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ABSTRACT

Accurate image registration plays a preponderant role in image
super-resolution methods and in the related literature landmark-
based registration methods have gained increasing acceptance in this
framework. However, their solution relies on point correspondences
and on least squares estimation of the registration parameters neces-
sitating further improvement. In this work, a maximum a posteriori
scheme for image super-resolution is presented where the image
registration part is accomplished in two steps. At first, the low-
resolution images are registered by establishing correspondences
between robust SIFT features. In the second step, the estimation of
the registration parameters is fine-tuned along with the estimation
of the high resolution image, in an iterative procedure, using the
maximization of the mutual information criterion. Numerical results
showed that the reconstructed image is consistently of higher quality
than in standard MAP-based methods employing only landmarks.

Index Terms— Super-resolution, image registration, mutual in-
formation, scale invariant feature transform (SIFT).

1. INTRODUCTION

The objective of image super-resolution (SR) is to reconstruct a high-
resolution (HR) image from a sequence of low-resolution (LR) im-
ages. The goal is to improve the spatial resolution by fusing the set of
LR images to produce an image with more visible detail. The LR im-
ages experiences different degradations such as motion, point spread
function blurring, subsampling and additive noise. The HR image is
estimated from a sequence of LR aliased images which is possible
if there exists sub-pixel motion between the LR images. Thus, each
frame of the LR sequence brings complementary information on the
original HR image.

The direct inverse solution from interpolation, motion compen-
sation and inverse filtering is ill-posed due to the existence of addi-
tive noise, even in cases of perfect motion registration and accurate
knowledge of the point spread function of the acquisition system. A
large family of methods is based on a stochastic formulation of the
problem which imposes a prior distribution on the image to be re-
constructed and provides estimates either in a maximum a posteriori
(MAP) framework, where the posterior distribution of the HR image
is maximized [1, 2, 3, 4, 5, 6] or in a fully Bayesian framework by
integrating out any unobserved variables [4, 7, 8, 9, 10, 11].

A key issue in the quality of the super-resolved image is the ac-
curacy of the employed image registration technique. Also, knowl-
edge of the involved motion model facilitates the task. This may
include simple translational, rigid body or affine motion as well as
projective or even photometric transformations. The standard ap-
proach is to estimate the registration parameters separately from the

HR image [5, 6], either by aligning the LR images once, at the be-
ginning of the algorithm or iteratively before or after each update of
the HR image [1, 2, 3]. However, there exist techniques where the
registration parameters are assumed to be random variables and they
are marginalized in a Bayesian formulation [4, 7]. Apart from using
block matching or phase correlation techniques, the majority of the
registration methods used in the SR literature are related to standard
optical flow methods and their variants.

Following the trends in computer vision, feature matching has
also been used [5]. The parameters of the geometric transforma-
tion between the LR images are estimated by automatic detection
and analysis of corresponding features among the input images.
Typically, some hundreds of points of interest, such as the Harris
corner features [5], are detected with subpixel accuracy and corre-
spondences are established by examining the image neighborhoods
around them. Finally, the estimation of the registration parameters
is obtained by optimization of a non linear cost function.

Landmark-based registration is accurate but limited to least-
squares based solutions. In the last 15 years, the maximization of
the mutual information (MI) has revolutionized image registration
theory and applications as it considers the whole gray level im-
age information and provides consistently sub-pixel precision [12].
However, to our knowledge, it has not extended its application do-
main to image super-resolution. Probably, the main reason is that
if it is not initialized close to the global maximum, local extrema
impede the registration process [13] and, more importantly, they rule
out subpixel accuracy.

Relying on the above observations, we propose a MAP scheme
for image super-resolution where the registration part is accom-
plished in two steps. At first, the LR images are registered by
establishing correspondences between robust features computed by
the scale invariant feature transform (SIFT) [14]. In the second
step, the estimation of the registration parameters is fine-tuned along
with the estimation of the high resolution image, in an iterative
scheme, by the maximization of the mutual information between the
HR image and each of the upscaled (deblurred and upsampled) LR
images. Numerical results showed that the reconstructed image is
consistently of higher quality than in standard MAP-based methods
employing only SIFT features and this improvement is on average
1.5 dB in terms of peak signal to noise ratio (PSNR).

2. IMAGE FORMATION MODEL

The image degradation process [3] is modeled by motion (rotation
and translation), a linear blur, and subsampling by pixel averaging
along with additive Gaussian noise. We assume that 𝑝 LR images,
each of size 𝑀 = 𝑁1 ×𝑁2, are obtained from the acquisition pro-
cess. The following observation model is assumed, where all images
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are ordered lexicographically

y = Wz+ n. (1)

The set of LR frames is described as y = [y𝑇
1 ,y

𝑇
2 , . . . ,y

𝑇
𝑝 ]

𝑇 , where
y𝑘, for 𝑘 = 1, ...𝑝, are the 𝑝 LR images. The desired HR image z is
of size 𝑁 = 𝑙1𝑁1×𝑙2𝑁2, where 𝑙1 and 𝑙2 represent the up-sampling
factors in the horizontal and vertical directions, respectively. The
term n represents zero-mean additive Gaussian noise. In (1), the
degradation matrix W = [W𝑇

