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Abstract: In this work, we present an automated method for the detection of cells nuclei boundaries in conventional 
PAP stained cervical smear images. The proposed method consists of three phases: a) the definition of 
candidate nuclei centroids set using mathematical morphology, b) the initial approximation of cells nuclei 
boundaries and c) the application of the Gradient Vector Flow (GVF) snakes for the final estimation of 
candidate cell nuclei boundaries. It must be noted that the initial approximation of each snake position is 
obtained automatically, without any observer interference. For the final determination of the nuclei in our 
images, we perform a fuzzy C-means clustering, using a data set of patterns based on the characteristics of 
the area enclosed by the final position of the GVF snakes. The proposed method is evaluated using 
cytological images of conventional PAP smears, which contain 3616 recognized squamous epithelial cells. 
The results show that the application of the GVF snakes entails in accurate nuclei boundaries, and 
consequently in the improvement of the performance of the clustering algorithm. 

1 INTRODUCTION 

The automated segmentation of cell nuclei in PAP 
smear images is one of the most interesting fields in 
cytological image analysis. The accurate 
determination of cell nuclei area in cytological 
images is important for the correct diagnostic 
decisions, as the nucleus is the structural part of the 
cell which exhibits significant changes after the 
affection of the cell by a disease. However, the 
visual interpretation of these images is a tedious, 
time-consuming and in many cases error-prone 
procedure because of the complexity that these 
images exhibit. Thus, the high degree of cell 
overlapping, the lack of homogeneity in image 
intensity and the variations in dye concentration are 
challenging issues that an automated segmentation 
method must overcome.  

In the last years, cell nuclei segmentation has 
been extensively studied by several researchers. A 

large number of methods applied in many 
cytological images have been proposed based on 
morphological watersheds (Lezoray, 2002), (Costa, 
1997), fuzzy logic (Begelman, 2004), level sets 
(Cheng, 2009) and active contours (Bamford, 1998), 
(Hu, 2004), (Plissiti, 2006), (Plissiti, 2008). Active 
contours (Kass, 1988), also known as snakes, seem 
an ideally suited technique for the nucleus 
segmentation problem. However, snakes require an 
initial contour estimation close to the real boundary, 
which is usually obtained manually. This limitation 
is restrictive for the application of snakes in images 
such as PAP smear images, where a large number of 
cell nuclei are depicted in a single image and also 
significant cell overlapping is observed.  

Our work aims at the definition of nuclei 
boundaries in conventional PAP stained cervical cell 
images using the Gradient Vector Flow (GVF) snake 
model (Xu, 1998). The proposed method overcomes 
the problem of snake initialization because an 
approximation of nucleus boundary is obtained 
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automatically for each nucleus in the image. As 
there could be regions not being cell nuclei, we 
apply the fuzzy C-means algorithm for the 
classification of the closed regions (the result of the 
GVF snakes) in the class of interest (nuclei class) or 
in the class of undesired findings.  

To underpin the accuracy of the GVF snake 
segmentation, we construct two data sets. The first 
data set comprises the areas enclosed by the initial 
position of the snakes and the second data set 
contains the areas under the final position of each 
snake. As it is verified by the results, the 
performance of the method is improved when the 
data set of the area enclosed by the final snake 
position are used. This is a confirmation that the 
obtained contour is an accurate nucleus boundary. 
The proposed method is fully automated and it can 
be applied in any microscopic cervical cell sample 
image.  

2 MATERIALS AND METHODS 

2.1 Study Group 

We have collected 19 images of conventional PAP 
stained cervical cell slides, which were acquired 
through a microscope digital camera (Olympus 
DP71) adapted to an optical microscope (Olympus 
BX51). We have used a 10× magnification lens and 
the acquired images were stored in JPEG format. 
The total number of cell nuclei in the images, which 
were identified by two expert observers is 3616.  

