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ABSTRACT

We propose a new approach for the restoration of polarimetric
Stokes images, capable of simultaneously segmenting and restoring
the images. In order to easily handle the admissibility constraints in-
herent to Stokes images, a proper transformation of the images is in-
troduced. This transformation exploits the correspondence between
any Stokes vector and the covariance matrix of the two components
of the electric vector of the light wave. A Bayesian model based on
a mixture of Gaussian kernels is used for the transformed images.
Inference is achieved using the EM framework.

To quantify the performances of this approach, the algorithm
is tested with both synthetic and real data. We note that the pixels
of the restored Stokes images issued from our approach are always
physically admissible which is not the case for the naı̈ve pseudo-
inverse approach.

Index Terms— Polarimetric images, image segmentation, spa-
tially varying Gaussian mixture models, Expectation-Maximization
(EM) algorithm, Markov Random field (MRF).

1. INTRODUCTION

Exploiting the polarization of light has been shown to be a useful
and powerful technique, overcoming many limitations that arise in
radiance measurement-based classical imagery. Indeed, there is in-
creasing evidence that recording the polarization properties of in-
homogeneous objects provides a rich set of information about their
local nature. This imaging modality requires the development of ef-
ficient imaging systems that can record spatially distributed polariza-
tion patterns across a scene and appropriate techniques of handling
and processing the issued multicomponent images while preserving
the physical integrity of the data.

Stokes imaging consists in estimating the four Stokes parame-
ters of each pixel of an image. This is traditionally achieved by plac-
ing a Polarization State Analyzer (PSA) in front of a camera. This
configuration allows acquiring polarized radiance images 𝒈 that can
be used to calculate the multi-component Stokes image 𝒔. Images 𝒈
and 𝒔 are linked by the Polarization Measurement Matrix (matrix 𝑯)
that depends on the PSA configuration (𝒈 = 𝑯𝒔, pixelwise). Clas-
sically, the Stokes parameters are obtained using a pseudo-inverse
approach, which is sensitive to noises that degrade the acquired in-
tensity images. Moreover, at each location, the Stokes parameters
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must satisfy physical constraints that can be infringed when using
pseudo-inversion.

In this paper we present a Bayesian model based on a mixture of
Gaussians, capable of performing recovery simultaneously with seg-
mentation of the polarimetric image. Intuitively we conjecture that
the problem of recovering the degraded image should be intertwined
with the problem of segmenting the image. In other words, a good
restoration should lead to a good segmentation and vice versa, which
is the motivation of performing the two operations jointly.

Polarimetric imaging gives rise to intricate estimation problems
because of the associated underlying physical admissibility condi-
tions [1, 2]. Stokes images exhibit the particularity that, while they
are comprised of 4 separate channels, only a subset of ℝ

4 consti-
tutes admissible Stokes 4-variate vectors. In order to work around
this problem, instead of assuming directly that the input Stokes vec-
tors follow a certain distribution, we impose a mixture of Gaussian
distributions on a suitable transformation of the Stokes image. Fur-
thermore, with a properly chosen prior set on the probabilities of the
underlying segmentation class labels, we achieve to produce smooth
edge-preserving segmentations that in turn produce correspondingly
reasonably smooth image restorations.

Polarimetric image restoration methodologies have already been
presented in [1, 2], but under the hypothesis that the variables of in-
terest were spatially piecewise constant. Our present model uses no
such constraining assumption. We have tested the proposed model
succesfully on sets of noise-degraded artificial Stokes images and on
real data, and present both numerical and visual results.

2. MODEL DESCRIPTION

Each image to be restored consists of 4 channels. For pixel
𝑛, we group the scalars of each observed channel into vector
𝒈𝑛 = [𝑔𝑛1 𝑔

𝑛
2 𝑔

𝑛
3 𝑔

𝑛
4 ]

𝑇 and let 𝒈 = {𝒈𝑛}𝑁𝑛=1 denote the set of
vectors 𝒈𝑛. These vectors are considered as stemming from 𝑁
corresponding Stokes vectors 𝒔 = {𝒔𝑛}𝑁𝑛=1, 𝒔𝑛 = [𝑠𝑛1 𝑠

𝑛
2 𝑠

𝑛
3 𝑠

𝑛
4 ]

𝑇 .
Thus 𝒈 is an indirect and noise corrupted version of 𝒔. The 4 × 4
observation matrix 𝑯 is supposed to be known. Every Stokes chan-
nel corresponds to a specific function of the covariance between
orthogonal electric vector components [3]. Consequently the Stokes
vectors are subject to the following constraints:

𝑠𝑛1 ⩾ 0, (𝑠𝑛1 )
2 ⩾ (𝑠𝑛2 )

2 + (𝑠𝑛3 )
2 + (𝑠𝑛4 )

2. (1)

We model the noise on each Stokes channel as zero mean, addi-
tive, white Gaussian. Formally this translates to

𝒈𝑛∣𝒔𝑛,𝑽 ∼ 𝒩 (𝑯 𝒔𝑛,𝑽 ), (2)
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where the covariance matrix is 𝑽 = 𝜎2𝐼 .1

We take advantage of our probabilistic generative model formu-
lation and assume a prior distribution on the real Stokes vector set 𝒔.
Such prior knowledge is the intuitive fact that vectors with spatially
neighboring coordinates are more likely to have values close to one
another. In order to implement this hypothesis, we first assume the
existence of an underlying segmentation of the polarimetric image in
𝐾 segments. The segmentation is defined by the set of𝐾×1 vectors
𝒛 = {𝒛𝑛}𝑁𝑛=1. Each member 𝒛𝑛 is defined as a vector with its 𝑘𝑡ℎ

variate set to 1 if the corresponding 𝑛𝑡ℎ Stokes vector 𝒔𝑛 belongs
to the 𝑘𝑡ℎ segment; otherwise, it is set to zero. Also, every Stokes
vector is assumed to belong to exactly one segment.

For each image segment 𝑘 we define a probability distribution
(kernel) generating the Stokes vectors belonging to the correspond-
ing segment. While in image segmentation problems the chosen dis-
tribution is typically Gaussian [4], in the present problem we need
a kernel choice that will assign zero probability mass to vectors not
complying with the constraints given in (1). To this end, the Gaus-
sian distribution is not convenient. To work around this particular-
ity, we can instead consider a probability distribution on a special
parametrization of the Stokes vectors. This parametrization is one of
the contributions of the present work.

Let 𝝀 = [𝜆1 𝜆2 𝜆3 𝜆4]
𝑇 be a parametrization 𝝋 of the Stokes

vector 𝒔 = [𝑠1 𝑠2 𝑠3 𝑠4]
𝑇 , with 𝒔 = 𝝋(𝝀). Let matrices Φ and Λ

be

Φ =

[
𝑠1 + 𝑠4 𝑠2 − 𝑖 𝑠3
𝑠2 + 𝑖 𝑠3 𝑠1 − 𝑠4

]
, Λ =

[
𝜆1 0

𝜆3 + 𝑖 𝜆4 𝜆2

]
.

The transformation 𝝋 is defined to comply with

Φ = ΛΛ𝐻 . (3)

It can be easily seen that any real vector 𝝀 will yield, according
to transformation (3), a Stokes vector 𝒔 that will necessarily satisfy
the constraints (1). We can conveniently assume a Gaussian i.i.d.
distribution hypothesis on the 𝝀 vectors:

𝝀𝑛∣𝑧𝑛𝑘 = 1,𝝁𝑘,Σ𝑘 ∼ 𝒩 (𝝁𝑘,Σ𝑘). (4)

In turn, the label vectors 𝒛 are multinomially i.i.d distributed.
This distribution is parametrized by the contextual mixing propor-
tions set Π:

𝒛𝑛∣𝝅𝑛 ∼𝑀𝑢𝑙𝑡(𝝅𝑛).

The prior probability vectors Π = {𝝅𝑛}𝑁𝑛=1 are subject to the posi-
tiveness 𝜋𝑛

𝑘 ⩾ 0, ∀𝑘 ∈ [1, . . .𝐾], ∀𝑛 ∈ [1, . . . 𝑁 ] and sum-to-unity

constraints
∑𝐾

𝑘=1 𝜋
𝑛
𝑘 = 1, ∀𝑛 ∈ [1, . . . 𝑁 ].

Considering the set of contextual mixing proportions Π as ran-
dom variables and assuming a proper prior, we can incorporate the
spatial smoothness trait, of which we have referred to earlier in the
section, in an indirect way by forcing neighboring Stokes vectors to
be more likely to share the same class label. We assume a Markov
random field on Π, which equivalently means that Π is governed by
a Gibbs distribution [5], generally expressed by:

𝑝(Π) ∝
∏
𝐶

𝑒− 𝑐(Π), (5)

where 𝑐 is a function on clique 𝑐, called clique potential function
in the literature, and the product is over all minimal cliques of the
Markov random field.

1The noise model is straightforwardly extensible to consider coloured
noise.