1 ,W
𝑇
2 , . . . ,W

𝑇
𝑝 ]

𝑇 performs the op-
erations of motion, blur and subsampling. Thus, matrix W𝑘, for the
𝑘-th frame, may be written as

W𝑘 = DB𝑘M(s𝑘), (2)

where D is the 𝑁1𝑁2 × 𝑁 subsampling matrix, B𝑘 is the 𝑁 × 𝑁
blurring matrix, and M(s𝑘) is the 𝑁×𝑁 rigid transformation matrix
with parameters (rotation angle and translation vector) denoted by s𝑘
for the 𝑘-th frame.

Formulating the super-resolution problem in a probabilistic
framework [1, 2, 3], we define a smooth Gaussian prior for the HR
image:

𝑝(z) =
(𝛼∣Q𝑇Q∣)𝑁/2

(2𝜋)𝑁/2

𝑁∏
𝑖=1

exp

(
−1

2
𝛼(Qz)𝑇 (Qz)

)
, (3)

where Qz is the Laplacian of image z and parameter 𝛼 controls
the precision (inverse covariance) and consequently the shape of the
distribution. Given the HR image z and the registration parameters
between the LR images s = {s1, s2, ..., s𝑘}, the likelihood of the
LR images is also a Gaussian [3]:

𝑝(y∣z) = 1

(2𝜋)
𝑝𝑀
2 𝜎𝑝𝑀

𝜂

exp

(
− (y −Wz)𝑇 (y −Wz)

2𝜎2
𝜂

)
, (4)

where 𝜎2
𝜂 is the variance of the observation noise n.

Employing a MAP approach and maximizing 𝑝(z∣y) ∝ 𝑝(y∣z)𝑝(z)
leads to the following MAP functional to be minimized with respect
to the HR image z and the rigid transformation parameters s:

𝐿(z, s) =

𝑝∑
𝑘=1

∣∣y𝑘 −W𝑘(s𝑘)z∣∣2 + 𝜆∣∣Qz∣∣2. (5)

where 𝜆 = 𝛼/𝜎𝜂 . Notice the change in notation to explicitly un-
derpin the dependence of matrix W𝑘 on the registration parameters
s𝑘.

Considering that the registration parameters s are known and us-
ing a gradient descent method with a properly calculated step size it
can be shown that the update equation minimizing (5) can be written
as

ẑ𝑛+1 = ẑ𝑛 − 𝜀𝑛∇z𝐿(z, s)∣z=ẑ𝑛 (6)

Parameter 𝜀𝑛 is the step size at the 𝑛-th iteration which may be ob-
tained in closed form from the data [1]. In general, the estimation of
the regularization parameter 𝜆 which depends on the noise standard
deviation 𝜎2

𝜂 , and the parameter 𝛼 controlling the variance in the
prior (3), is a difficult task. In order to avoid a blurred version of the
high-resolution image these parameters are automatically computed
from the data as described in our previous work [2, 3].

3. IMAGE REGISTRATION

A standard approach in MAP super-resolution algorithms is to regis-
ter the LR images prior to the computation of the HR image. This is
performed once and the registration parameters are fixed during the
iterative estimation of the super-resolved image. A typical solution
to the registration problem is the computation and correspondence
of corner features [5]. Although the extracted features are robust,
this procedure is prone to small registration errors as the registration
parameters are computed in the least squares sense.

The maximization of mutual information, originally proposed
for medical image registration, is considered to be one of the most
accurate methods for image registration [12] as it provides subpixel
accuracy. It relies on gray level information by considering each
image as a random variable.

Let 𝐴 and 𝐵 be the two images with marginal probability den-
sity functions (computed from their histograms) 𝑝𝐴(𝑎) and 𝑝𝐵(𝑏)
respectively. Let also their joint density be 𝑝𝐴𝐵(𝑎, 𝑏). The mutual
information between 𝐴 and 𝐵 measures the degree of dependence
between them and it is defined by

𝐼(𝐴,𝐵) = 𝐻(𝐴) +𝐻(𝐵)−𝐻(𝐴,𝐵)

=
∑
𝑎

∑
𝑏

𝑝𝐴𝐵(𝑎, 𝑏) log
𝑝𝐴𝐵(𝑎, 𝑏)

𝑝𝐴(𝑎) ⋅ 𝑝𝐵(𝑏) (7)

where 𝐻(𝐴) and 𝐻(𝐵) are the marginal entropies of the random
variables 𝐴 and 𝐵 and 𝐻(𝐴,𝐵) is their joint entropy. If the images
are correctly registered their mutual information is maximized.

In order to provide invariance to the overlapping areas between
the two images, a more robust measure is the normalized mutual
information (NMI) [15]:

𝑁𝑀𝐼(𝐴,𝐵) =
𝐻(𝐴) +𝐻(𝐵)

𝐻(𝐴,𝐵)
. (8)

A drawback of the mutual information (and NMI) is that if it is not
initialized close to the optimal solution it is trapped by local maxima
[13]. To overcome this issue a good initialization is important.