2.2 Segmentation 

The purpose of this step is firstly the detection of the 
location of every nucleus in the images and secondly 
the determination of the boundary of each nucleus 
area. This is obtained automatically, as we follow 
the method proposed in (Plissiti, 2006) and (Plissiti, 
2008). This method consists of three individual steps 
and it is described in the following paragraphs.  

2.2.1 Detection of the Candidate Nuclei 
Centroids 

This step is necessary for the determination of the 
location of every nucleus in each image. It is 
comprised of two sequential stages: the 
preprocessing and the determination of   the 
probable location of each nucleus. The outcome of 
this step is a set of image points which indicate the 
areas of the image that are occupied by the nuclei of 

the cells. 
In the preprossesing step, the extraction of the 

background and the definition of smooth regions of 
interest are achieved. We perform contrast-limited 
adaptive histogram equalization and global 
thresholding to the red, green and blue component of 
the image. In the final binary mask, which is the 
result of a logical OR operation of these three binary 
images, all particles with an area smaller than a 
threshold t are removed, in order to exclude objects 
that may interfere in the next steps. 

The parts of the image found in the 
preprocessing step contain either isolated cells or 
cell clusters. Considering that nuclei are darker than 
the surrounding cytoplasm (Figure 1(a)), we search 
for intensity valleys in the image. For the formation 
of homogenous minima valleys we apply the h-
minima transform (Soille, 1999) in the red, green 
and blue components of the original image. The 
resulted image is used as a mask for the 
morphological reconstruction of the initial image. In 
the final image, we search for regional minima and 
the extracted regions of the image intimate the 
existence of the cell nuclei (Figure 1(b)). The 
location of each candidate nucleus is determined 
with the centroid cr  of each detected intensity valley 
(Figure 1(c)). 

2.2.2 Initial Approximation of the Cell 
Nuclei Boundaries 

After the definition of the locations of each 
candidate nuclei centroid, we proceed with the initial 
approximation of the nuclei boundaries, which is a 
prerequisite for the application of the deformable 
model. For this purpose we collect some points near 
the centroid of each nucleus, which are likely lying 
in the nucleus circumference. 

Given the fact that the nucleus is darker than the 
background, we expect high gradient of the image in 
each nucleus boundaries. In order to avoid threshold 
dependent techniques such as edge detectors, we 
construct an image with each nucleus boundaries 
pronounced. This image is a result of the subtraction 
of two images. The first image is the result of the 
application of an averaging filter in the initial image. 
The second image is the outcome of successive 
erosions of the initial image, using a flat disk-shaped 
structuring element. The result of the subtraction of 
these two images is an image with all  cell  nuclei 
boundaries sharp (Figure 2). In this image, we 
construct a circular searching grid centered at the 
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(a)      (b)        (c) 

Figure 1: (a) A part of the initial image containing two cells, (b) the regional minima which correspond to the nuclei and (c) 
the resulted nuclei centroids. 

location of each candidate nucleus centroid. We use 
8 radial profiles in equal arc length intervals 
consisted of 8 points each, and in every radial profile 
we choose only one pixel  (the one with the highest 
intensity) and we assume that this pixel belongs to 
the nucleus circumference. In this way, we collect N 
points for each nucleus boundary and we construct 
the convex hull using these points. This is used as 
the initial approximation of the location of the 
deformable contour. 

It must be noted that with the definition of these 
points in each nucleus circumference, we redefine 
the nucleus centroid cr with this formula: 

( ) ( )
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where ,i ix y are the coordinates of each 
circumferential point. After this calculation, we 
apply a distance dependent rule, in which we 
eliminate the existence of two or more centroids in 
an area of a radius that it is smaller than the mean 
radius of a normal nucleus. The rule is described as 
follows: 
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where cR is the set of all centroids, D is the 
euclidean distance between two points, T  is the 
threshold on the minimum radius and ( )I p  is the 
intensity of the image at the point p . With the 
application of this rule, a significant reduction of the 
total number of the false positive centroids is 
achieved. 

2.2.3 Application of the GVF Snake 

For every nucleus centroid, we apply a deformable 
model using as initial estimation the convex hull of 
the circumferential points found in the previous step. 

