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Abstract. In this work, we present a framework for the efficient classification of
cervical cells in normal and abnormal categories, based on features extracted ex-
clusively from the nucleus area and ignoring the contingent cytoplasm features.
This task is very important, since the nuclei are the only distinguishable areas in
complex Pap smear images, as these images present a high degree of cell over-
lapping and the exact borders of the cytoplasm areas are ambiguous. We have
examined the ability of non-linear dimensionality reduction schemes to produce
accurate representation of the features manifold, along with the definition of an
efficient feature subset, and their influence on the classification performance. Two
unsupervised classifiers were used and the results indicate that we can achieve
high classification performance when only the nuclei features are used.

Keywords: Pap smear images, abnormal cell classification, non-linear dimen-
sionality reduction, spectral clustering, fuzzy C-means.

1 Introduction

Cervical smear screening is the most popular method used for the detection of cervical
cancer in its early stages. The most eminent screening test is the Pap smear, which is
based on the staining of cervical cells, using the technique that was first introduced
by George Papanicolaou [1]. With this screening technique, the sample of exfoliated
epithelial cells is stained and smeared onto a glass slide. After the careful examination
of the slide by an expert cytologist, precancerous conditions and abnormal changes in
cells that may develop into cancer are recognized. The widespread use of this test in
developed countries has significantly reduced the incidence and mortality of invasive
cervical cancer.

The interpretation of these images relies basically on the visual recognition of the
changes of the structural parts of the cells (nucleus and cytoplasm). However, this pro-
cess is a tedious, time-consuming and in many cases error-prone procedure due to the
high degree of complexity that these images exhibit. Several approaches have been pro-
posed for the classification of cells in Pap smear images and they concern techniques
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(a) (b)

Fig. 1. (a) An isolated cell and (b) overlapping cells. Notice that the cytoplasm area is clearly
recognized in (a) while in (b) its determination is very ambiguous for each cell.

such as Bayesian classifiers [2], artificial neural networks [3], support vector machines
(SVM) [4] and nearest neighbor based classifiers [5]. It must be noted that most of
these methods use presegmented images which contain only one cell, so the correct
segmentation of the nucleus and the cytoplasm is feasible (Fig. 1(a)). In images con-
taining cell clusters (Fig. 1(b)), the detection of the cytoplasm boundary is a difficult
problem and until now, there is not any method in the literature that results in the au-
tomated delineation of the cytoplasm areas in cell clusters. However, the detection and
segmentation of the nuclei in images containing cell overlapping and cell clusters has
been successfully addressed by several studies [6], [7].

The methods which deal with the classification of Pap smear images are based on the
calculation of features extracted from the areas of the nucleus and the cytoplasm [5,8].
These features are usually based on shape and intensity characteristics of the objects of
interest. However, the calculated features do not exhibit the same discriminative ability.
For the determination of the most efficient feature set which will be used as input in a
classifier, some feature selection schemes have been proposed, and they concern genetic
algorithms [5] and particle swarm optimization [8].

Based on the aforementioned facts, we can conclude that there are two open prob-
lems in the automated classification of a Pap smear image acquired directly from an
optical microscope: a) the limitation to use only the features extracted from the nuclei
areas, as these are the areas that can be automatically segmented, and b) the determi-
nation of the most efficient feature subset, which will provide the best discriminative
ability.

In this work, we evaluate the classification of cervical cells, based exclusively on
nucleus features and ignoring the features extracted from the cytoplasm area. This is
a crucial step for the correct characterization of Pap smear images acquired directly
from an optical microscope, where the cell overlapping is an often found phenomenon
and the delineation of the cytoplasm area can not be obtained automatically. In this
direction, we investigate the representation of the features in low dimensional spaces
using non linear dimensionality reduction methods. These techniques are advantageous
in comparison with their linear counterparts, because they can properly handle complex
nonlinear data, as they better describe their manifold structure.
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Fig. 2. Types of cells included in the Pap smear benchmark [11]. (a)-(b) Abnormal cells and
(c)-(d) normal cells.

The low dimensional feature subsets serve as input in two unsupervised classifiers
(Spectral Clustering [9] and fuzzy C-means [10]). As it was verified by the results,
the non-linear dimensionality reduction techniques lead to a construction of nucleus-
only feature subsets which can be successfully used for the separation of normal and
abnormal cells by the classifiers, presenting high performance.

2 Materials and Methods

2.1 Study Group

Our experiments are based on the Pap-smear benchmark database presented in [11] .
The database consists of 917 images containing a single cell each (Fig. 2), and the sam-
ples are distributed unevenly in seven classes. Three of them are considered as normal
and four of them are considered as abnormal types of cell. The detailed description of
the database is depicted in Table 1.