An appropriate clique distribution choice would be to assume
that the local differences of contextual mixing proportions follow a
Student-t distribution, with its peak set at zero. This choice, pro-
posed in a natural image segmentation context in [6], also provides
our model the properties of an edge-preserving line-process [5]. The
probability law for local differences is thus set to the Student’s-t dis-
tribution:

𝜋𝑛
𝑘 − 𝜋𝑗

𝑘 ∼ 𝒮𝑡(0, 𝛽2
𝑘𝑑, 𝜈𝑘𝑑),

∀𝑛 ∈ [1, . . . 𝑁 ], 𝑘 ∈ [1, . . .𝐾], 𝑑 ∈ [1, . . . 𝐷], ∀𝑗 ∈ 𝛾𝑑(𝑛). (6)

The parameters 𝛽𝑘𝑑 control how tightly smoothed we need the
Stokes vectors of segment 𝑘 to be. In (6), 𝐷 stands for the number
of a pixel’s neighborhood adjacency types and 𝛾𝑑(𝑛) is the set of
neighbors of pixel indexed by 𝑛, with respect to the 𝑑𝑡ℎ adjacency
type. In our model, we assume 4 neighbors for each pixel (first-order
neighborhood), and partition the corresponding adjacency types into
horizontal and vertical, thus setting 𝐷 = 2. This variability of pa-
rameter aims to capture the intuitive property that smoothness statis-
tics may vary along clusters and spatial directions [7].

One can see that the assumption in (6) is equivalent to

𝜋𝑛
𝑘 − 𝜋𝑗

𝑘 ∼ 𝒩 (0, 𝛽2
𝑘𝑑/𝑢

𝑛𝑗
𝑘 ),

𝑢𝑛𝑗
𝑘 ∼ 𝒢(𝜈𝑘𝑑/2, 𝜈𝑘𝑑/2), ∀𝑛, 𝑘, 𝑑, ∀𝑗 ∈ 𝛾𝑑(𝑛),

where 𝒩 and 𝒢 represent a Gaussian and a Gamma distribution
respectively. This breaking-down of the Student’s-t distribution
allows clearer insight on how our implicit edge-preserving line-
process works. Since 𝑢𝑛𝑗

𝑘 depends on datum indexed by 𝑛, each
weight difference in the MRF can be described by a different in-
stance of a Gaussian distribution. Therefore, as 𝑢𝑛𝑗

𝑘 → +∞ the
distribution tightens around zero, and forces neighboring contextual
mixing proportions to be smooth. On the other hand, 𝑢𝑛𝑗

𝑘 → 0
signifies the existence of an edge and consequently no smoothing.
This generative model can be examined in detail in figure 1.

��������
����
����
��������

�
��

�

�
���

�
���

�
���

�
�
�
�
��

	 	
�




	



�
�	



�
�




�

�

�




�

�

�

𝜈𝑘𝑑

𝑢𝑛𝑗
𝑘

𝛽2
𝑘𝑑

𝜇𝑘

Σ𝑘

𝜋𝑛
𝑘

𝑧𝑛𝑘

𝜆𝑛 𝑠𝑛

𝑔𝑛

𝑉

Γ

𝐷

𝐾

𝑁

Fig. 1. Graphical model for the proposed Stokes image restoration
model. Stokes vectors 𝒔𝑛 constitute the estimated restoration, pro-
duced by observations 𝒈𝑛. The rest of the model, namely random
variable sets 𝑢𝑛𝑗

𝑘 , 𝜋𝑛
𝑘 , 𝑧𝑛𝑘 , constitute the prior for the proposed Stokes

vector transformation 𝝀𝑛. Superscript 𝑛 ∈ [1, . . . 𝑁 ] denotes pixel
index, subscript 𝑘 ∈ [1, . . .𝐾] denotes kernel (segment) index, sub-
script 𝑑 ∈ [1, . . . 𝐷] describes the neighborhood direction type and
superscript 𝑗 ∈ [1, . . .Γ] denotes neighbor index.
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3. MODEL INFERENCE

The problem of inference formulates in our case as, given ob-
servations 𝒈, estimate the true Stokes image 𝒔. To achieve this,
we need to find estimates jointly for all unknown parameters
Ψ = {𝝁,Σ,𝜷,𝝂}, Π and 𝝀; thence the restoration 𝒔 can be
computed given the 𝝀 estimate. The rest of the variables are con-
sidered as hidden, and are namely the labels 𝒛 and the edge map
𝒖. While we do not need to determine estimates for the hidden
variables, they play an important role in the model inference in an
indirect way.