A traditional snake is defined as a curve 
( ) ( ) ( ) [ ], , 0,1s x s y s s= ∈⎡ ⎤⎣ ⎦x  and it is deformed 

under the influence of internal and external (image) 
forces in order to minimize its energy functional: 

( )( ) ( )( )( )
1

0
int imageE E s E s ds= +∫ x x  (3)

As in most conventional snake models, the 
internal energy is a function of the first and second 
order derivatives of the curve (for length and 
curvature minimization), and can be expressed as: 

( ) ( )2 2
intE s sα β′ ′′= +x x , (4)

while imageE  is defined as: 

image extE γE= , (5)

where the external energy function  extE  takes 
smaller values at the features of the interest in the 
image. 

A snake that minimizes the energy E  must 
satisfy the Euler equation: 

( ) ( ) 0exts s Eα β γ′′ ′′′′− − ∇ =x x . (6)

For the solution of this equation, x  is treated as 
a function of time t  as well as s  and the partial 
derivative of x  with respect to t  is then set equal to  

( ) ( ) ( ), , ,t exts t s t s t Eα β γ′′ ′′′′= − − ∇x x x  (7)

The stabilization of the solution ( ),s tx entails in 

the vanishing of the term ( ),t s tx  and as a result in 
the solution of (6).   

For the external energy, we adopt the approach 
of the gradient vector flow (GVF) field, as it is 
described in (Xu, 1998). The GVF field is the vector 
field ( ) ( ) ( )( ), , , ,x y u x y x yυ=v that minimizes the 
energy functional  

( ) 2 22 2 2 2
x y x yu u f f dxdyμ υ υΕ = + + + + ∇ −∇∫ ∫ v  (8)
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where ( ),f x y  is an edge map with larger intensity 
values near the image edges derived from the initial 
image ( ),I x y , f∇  is the gradient of the edge 
image and μ  is a regularization parameter. With 
this approach the GVF snake is defined as the 
parametric curve 

( ) ( ) ( ), , ,t s t s t s tα β γ′′ ′′′′= − +x x x v  (9)

which is solved numerically by discretization in 
space and time. This deformable model is flexible 
and it is attracted by the nucleus boundaries. Figure 
3 shows the initial estimation and the final contour 
obtained by the deformation of the model in several 
examples. 

2.3 Clustering of the Candidate Nuclei 

The application of the fuzzy C-means classification 
algorithm (Bezdek, 1992) is necessary for the 
separation of the segmented regions of the image 
that belong to the true nuclei and the regions that 
belong to other regional minima, which do not 
indicate the existence of a nucleus in the image. For 
this reason, after the stabilization of each snake in 
the entire image, a data set of features which are 
extracted from the area enclosed in the final position 
of the snake is created. We choose eight features for 
each candidate nucleus area, which concern the 
intensity and the shape attributes of the region 
enclosed by the snake: (i) – (iii) the average intensity 
of the area in the red, green and blue channel of the 
image, (iv) the diameter of a circle which has the 
same area with the region, (v) the proportion of the 
pixels in the convex hull that are also in the region, 
(vi) the eccentricity, (vii) the major and (viii) the 
minor axis length of an ellipse that has the same 
second moments as the region. 

3 EXPERIMENTAL RESULTS 

For the evaluation of the method we have to 
examine the performance of the different steps of the 
segmentation method, until the application of the 
fuzzy C- means classification algorithm. The overall 
loss of the true nuclei in the definition of the 
candidate nuclei centroids set is 29 nuclei, from 
which 7 nuclei were missed in the preprocessing 
step and 22 of them were missed in the detection of 
regional minima in the image. Thus the total loss of 
this step is 0.8% and the sensitivity is 99.39%. 