Table 1. Distribution of cells in the Pap-smear benchmark database [11]

NORMAL #cells
Superficial squamous epithelial 74
Intermediate squamous epithelial 70
Columnar epithelial 98
TOTAL 242
ABNORMAL #cells
Mild squamous non-keratinizing dysplasia 182
Moderate squamous non-keratinizing dysplasia 146
Severe squamous non-keratinizing dysplasia 197
Squamous cell carcinoma in situ intermediate 150
TOTAL 675

2.2 Feature Generation and Dimensionality Reduction

The images of the database have been manually segmented by experts and the areas of
the nucleus and the cytoplasm are accurately defined. From these areas, twenty features
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concerning the intensity and the shape characteristics of the specific area are deter-
mined (Table 2). Nine out of twenty features concern the nucleus area and they can be
calculated independently.

The techniques that we have used for the construction of the new feature sets concern
non-linear dimensionality reduction schemes. In our study we have investigated the per-
formance of four nonlinear techniques: Kernel-PCA [12], Isomap [13], Locally Linear
Embedding [14] and Laplacian Eigenmaps [15]. A brief description of these techniques
is presented in the following paragraphs.

Table 2. Features extracted from each image in the database

Cytoplasm Features Nuclei Features

1. Area 1. Area
2. Brightness 2. Brightness
3. Short Diameter 3. Short Diameter
4. Longest Diameter 4. Longest Diameter
5. Elongation 5. Elongation
6. Roundness 6. Roundness
7. Perimeter 7. Perimeter
8. Maxima1 8. Maxima1

9. Minima1 9. Minima1

10. Nucleus Position
11. Nucleus/Cytoplasm (size)
1 The number of pixels with the maximum/minimum
intensity value in a 3× 3 neighborhood of the specific area.

Kernel Principal Component Analysis (K-PCA) [12] is actually an extension of the
conventional PCA in a high-dimensional space, which is obtained with the use of a
kernel function. The main difference in comparison with the standard PCA is that the
eigenproblem is solved for the “kernelized” covariance matrix. If X = {x1, x2, ..., xN}
is the original data set, the elements of this N ×N matrix are defined as kij =
K(xi, xj), where K is the kernel function and xi, xj are D-dimensional feature vec-
tors of X . In our implementation, we have used the polynomial and the Gaussian ker-
nels. The kernel matrix is centered, in order the features in the high dimensional space
to be defined by a kernel function with zero mean and the eigenvectors αi are then
calculated. The projection of a datum yi in the low dimensional space is defined as

yi =

{
N∑
j=1

aj1K(xj , xi), ...,
N∑
j=1

ajdK(xj , xi)

}
, where aji denote the j-th component

of the i-th vector and d < D is the number of the retained eigenvectors.

Isomap [13] is a variant of multidimensional scaling (MDS) [16], in which the dis-
tances between the datapoints in the high dimensional space are also retained in the
low dimensional space. In MDS, this is accomplished by the eigendecomposition of a
pairwise distance matrix (instead of the covariance matrix which is involved in PCA).
In Isomap, the Euclidean distance between the points is substituted by their geodesic
distance. Thus, the pairwise geodesic distance between the datapoints in the high di-
mensional space is preserved in the low dimensional space, by the construction of a
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neighborhood graph G, in which each datapoint is connected with its k nearest neigh-
bors. The geodesic distance of two points may be approximated with the shortest path
in the graph G between these points, using, for instance, Dijkstra’s algorithm [17]. Hav-
ing estimated the geodesic distances for all the points in the data set, the representation
of the datapoints in the low dimensional space are computed by applying MDS on the
resulting distance matrix.

Locally Linear Embedding (LLE) [14] is similar in spirit to Isomap, as it is also
based on the construction of a distance graph G. However, in LLE each datapoint is
described as a linear combination of its k nearest neighbors, thereby assuming that the
manifold is locally linear. The weights wij describe the contribution of the j-th point to
the reconstruction of the i-th point and are computed by minimizing the cost:

argmin
W

E(W ) =

N∑
i=1

||xi −
k∑

j=1

wijxij ||2,

where xij is the j-th nearest neighbor of the i-th point. Thus, the weights wij that best
reconstruct each point xi from its neighbors are used to compute the corresponding
points yi in the low dimensional space by minimizing the following cost function with
respect to Y = (y1, y2, ..., yN)T :

argmin
Y

ϕ(Y ) =

N∑
i

||yi −
k∑

j=1

wijyij ||2.

