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ABSTRACT

In this paper, we show how the segmentation of an image into
superpixels may be used as preprocessing paradigm to im-
prove the accuracy of the optical flow estimation in an image
sequence. Superpixels play the role of accurate support masks
for the integration of the optical flow equation. We employ a
variation of a recently proposed optical flow algorithm relying
on local image properties that are taken into account only if
the involved pixels belong to the same image segment. Exper-
imental results show that the proposed optical flow estimation
scheme significantly improves the accuracy of the estimated
motion field with respect to other standard methods.

Index Terms— Optical flow, image segmentation, super-
pixels.

1. INTRODUCTION

The estimation of optical flow is one of the fundamental prob-
lems in computer vision as it provides the motion of bright-
ness patterns in an image sequence. From a computational
point of view, there are two main families of methods for op-
tical flow computation. The first category consists of local
techniques, relying on an isotropic coarse-to-fine image warp-
ing, having as their major representative the Lucas-Kanade
algorithm [1]. A Gaussian or rectangular window adapted in
scale but being isotropic controls a local neighborhood and
jointly with a pyramidal implementation is capable of extend-
ing motion estimates from corners to edges and the interior
of regions. This method and its variants are still among the
most popular for flow and feature tracking. The second fam-
ily of optical flow methods are the global or variational tech-
niques, relying on an energy minimization framework, with
their main representative being the Horn-Schunck method [2],
which optimizes a cost function using both brightness con-
stancy and global flow smoothness and has also led to many
variants of the basic idea.

The computation of optical flow requires spatial integra-
tion because local signals are noisy and suffer from the well-
known aperture problem [2]. This integration is a non-trivial
task and yields a grouping question: the association of a set

of pixels with a motion model. Methods employing isotropic
neighborhoods are faced with the dilemma of small neighbor-
hoods containing little information or large regions including
motion or object boundaries. Apart from [2], among the first
attempts to handle this issue is the work of Nagel and Enkel-
mann [3], where smoothing is discouraged at areas at regions
with rich first and second spatial derivative information. More
specifically, the oriented smoothness constraint is introduced
which restricts variations of the displacement vector field only
in directions with small or no variation of image intensities.

The representation of different motions with layers [4, 5]
is another approach to handle the discontinuity problem.
Also, simultaneous motion segmentation and optical flow
computation with robust estimators [6, 7] was proposed to
alleviate the effect of integrating outlying data. Small sized
segments were employed in [8] but the approach has the
shortcoming that small segments cannot faithfully represent
the structure of natural scenes and they weaken the advantage
provided by the involved segmentation. Also, the small size
of the segments may result in erroneous flow estimation due
to the aperture problem. The method presented in [9] em-
ploys both color and motion segmentation, obtained by using
the mean shift algorithm, and an affine motion is estimated
at the segmented regions. Finally, a combination of pixel
grouping and pairwise pixel affinities, taking into account
possible intervening contours, avoids motion propagation
across boundaries in [10].

In this work, we propose an optical flow estimation
scheme relying on image segmentation by superpixels [11].
The computed superpixels represent a robust oversegmenta-
tion of the image into roughly equally sized and similar in
shape segments which preserve texture and color boundaries.
Therefore, they play the role of accurate support masks for the
integration of optical flow. To this end, we employ a variant
of the recently proposed joint Lucas-Kanade (JLK) tracker
[12], initially conceived for sparse feature tracking, which
yields dense flow field estimates. Numerical experiments
were performed on challenging sequences of the Middlebury
[13] image data base which underpinned the performance of
the proposed scheme.
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2. SEGMENTATION-BASED OPTICAL FLOW

The fundamental assumption for the estimation of both dense
and sparse optical flow is the brightness constancy constraint
whose approximation by a Taylor series expansion provides
the well-known equation at a given image pixel:

Ixu+ Iyv + It = 0 (1)

where Ix and Iy are the partial image derivatives along the
horizontal and vertical directions respectively, u = (u, v)T is
the motion vector to be estimated and It is the temporal image
difference between consecutive frames.

In [12], the authors, based on a framework proposed by
Bruhn et al. [14], presented a combination of Lucas-Kanade
[1] and Horn-Schunck [2] energy functionals for sparse fea-
ture tracking which resulted in the so called joint Lucas-
Kanade (JLK) scheme. The functional to be minimized has
the following form:

EJLK =

N∑
i=1

ED(ui, vi) + λiES(ui, vi) (2)

where N is the number of image features (corners or edges)
and λi is a regularization parameter. The data term ED is the
optical flow constraint:

ED(ui, vi) = Kρ ∗
(
(Ixui + Iyvi + It)

2
)

(3)

where Kρ is a suitable convolution kernel whose size deter-
mines the number of neighboring pixels to be aggregated and
assigns appropriate weights to the pixels inside the window.
Also, the smoothness term:

ES(ui, vi) = (ui − ûi)
2
+ (vi − v̂i)

2 (4)

controls the deviation of the displacement ui = (ui, vi)
T

of the i-th feature with respect to the expected displacement
ûi = (ûi, v̂i)

T at the same feature.
In equation (2), the energy of the i-th feature is deter-

mined by the matching of the motion vector (ui, vi)T to the
local image data, as well as by the deviation of this motion
vector from the expected displacement (ûi, v̂i)T . Note that
the expected displacement is not necessarily required to be
the average of the neighboring displacements.