In order to evaluate the performance of the 
segmentation method, the same features are selected 
for the area of the initial position of the snake. This 
is a second feature set that is used as input in the 
fuzzy C-means algorithm, and a comparison of the 
performance of the method using the first and the 
second feature set has been done. As it is verified by 
the results, the use of the feature set obtained from 
the area enclosed by the final snake position entails 
in higher classification performance 

For the evaluation of the accuracy of the 
segmentation method, we compare the performance 
of fuzzy C-means clustering algorithm using the two 
independent feature sets, the first one obtained from 
the initial and the second one obtained from the final 
snake position, as it is described above. The 
classification performance of the first feature set 
reaches 82.38% in sensitivity and 75.91% in 
specificity. On the other hand, the classification 
performance of the second feature set reaches 
91.77% in sensitivity and 74.23% in specificity. As 
we can see, there is a remarkable improvement in 
sensitivity, while the specificity is maintained almost 
in the same levels. 

We have also used a variable decision threshold 
in the fuzzy C- means classification algorithm and 
we have calculated several values for the sensitivity 
and the false positive rate, and with these values we 
have constructed the Receiver Operating 
Characteristic (ROC) curve for the two different 
feature sets (Figure 4). As it is observed, the ROC 
plot of the second feature set is closer to the upper 
left corner, which means that the overall accuracy of 
the classification algorithm using the specific feature 
set is higher than the one using the initial feature set. 
This implies that the final position of the GVF snake 
stabilizes in the location of the accurate nuclei 
boundaries. 

 
Figure 2: The resulted image of the subtraction of two 
images (see text for details). 
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Figure 3: (a)-(c) Examples of the initial estimation of the 
nuclei boundaries (in red) and the final nuclei boundaries 
(in white), after the stabilization of the GVF snake. 

4 DISCUSSION 

The proposed method is applied automatically in 
conventional PAP stained cervical smear images. 
For the extraction of acceptable results in all the 
images of our data set, we have tested several values 
for the variable parameters of each step of the 
method. In the preprocessing step, the contrast 
limited adaptive histogram equalization is performed 
in image regions of 8×8 pixels and the clip limit is 
set to 2. For the rejection of objects that are not 
nuclei we used as a threshold of 500 for the object 
area, which is sufficient for the elimination of small 
image artifacts, while preserving the isolated cells in 
the image. However, the loss of true nuclei in this 
step is due to the faintly staining of some cells, 
which makes them undistinguished from the 
background. As a consequence, the nuclei of these 
cells are considered as isolated objects in the image 
background and they are removed.  

For the selection of the intensity valleys we 
choose the threshold value of h=15, which produces 

the minimum loss of true positives centroids. For the 
application of the distance dependent rule, for each 
detected centroid we calculate the minimum 
euclidean distance from the neighbouring centroids 
and we used a threshold of 8, which approximates 
the average nuclei radius, determined after careful 
examination of the images by an expert 
cytopathologist. 

For the calculation of the gradient vector flow 
field, we construct an edge map from the initial 
image, by converting it to a gray scale image and 
consecutively by applying the Canny edge detector 
to find the edges. The parameter μ  is set to be 0.01. 
Then, we proceed with the application of the GVF 
snake with parameters 0.9a = , 1.5β =  and 3γ = . 
These values were selected after several experiments 
in the first image of our dataset and gave acceptable 
results, as it was verified by an expert 
cytopathologist. The maximum number of iterations 
that is allowed for the snake deformations is 20.   

5 CONCLUSIONS 

We have developed a fully automated method for 
the segmentation of cell nuclei in PAP smear 
images. The proposed method overcomes the 
problem of the detection of the locations of cell 
nuclei and the restriction of the initial estimation of 
their boundaries, and it is suitable for the application 
of the GVF snakes, without any observer 
interference. As it is verified by the results, the 
performance of the method is high, as it achieves to 
determine accurate nuclei boundaries with the 
stabilization of the active contours. Finally, the 
proposed method can be used as the basis for further 
processing of cell images, such as the discrimination 
of normal and abnormal or malignant cells. 
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Figure 4: The ROC curve for the initial feature set (blue line) and with the final feature set (green line) for various values of 
the classification threshold in FCM. 
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