate if

the involved changes in lighting conditions are highly non

uniform. In figure 1(c), the GMM representing the density of

the target in fig.1(a) is shown.

In order to estimate the GMM parameters we define the

log-likelihood function of the color of pixels inside an ellipse:

L(I;π,μ,Σ) =

n∑
i=1

ln

K∑
k=1

πkN (Ii;μk,Σk) (8)

where I = {Ii}i=1,...,n denote the color of every pixel, π =
{πk}k=1,...,K are the mixing proportions, μ = {μk}k=1,...,K

are the mean vectors, Σ = {Σk}k=1,...,K are the covariance

matrices and K denotes the number of the GMM components.
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(a) (b)

(c) (d)

Fig. 1. a) The histogram of the target in the initial image. b) The histogram of
the target in the next image is shifted due to an abrupt illumination change. c)
The GMM of the target in the initial image. d) The resulting smooth histogram
using (14).

The estimation of the GMM parameters is achieved through

the EM algorithm [15]:

E-Step:

zk,i =
πkN (Ii|μk,Σk)∑K
l=1 πlN (Ii|μl,Σl)

. (9)

M-Step:

πk =

∑n
i=1 zk,i
n

, (10)

μk =
1

Nk

n∑
i=1

zk,iIi, (11)

Σk =
1

Nk

n∑
i=1

zk,i (Ii − μk) (Ii − μk)
T
, (12)

The EM algorithm is employed in the first frame in order

to estimate the GMM parameters. Having computed π =
{πk}k=1,...,K , μ = {μk}k=1,...,K and Σ = {Σk}k=1,...,K we

can estimate the equivalent histograms’ bins in (1) and (2).

We assume that every bin is computed by the mixture of

all components and the u-th histogram bin in (1) is now given

by:

q̂u = C
n∑

i=1

k(‖x∗
i ‖2)

K∑
k=1

πkN (Ii;μk,Σk). (13)

Equivalently, in the next image the u-th histogram bin is given

by:

p̂u(y) = D
n∑

i=1

k
(
‖y − xi‖2

) K∑
k=1

πkN (Ii;μk,Σk), (14)

which corresponds to the toy example in fig. 1(d). Notice that

the transitions between bins are now smoother and the basin

of attraction of the smoother histogram may be large enough

to capture the reference histogram in fig. 1(a). The reference

Seq1 Seq1 Seq2
(300 frames) (700 frames) (250 frames)

Fig. 2. Representative frames of the datasets used in the experiments.

histogram looks now more similar to the histogram at the ideal

target location.

By following the same reasoning as in section II, we end

up in the same update equation for y as in (7). However the

weights wi are given by:

wi =
m∑

u=1

√
q̂u

p̂u(ŷ0)

K∑
k=1

πkN (Ii;μk,Σk). (15)

Therefore, the tracking procedure is the same as described in

algorithm 1, but we use (13), (14) and (15) instead of (1), (2)

and (6) respectively.

IV. EXPERIMENTAL RESULTS

The evaluation of the proposed tracking algorithm was

performed using three datasets (Fig. 2). In Seq1, a man is

walking from left to right, in Seq2, a car is moving from

left to right and in Seq3, four robots are moving at different

directions. The ground truth for these image sequences was

manually determined. We compared our approach (referred as

MSGMM) with the standard mean shift algorithm [1]. We use

RGB images where and the number of the histogram bins is

set to 16 in each channel, resulting to 163 bins totally.

We evaluated the performance of the tracking algorithm

both in terms of position error and execution time. We define

the position error as the average Euclidian distance between

the ground truth’s ellipse center and the ellipse estimated

by the tracking algorithm (in normalized coordinates). The

execution time is defined as the average time (seconds) needed

per frame by the tracking procedure.

Firstly, we evaluate the proposed method for different

numbers of the GMM components K (Table I). Comparing

the position error for K = 1, . . . , 5, we observe that the best

results are obtained for K = 2. This happens due to the fact

that the targets have relatively few colors. In terms of average

time per frame, the fewer the components of the GMM are,

the less execution time is needed. Here, we must point out

that all these variants are executed in real time. For this set

of experiments, we choose K = 2 for comparison with the

standard mean shift in flicker conditions.

In order to evaluate the proposed method during illumina-

tion changes, we used six more sequences that are generated

from sequences Seq1, Seq2 and Seq3. The sequences with

the subscript a are produced from the initial sequences by

keeping the first frame the same and making the rest of the

frames significantly brighter. The sequences with the subscript
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TABLE I
THE PERFORMANCE OF THE PROPOSED METHOD FOR DIFFERENT GMM

COMPONENTS NUMBER (K) IN TERMS OF AVERAGE POSITION ERROR AND

AVERAGE EXECUTION TIME.

Sequece K = 2 K = 3 K = 4 K = 5
Position Error

Seq1 0.216 0.226 0.242 0.270
Seq2 0.461 0.487 0.545 0.517
Sqe3 0.342 0.392 0.390 0.401

Seconds/Frame
Seq1 0.012 0.014 0.019 0.021
Seq2 0.013 0.017 0.019 0.024
Sqe3 0.010 0.012 0.014 0.016

Fig. 3. Top row: the first frames of Seq3a. Bottom row: the first frames of
Seq3b.

b are produced from the initial sequences by making the

odd-numbered frames brighter and the even-numbered frames

dimmer (Fig. 3).

In Table II, the comparative results between the standard

mean shift algorithm and the proposed method with K = 2
GMM components are given. In normal conditions (Seq1,

Seq2 and Seq3), mean shift provides the best results in terms

of position error in two out of three datasets. In terms of

execution time, the MSGMM algorithm needs approximately

twice the time needed by mean shift in all nine sequences. This

results from the fact that computations involving the evaluation

of the normal distribution for every pixel are performed.

When the lighting conditions change, MSGMM clearly

outperforms mean shift. Especially, in Seq3a and Seq3b, mean

shift fails to track the object from the beginning. On the other

hand, MSGMM successfully tracks the object with a position

error of 0.919 for Seq3a and 1.029 for Seq3b. The error around

1 means that the estimated center of the target is around

the edge of the ellipse representing the object, but there is

still common area between the ground truth ellipse and the

estimated ellipse.

V. CONCLUSION

In this work, we modified the mean shift algorithm in order

to make the tracking procedure more robust to illumination

changes. We used Gaussian mixture model for the evaluation

of histogram bins. This modification also affects the weights

of every pixel during the tracking process. As shown by

the experimental results, this approach can successfully track

objects when the light conditions change dramatically. A future

TABLE II
THE PERFORMANCE OF THE COMPARED METHODS (MEAN SHIFT AND

MSGMM WITH K = 2) IN TERMS OF AVERAGE POSITION ERROR AND

AVERAGE SIZE ERROR.

Position Error Seconds/Frame
Sequece Mean shift MSGMM Mean shift MSGMM
Seq1 0.264 0.216 0.007 0.012
Seq1a 0.572 0.544 0.006 0.013
Seq1b 0.904 0.875 0.012 0.026
Seq2 0.289 0.461 0.005 0.013
Seq2a 0.608 0.251 0.006 0.018
Seq2b 0.726 0.566 0.018 0.037
Sqe3 0.155 0.342 0.005 0.010
Seq3a - 0.919 0.005 0.015
Seq3b - 1.029 0.011 0.022

direction would be to employ this approach into other tracking

algorithms involving histograms.
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