Therefore, we propose to estimate the registration parameters in
two steps. In the first step, the registration procedure is initialized
by a landmark-based registration scheme. To this end, to register the
LR images, we employ SIFT features [14] extracted from the LR
images. SIFT features are generally more robust than corner fea-
tures. Considering a LR image as the reference, the rigid transfor-
mation parameters (translation and rotation) are estimated through
minimization of the mean square error between the locations of the
features between the reference image and each LR image [16]. Thus,
we obtain a good initialization.

In the next step, during the iterative update of the HR image,
a fine tuning of the registration parameters is accomplished by the
maximization of the mutual information between the current esti-
mate of the HR image, provided by (6) and each upscaled LR image.
Upscaling is performed by deblurring (inverse filtering) and upsam-
pling. As the estimate of the HR image changes at each iteration, the
registration parameters are updated based on this estimate. By these
means, the registration accuracy is improved at each iteration step.
The overall algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL RESULTS

In order to evaluate the proposed methodology, experiments were
conducted on synthetic data sets. Sequences of low resolution im-
ages were created by rotating, translating, blurring, down-sampling
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Algorithm 1 Super-resolution image reconstruction algorithm.

∙ Extract SIFT descriptors from the LR images and establish
correspondences.

∙ Estimate rotations and translations using least squares [16].

∙ First estimate of the HR image ẑ0 by bicubic interpolation of
a randomly selected LR image.

∙ 𝑛 := 1; ẑ𝑛 = ẑ0;

∙ do

– do

∗ Random selection of a LR image y𝑘.

∗ Register by mutual information the upscaled y𝑘 to
ẑ𝑛.

∗ Update ẑ𝑛 using (6) only for the the visited y𝑘.

∗ Declare y𝑘 visited.

– until all y𝑘 are visited.

– 𝑛 := 𝑛+ 1;

– Declare all y𝑘, 𝑘 = 1, ...𝑝 visited.

∙ until ∥ẑ𝑛+1 − ẑ𝑛∥/∥ẑ𝑛∥ < 𝜖.

and degrading by noise an original image. Translation parameters
were randomly drawn from a uniform distribution in [−3, 3] (in units
of HR pixels) and rotation angles were also uniformly selected in
[−5, 5] (in degrees). The images were then downsampled by a factor
of 2 (4 pixels to 1). Then, a point spread function of 5× 5 Gaussian
kernel with standard deviation of 1 was applied. Finally the result-
ing images were degraded by white Gaussian noise in order to obtain
signal to noise ratios of (i) 20 dB and (ii) 30 dB. In all of the experi-
ments, in order to have a first estimate of the HR image, a LR image
was chosen at random and it was upscaled by bicubic interpolation.
A quantitative evaluation of the obtained HR images is given by the
peak signal to noise ratio (PSNR) defined by:

PSNR = 10 log10
255

∣∣𝑧 − 𝑧∣∣

where 𝑧 is the estimated HR image and 𝑧 is the ground truth.

The numerical results are summarized in Table 1, where the
mean values, the standard deviations and the median values of the
PSNR for each image are presented. These values are obtained
through 10 random realizations of the experiment in each case. As
it can be seen, the combination of SIFT-based initialization of the
registration parameters followed by fine tuning by the maximization
of the MI criterion provides consistently higher accuracy in terms of
PSNR. This improvement is approximately 1.5 dB on average for
both noise scenarios (20 dB and 30 dB).

Convergence of the super-resolution algorithm was achieved
when ∥ẑ𝑛+1 − ẑ𝑛∥/∥ẑ𝑛∥ < 10−5. Another advantage of the pro-
posed scheme is that not only the reconstructed HR image is of better
quality but also the algorithm converges faster. This is depicted in
Figure 1 where the cost function (5) is drawn with respect to the
iteration number for the compared methodologies. Representative
results of the reconstructed HR images along with a LR frame is
shown in Figure 2.
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Fig. 1. The cost function 𝐿(z, s), with respect to the iteration num-
ber for the compared methods.

5. CONCLUSION

We proposed an image registration framework that improves the per-
formance of super-resolution image reconstruction. The hybrid ap-
proach is based on the synergy of SIFT-based image registration
whose result is forwarded to a maximization of mutual information
algorithm. The first step provides a robust least squares parameter
estimation and the second step of the method achieves a a high pre-
cision registration result. By these means, the main drawback of
mutual information, which is the large number of local maxima is
overcome. Therefore, a solution of high accuracy is obtained for
the super-resolved image and the overall reconstruction algorithm
converges faster than the standard solution based only on landmark
correspondence and registration [5].

Finally, let us notice that we have also tried to register the LR im-
ages by the MI method only, without initialization by the SIFT-based
registration. In all cases the resulting estimation of the registration
parameters was erroneous leading to a HR image of very low quality.
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