Differentiating EJLK in (2) with respect to the motion
vectors (ui, vi)

T , i = 1, . . . , N , and setting the derivatives
to zero, yields a large 2Nx2N sparse matrix equation, whose
(2i− 1)-th and (2i)-th rows are:

Ziui = ei (5)

where

Zi =

[
λi +Kρ ∗ (IxIx) Kρ ∗ (IxIy)
Kρ ∗ (IxIy) λi +Kρ ∗ (IyIy)

]
(6)

and

ei =
[
λiûi −Kρ ∗ (IxIt)
λiv̂i −Kρ ∗ (IyIt)

]
(7)

and the image derivatives Ix, Iy and It are computed at the
i-th location. This sparse system of equations may be solved
using Jacobi iterations:

u
(k+1)
i = û

(k)
i − Jxxû

(k)
i + Jxy v̂

(k)
i + Jxt

λi + Jxx + Jyy
(8)

v
(k+1)
i = v̂

(k)
i − Jxyû

(k)
i + Jyy v̂

(k)
i + Jyt

λi + Jxx + Jyy
(9)

where Jxx = Kρ ∗
(
I2x
)
, Jxy = Kρ ∗ (IxIy), Jxt = Kρ ∗

(IxIt), Jyy = Kρ ∗
(
I2y
)

and Jyt = Kρ ∗ (IyIt) are all com-
puted at the i-th pixel location.

According to [12], the expected motion displacement
ûi of a given feature is predicted by fitting an affine mo-
tion model to the displacements of the surrounding features,
which are inversely weighted according to their distance to
the central feature. The authors use a Gaussian weighting
function on the distance with σ = 10 pixels. In our case, as
we wish to employ the method for dense optical flow, we also
use a kernel Kρ for the estimation of the expected motion.
Hence, Kρ is a 19 × 19 Gaussian kernel of width σ = 4
(an isotropic average kernel could also be employed). This
leads to a Horn-Schunck scheme [2] with the modification of
a weighted estimation (using kernel Kρ) of both the expected
values of the motion vectors ûi = (ûi, v̂i)

T and the quantities
Jxx, Jyy , Jxy , Jxt and Jyt in (8) and (9).

Also, as feature tracking may involve occlusions and
lighting discontinuities, the authors choose to set the same
value for the regularization parameter λi at each feature.
In our case, we perform a segmentation of the first frame
of the sequence to a number of superpixels [15, 11] which
respects strong edges in an image. Such low level segmenta-
tion can be effectively computed using normalized cuts [16],
which is a spectral clustering algorithm, with a conservative
homogeneity threshold. In this work, we have employed a
publicly available superpixel code [11]. As we consider only
local connections into the affinity matrix, the superpixels are
roughly homogeneous in size and shape. Representative seg-
mentations into superpixels are shown in figure 1. Notice that
the provided oversegmentation preserves object boundaries
and has the tendency to construct homogeneous segments in
both color and texture.

The assumption is that pixels belonging to the same super-
pixel should be considered in the integration window as they
are probable to follow the same motion model. On the other
hand, if a pixel belongs to a different superpixel with respect
to the i-th pixel (the center of the integration window whose
motion vector is to be updated) then it is more probable to
have a different motion vector and it should not be accounted.

The idea is analogous with the adaptive smoothing mech-
anism generally used to determine the value of parameter λi



(a)

(b)

Fig. 1. Image oversegmentation into superpixels. Repre-
sentative frames of (a) Dimetrodon and (b) RubberWhale se-
quences [13].

in (2). For example, in [3], if the neighborhood of the central
pixel is rich in first and second derivative information this is
an indication that the window is probable to integrate region
boundaries and consequently pixels following different mo-
tions and the smoothness term is canceled. In the proposed
scheme, we move one step ahead and perform a segmenta-
tion of the first frame of the sequence which is then used as a
mask for the pixels to be integrated in the optical flow compu-
tation. The segmentation map switches on or off the smooth-
ness term for each pixel in the integration window depend-
ing on whether the pixel in question belongs to the superpixel
containing the central pixel.

3. EXPERIMENTAL RESULTS

Many optical flow methods have been proposed in the liter-
ature. As our approach is an extension of the joint Lucas-
Kanade (JLK) method [12] we compared it to this algorithm.
We have also included the well-known and established algo-
rithm of Nagel and Enkelmann (NE) [3] which is based on the
variational solution proposed by Horn and Schunck [2] asso-
ciated with a selective smoothing. To visualize the motion
vectors we adopt the color coding of figure 2.

The proposed method was tested on image sequences
including both synthetic and real scenes. We have applied
our method to the Yosemite sequence and its version with
cloudy sky, called Yosemite with clouds. We have also used
sequences obtained from the Middlebury database [13], such
as the Dimetrodon and the RubberWhale sequences which

Fig. 2. The optical flow field color-coding. Smaller vectors
are lighter and color represents the direction.

contain nonrigid motions and large areas with little (hidden
or not) texture.