This minimization problem is equivalent to the calculation the eigenvectors correspond-
ing to the smallest eigenvalues of the matrix (I −W )T (I −W ), where I is the identity
matrix and W is a matrix with elements wij . The above minimization is performed in
two steps with the additional constraint

∑
j wij = 1 to make the representation trans-

lation invariant.

Laplacian Eigenmaps method [15] has as its main philosophy to calculate the low
dimensional representation of the data in such a way that the local neighborhood in-
formation is optimally preserved. For this reason, the distance graph G is computed, in
a way similar with the methods described above. Each edge of the graph is associated
with a weight, which is a measure of closeness of the respective neighbors. The weights

are attributed by the Gaussian kernel function wij = e−
||xi−xj ||2

2σ2 , where σ2 indicates
the variance of the Gaussian. Thus, the weights exhibit high values for nearest neighbors
and small values for distant datapoints. Next, a diagonal matrix A is constructed, with
elements Aii =

∑
j

wij , i = 1, .., n and the generalized eigendecompositionLu = λAu

is performed, where L = A−W . The low dimensional representation is obtained using
the d eigenvectors corresponding to the smallest nonzero eigenvalues.

3 Results and Discussion

In order to investigate the effectiveness of the above dimensionality reduction
schemes, we have used two unsupervised classifiers and two datasets of patterns. More
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specifically, spectral clustering and Fuzzy C-means are tested using patterns from two
different feature sets (Table 1): one containing both cytoplasm and nucleus features (20
features) and the other containing only nucleus features (9 features). Several experi-
ments were performed and the performance of the classification techniques was mea-
sured using patterns of increasing dimension varying from 1 to 20 features for the first
subset and from 1 to 9 for the second subset. Furthermore, different values for the ker-
nel width of spectral clustering have been tested (10−4, 10−3, 10−2, 10−1, 1, 2, 5). In
Isomap, LLE and Laplacian Eigenmaps, different numbers of nearest neighbors rang-
ing from 4 to 20 were also tested for the construction of the distance graph G. The best
results for each classifier are presented in this work.

For comparison purposes, PCA was also implemented. For the evaluation of the clas-
sification performance, the harmonic mean (H-mean) of the sensitivity and the speci-
ficity indices was calculated. The sensitivity measures the proportion of abnormal cells
which are correctly identified as such by the classification algorithm, and the specificity
measures the proportion of the normal cells that are correctly characterized as such.

The classification results of spectral clustering and fuzzy C-means are depicted in
Table 3. For each feature subset, the H-mean and the number of features retained by
the dimensionality reduction techniques are presented. As we can observe, the initial
features without the use of dimensionality reduction schemes, lead to the weakest clas-
sification performance. The use of either linear or non-linear dimensionality reduction
schemes results in a significant improvement of the classification.

More specifically, regarding the linear dimensionality reduction technique (PCA),
we can conclude that there is a small improvement in the classification results, com-
pared to the case where no dimensional reduction technique is used. Furthermore, in
fuzzy C-means we observe a significant reduction in the retained features. Only 3 out
of 20 dimensions are retained in first set of features and only 4 out of 9 for the nuclei
feature subset. Finally, in spectral clustering, better classification results are produced
when only the nuclei features are used, in comparison with the use of both nuclei and
cytoplasm features.

In non-linear dimensionality reduction schemes, we can notice that the performance
of the classifiers is clearly better when they are based only on nuclei features (except
in the case of LLE with spectral clustering, where the results are approximately simi-
lar). In spectral clustering, an improvement of 12.16% in the classification is observed
in Isomap, where the best value of H-mean (88.77%) using only the nuclei features is
reached. Furthermore, in fuzzy C-means, the corresponding highest difference in classi-
fication rates is 11.17% and it is observed using K-PCA (polynomial kernel). Neverthe-
less, the best classification result using only the nuclei features is 90.58% with K-PCA
(Gaussian kernel). It must be noted that this result is obtained using only seven features,
while for different number of features the H-mean value is smaller (Fig. 3).

The obtained results clarify that the use of non-linear dimensionality reduction
schemes, not only improves the classification performance of spectral clustering and
fuzzy C-means, but they also allow the successful separation of normal and abnormal
cercival cells, based exclusively on nuclei features.
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Fig. 3. Results obtained in terms of H-mean for Fuzzy C-means classification. Notice that the
H-mean reaches its highest value for seven features.