Hence, we need to optimize the model evidence, given by

ln 𝑝(𝒈,𝝀,Π;Ψ), (7)

with respect to parameters Ψ, 𝝀, Π. In this sense, our method is a
maximum a posteriori (MAP) estimation, with 𝝀 and Π being the
conditioned variables. As we cannot find MAP estimates in closed
form for (7), we employ the EM algorithm [8]. In EM terminology,
eq.(7) is referred to as the incomplete likelihood, while the complete
log-likelihood is expressed by

ln 𝑝(𝒈,𝝀,Π, 𝒛,𝒖;Ψ). (8)

The conditional expectation of the complete likelihood is an impor-
tant quantity in EM. It is defined as

ℰ𝒛(𝑡),𝒖(𝑡)∣𝒈,𝝀(𝑡),Π(𝑡)

{
ln 𝑝(𝒈,𝝀,Π, 𝒛,𝒖;Ψ)

}
. (9)

By optimizing this expectation with respect to Ψ, Π and 𝝀 given the
observed variables and some initial estimates Ψ(0), Π(0), 𝝀(0) we
can produce a new estimate Ψ(1), Π(1), 𝝀(1). In the same way, esti-
mates are computed iteratively. It can be proved that these estimates
converge to a local optimum for the incomplete likelihood of eq. (7).
This is the main idea in the EM algorithm. The iteration scheme is
split in two steps, the Expectation and the Maximization step.

The E-step consists in computing the joint expectation of the
hidden variables 𝒛 and 𝒖, with respect to current iteration param-
eters Ψ(𝑡), 𝝀(𝑡), Π(𝑡) where 𝑡 denotes the number of current it-
eration. Observing the graphical model in fig.1, we can see that
given 𝒈, Π and 𝝀, 𝒛 and 𝒖 are conditionally independent. Therefore
ℰ𝒛,𝒖∣𝒈,𝝀,Π(⋅) = ℰ𝒛∣𝒈,𝝀,Π{(ℰ𝒖∣𝒈,𝝀,Π(⋅)} and we can compute these
expectations separately.

Due to lack of space, we point the reader to [9] for the analytical
expressions of the updates for parameters 𝝁, Σ, 𝜷, 𝝂, Π, and for the
expected values of 𝒛 and 𝒖, in a similar model proposed for natural
image segmentation.

The update for the noise covariance matrix estimate 𝑽 is given
by

𝑽 (𝑡+1) = (4𝑁)−1
𝑁∑

𝑛=1

(𝑯𝒈𝑛 − 𝒔𝑛(𝑡))𝑇 (𝑯𝒈𝑛 − 𝒔𝑛(𝑡))𝐼. (10)

Optimization with respect to the constraint-free parameters 𝝀 in-
volves the following expression, after dropping constant terms from
(9):

(𝒈𝑛 −𝑯𝝋(𝝀𝑛(𝑡)))𝑇𝑽 −1(𝒈𝑛 −𝑯𝝋(𝝀𝑛(𝑡)))+

𝐾∑
𝑘=1

(𝝀𝑛(𝑡) − 𝝁𝑘)
𝑇Σ−1

𝑘 (𝝀𝑛(𝑡) − 𝝁𝑘) <𝑧
𝑛
𝑘>,

which after some manipulation boils down to:

𝒉𝑇Ω1𝒉+ 𝝀𝑇Ω2𝝀+ 𝝎3𝒉+ 𝝎4𝝀, (11)

where we have omitted the data and iteration indices 𝑛 and 𝑡 for
brevity. Parameters 𝒉, Ω1, Ω2, 𝝎3, 𝝎4 are given by

𝒉 ≡ 𝑯𝝋(𝝀),Ω1 ≡ 𝑽 −1,Ω2 ≡
𝐾∑

𝑘=1

<𝑧𝑘> Σ−1
𝑘 ,

𝝎3 ≡ −2𝒈𝑇𝑽 −1,𝝎4 ≡ −2
𝐾∑

𝑘=1

<𝑧𝑘> 𝝁𝑇
𝑘 Σ

−1
𝑘 .

In view of (3), eq. (11) is a fourth-order polynomial over each
of the variates of 𝝀. Setting the derivative of (11) with respect to
each of the 𝝀 variates to zero, we can obtain optimizers for 𝝀 by
solving the resulting third-order polynomial equations. Thus for
each 𝑛 ∈ [1, . . . 𝑁 ], we solve iteratively four third-order polyno-
mial equations, and repeat the operation until convergence of 𝝀.