In order to evaluate the performance of the method, two
performance measures were computed. The first measure of
performance that we use in the comparison is the average an-
gular error (AAE) [17]. This is the most common measure of
performance for optical flow [13]. Let v0 = (u0 , v0) be the
correct velocity and v1 = (u1 , v1) be the estimated velocity.
The angular error (AE) between these two vectors is

ψAE = arccos
(−→v0 · −→v1

)
(10)

where −→v0 , −→v1 are the 3D normalized representations of v0, v1,
respectively and defined as

−→v0 =
1√

u02 + v02 + 1
(u0, v0, 1) (11)

−→v1 =
1√

u12 + v12 + 1
(u1, v1, 1) (12)

The AAE is then obtained by calculating the average of all
angular errors between correct and estimated velocities in the
optical flow. However, it can be seen from Eq. (10) that errors
in regions of large flows are penalized less in AE than errors
in regions of small flows [13]. Thus, one needs to be cautious
when using the AAE metric as estimates with the same error
magnitude may result in significantly different angular error
values.

Another error metric is the normalized magnitude of the
vector difference between the correct and estimated flow vec-
tors [18]. The magnitude of the correct velocity is used as
a normalization factor. The magnitude of difference error is
defined as

EM =


∥v0−v1∥
∥v0∥ , if ∥v0∥ ≥ T∣∣∥v1∥−T
T

∣∣ , if ∥v0∥ < T and ∥v1∥ ≥ T
0 , if ∥v0∥ < T and ∥v1∥ < T

(13)

where T is a threshold, whose purpose is to ignore vector
norms with values less than T. The algorithm is not expected
to reliably produce accurate flow vectors in areas where the
actual flow magnitude is less than the value of parameter T
[18]. We used T = 0.35 in all of our experiments. The aver-
age magnitude of difference error (AME) is then calculated as
the average of the normalized magnitude of difference errors.



The numerical results are summarized in Table 1, where
it may be observed that the method proposed in this paper
provides better accuracy with regard to the other methods.
More specifically, our algorithm largely outperforms both the
joint Lucas-Kanade method (JLK) and the selective smooth-
ing scheme of Nagel and Enkelmann (NE). Notice that the
accuracy of the JLK algorithm depends strongly on a Lucas-
Kanade scheme. Therefore, we may conclude that JLK may
perform better for sparse optical flow applied to features [12]
than to dense flow estimation.

Representative results are illustrated in figure 3. As it
may be seen, the segmentation-based optical flow estimation
scheme provides correct estimates and simultaneously pre-
serves the boundary information in the flow field. This is
more pronounced in the RubberWhale sequence, where the
solution of both the JLK and NE algorithms have artifacts in
textured areas. For instance, JLK provides different angles for
the motion vectors of the x-shaped area at the top left part of
the figure and NE computes a relatively less smooth motion
field at the top right part of the figure (light blue area). Also,
the JLK scheme failed to compute a smooth estimate of the
motion vectors of the Dimetrodon sequence, where NE per-
formed better but not as well as the proposed scheme. Let us
finally notice that, in the Yosemite with clouds sequence, all of
the methods give a relatively non smooth solution for motion
field of the clouds. Visually, JLK is smoother but the mag-
nitudes of the estimated displacement vectors have very high
values (e.g. the intense red area in the clouds) which leads to
a decrease in the overall performance.

Furthermore, the above comments are also confirmed by
the cumulative histograms for the AAE and AME for all of the
compared algorithms, shown in figure 4. A point on the curve
represents the percentage of optical flow errors that are less or
equal than the value of the respective error on the horizontal
axis. The higher the curve the better is the performance of the
method. An ideal performance would provide a curve parallel
to the horizontal axis, meaning that all of the errors are zero.
Observe that the proposed algorithm provides rapidly increas-
ing curves in all cases, which means that the majority of the
errors are of relatively low amplitude.

The execution time of the proposed algorithm depends
mainly on the number of superpixels and the image size. The
results presented above were obtained by a segmentation of
the image to 40 superpixels and a 19 × 19 window repre-
senting the involved neighborhood. Generally, experiments
using some decades of superpixels need less than a minute on
a standard PC running MATLAB.

4. CONCLUSION

The optical flow estimation method proposed in this paper
relies on the segmentation of the image into a number of su-
perpixels which guide the optical flow integration scheme. It
was demonstrated that the idea is consistent and the proposed

scheme improves the accuracy of standard optical flow meth-
ods. A perspective of this study is to estimate the number of
superpixels as well as the size of the involved integration win-
dow automatically from the image data. Moreover, including
more flexible motion models, such as affine or projective mo-
tions, would increase the estimation accuracy.
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Fig. 4. Performances of the compared algorithms on the test sequences. From top to bottom: Yosemite, Dimetrodon and
RubberWhale. Cumulative histograms showing the percentage of the optical flow errors which are lower than a given value
(represented along the horizontal axis) for the AAE (left column) and the AME (right column).