Table 3. Performance of classification in terms of H-mean and the number of retained features

Spectral Clustering Fuzzy C-means
All Features Nuclei Features All Features Nuclei Features

#feat HM(%) #feat HM(%) #feat HM(%) #feat HM(%)

No dimensionality reduction 20 74.21 9 73.59 20 72.89 9 71.98
PCA 6 74.25 7 83.38 3 74.23 4 71.99
K-PCA (polynomial) 2 85.78 9 88.53 3 74.24 3 85.41
K-PCA (Gaussian) 16 84.44 7 87.52 9 90.42 7 90.58
Isomap 1 76.61 9 88.77 1 75.02 3 75.08
LLE 17 86.97 9 86.45 15 81.69 6 87.17
Laplacian Eigenmaps 20 80.84 3 87.52 11 85.31 1 87.20

4 Conclusion

The correct characterization of the cell nuclei in Pap smear images is a prerequisite
for the derivation of accurate diagnostic decisions. Since in cell clusters presented in
Pap smear images the automated cytoplasm segmentation is not feasible, in contrast to
the automated nuclei segmentation [6], [7], we have investigated the case of the suc-
cessful classification of cells with exclusively nuclei features using two unsupervised
classifiers. In this direction, non-linear dimensionality reduction techniques were also
used, for the more accurate representation of the features manifold. As it was verified
by our experiments, the obtained results using only the nuclei features are better than
the results obtained using all the extracted features (from the areas of nucleus and the
cytoplasm). This implies that the characterization of a Pap smear image as normal or
abnormal is feasible with the use of the nuclei features alone. This may contribute in the
development of a fully automated method for the classification of microscopic cervical
cell images, which embodies automated nuclei segmentation, nuclei feature extraction
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and finally classification. At a next step, we intend to investigate the application of
supervised techniques, such as support vector machines, to the correct classification of
normal and abnormal cervical cells, based exclusively on nuclei features lying in low
dimensional manifolds.

References

1. Papanicolaou, G.N.: A new procedure for staining vaginal smears. Science 95(2469),
438–439 (1942)

2. Riana, D., Murni, A.: Performance evaluation of Pap smear cell image classification using
quantitative and qualitative features based on multiple classifiers. In: Proceedings of the In-
ternational Conference on Advanced Computer Science and Information Systems, ACSIS
2009 (2009)

3. Mat Isa, N.A., Mashor, M.Y., Othman, N.H.: An automated cervical pre-cancerous diagnostic
system. Artificial Intelligence in Medicine 42, 1–11 (2008)

4. Huang, P.-C., Chan, Y.-K., Chan, P.-C., Chen, Y.-F., Chen, R.-C., Huang, Y.-R.: Quantitative
Assessment of Pap Smear Cells by PC-Based Cytopathologic Image Analysis System and
Support Vector Machine. In: Zhang, D. (ed.) ICMB 2008. LNCS, vol. 4901, pp. 192–199.
Springer, Heidelberg (2007)

5. Marinakis, Y., Dounias, G., Jantzen, J.: Pap smear diagnosis using a hybrid intelligent scheme
focusing on genetic algorithm based feature selection and nearest neighbour classification.
Computers in Biology and Medicine 39, 69–78 (2009)

6. Plissiti, M.E., Nikou, C., Charchanti, A.: Automated detection of cell nuclei in Pap smear im-
ages using morphological reconstruction and clustering. IEEE Transactions on Information
Technology in Biomedicine 15(2), 233–241 (2011)

7. Plissiti, M.E., Nikou, C., Charchanti, A.: Combining shape, texture and intensity features
for cell nuclei extraction in Pap smear images. Pattern Recognition Letters 32(6), 838–853
(2011)

8. Marinakis, Y., Marinaki, M., Dounias, G.: Particle swarm optimizaton for Pap-smear diag-
nosis. Expert Systems with Applications 35, 1645–1656 (2008)

9. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Ad-
vances in Neural Information Processing Systems 14, 849–856 (2002)

10. Bishop, C.: Pattern recognition and machine learning. Springer (2006)
11. Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pat-

tern classification. In: Proceedings of Nature inspired Smart Information Systems (NiSIS),
pp. 1–9 (2005)

12. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation 10, 1299–1319 (1998)

13. Langford, J.C., Tenenbaum, J.B., De Silva, V.: A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323 (2000)

14. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science 290(5500), 2323–2326 (2000)

15. Belikn, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data represen-
tation. Neural Computation 15(6), 1373–1396 (2003)

16. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall, CRC (2001)
17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn.

MIT Press and McGraw-Hill (2001)


	Cervical Cell Classification Based Exclusively on Nucleus Features
	Introduction
	Materials and Methods
	Study Group
	Feature Generation and Dimensionality Reduction 

	Results and Discussion
	Conclusion