Finally, in order compute the Stokes estimates 𝒔𝑛 we simply
make use of the 𝝋 transformation definition (11) to obtain the update

⎧⎨
⎩

𝑠𝑛1 = 1
2

[
(𝜆𝑛1 )

2 + (𝜆𝑛2 )
2 + (𝜆𝑛3 )

2 + (𝜆𝑛4 )
2
]
,

𝑠𝑛2 = 𝜆𝑛1 𝜆
𝑛
3 ,

𝑠𝑛3 = 𝜆𝑛1 𝜆
𝑛
4 ,

𝑠𝑛4 = 1
2

[
(𝜆𝑛1 )

2 − (𝜆𝑛2 )
2 − (𝜆𝑛3 )

2 − (𝜆𝑛4 )
2
]
.

(12)

4. NUMERICAL EXPERIMENTS

We have applied the proposed recovery algorithm to two test Stokes
images, one artificial image of size 64×64 and one real image of size
256×256. On the artificial image, the experiment was conducted by
reproducing the blurring / noise model of (2) and applying varying
levels of noise variance 𝜎2. We also used different assumed numbers
of underlying segments𝐾. The obtained results are shown in table 1.
These are computed as the improvement over SNR for the degraded
image, given by

𝐼𝑆𝑁𝑅 = 20 log10
∥𝒔★ − 𝒈∥
∥𝒔★ − 𝒔̂∥ (13)

where 𝒔★, 𝒔̂, 𝒈 represent the ground truth, the estimate, and the
degraded (observed) image respectively. The pseudo-inverse es-
timates are as well computed for the restoration using 𝒔̂𝑛 =
(𝑯𝑇𝑯)−1𝑯𝑇𝒈𝑛, ∀𝑛 ∈ [1, . . . 𝑁 ]. The results clearly demon-
strate that the proposed method gives a consistently better restora-
tion compared to the general purpose pseudo-inverse estimator.
Note also that the pseudo-inverse estimate will not necessarily yield
values that satisfy the constraints (1). The main advantage of our
method is that it takes explicitly into account the Stokes admissi-
bility constraints (1), which is not the case for standard restoration
methods. Representative visual results for the artificial image under
5𝑑𝐵 noise are shown in figure 2. Corresponding results for a real
Stokes image are shown in figure 3. The pseudo-inverse estimate
of the real Stokes image contains 285 inadmissible vectors, out of a
total of 65535 vectors; under the heavy-noise scenario of fig.2, this
figure goes up to 1316 inadmissible vectors out of a total of 4096.
Our method on the other hand, ensures always admissibility for all
recovered vectors.

Runtimes for our algorithm were approximately 7 and 400 sec-
onds respectively for the artificial and the much larger and more
complex real Stokes image, for each EM iteration. We found that
our algorithm converged in each case at around 10 EM iterations.
Computations were done on a dual core 1.8 GHz PC workstation.
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Table 1. Restoration error results on the simulated Stokes data of
figure 2. The image was degraded by varying noise levels. The pre-
sented values are the restoration ISNR (13); higher values corre-
spond to better restorations. Results are shown for various numbers
of classes𝐾 of the underlying segmentation, as well as the result of
the pseudo-inverse estimate (𝑃𝐼).

𝑃𝐼 Proposed method

𝑆𝑁𝑅 𝐾 = 3 𝐾 = 5 𝐾 = 7
20𝑑𝐵 21.4 22.4 22.3 22.7
10𝑑𝐵 11.4 14.7 14.5 14.5
5𝑑𝐵 6.3 10.9 9.9 9.9
1𝑑𝐵 2.3 7.3 7.6 7.6

(a) (b) (c) (d)

Fig. 2. Recovery result for simulated Stokes data under significant
degradation. From left to right, each column shows the four channels
of (a) the original Stokes image 𝒔★, (b) the degraded image 𝒈 (SNR
of 5 𝑑𝐵) (c) the non-complying to Stokes constraints pseudo-inverse
recovery estimate and (d) the recovered image 𝒔̂ obtained with our
method. The corresponding segmentation of the degraded image into
𝐾 = 2 classes is shown at the top of the (d) column.

5. CONCLUSION

We have presented an image recovery methodology suitable for
Stokes images. Making use of a smoothing prior which assumes
an underlying image segmentation and a suitable Stokes vector
parametrization, we are able to produce a good estimate of the real
image that at the same time satisfies the Stokes vector constraints
(1). Also, simultaneously we produce a segmentation of the input
image due to the model structure. Future work could be directed
towards more sophisticated prior models, adapted properly in order
to handle the distinctive difficulties of the Stokes image recovery
problem.
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