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ABSTRACT dom field directly on class labels. However, inference of
the posterior field distribution is typically intractable and es-
timation algorithms such as the computationally expensive
family of the Markov chain Monte Carlo techniques have to
ene employed. Other inference methodologies propose con-
venient approximations for the posterior random field, such
as the pseudo-likelihood [4] or the simulated-field approxi-
mation [1]. Imposing a discrete MRF on the pixel labels is

In the context of image segmentation, Markov random fields
(MRF) are extensively used. However solution of MRF-

based models is heavily dependent on how successfully th
MRF energy minimization is performed. In this framework,

two methodologies, complementary to each other, are pro-
posed for random field optimization. We address the spe-
cial class of models comprising a random field imposed on

the probabilities of the pixel labels. This class of segmenta- successfully used in [5], [6] among other;. . .
tion models poses a special optimization problem, as, in this 1€ sécond category of methods, which is an alternative

case, the variables constituting the MRF are continuous and® @oid the computational cost of the pixel label MRF es-
subject to probability constraints (positivity, sum-to-unity). timation Is to model th«_aontextual mixing pr_oport|on$hat_

The proposed methods are evaluated numerically in termd'S Probabilities of the pixel labels (or the mixing proportion
of objective function value and segmentation performance, VECtOr for each distinct pixel), as a Markov random field

and compare favorably to existing corresponding optimiza- L7+ 8: 91 In such models, MAP estimation of the contex-
tion schemes. tual mixing proportions is possible, and the computational

cost is transformed from a hard posterior inference prob-

lem, as in the discret®RF-on-labelsmodel family, to a
1. INTRODUCTION difficult constrained optimization problem. In that case, the
i i constraint is that the contextual mixing proportions corre-
Markov random fields (MRF) have been successfully incor- sponding to a pixel must always sum up to unity as they
porated in various applications in the field of image process- st he probability vectors. However, as conjectured and
ing, such as image segmentation [1, 2] and restoration [3]. gxperimentally observed in [10], an advantage for the sec-

The foremost reason for their popularity is that they can el- 54 model would be a less sharply peaked likelihood func-
egantly and formally model the spatial coherence trait of 4,

images.
In this paper we are interested in Markov random fields
in the context of image segmentatid®, clustering a given

The resulting estimated segmentation, for any of the afore-
mentioned MRF schemes, relies heavily on parameter ini-
. . ) . . tialization and optimization [11]. There exist powerful opti-
'mage |r_1J non—overlapplngne_anmgfulreglons. A mesh mization schemes suitable for discrete MRFs, such as graph
Rt yectors IS typically "?‘SS””‘E’ 9 (at cuts [6] or loopy belief propagation [12]. However such
Serves to relate each image P'Xel to aunique cluster. Thusschemes are not applicable in cases where the MRF is im-
effectively, mesty conveys all information necessary about osed directly on the pixel label priors. The difficulty con-
the assumed segmentation. The observed feature Vec.torgists in the fact that the quantities to be optimized are proba-
are thence assumed to be generated independently givep

knowled f the cluster thev belona to. Seamentation i ilities, meaning that the search space is continuous. More-
owledge of the cluster they belong 1o.  Segmentatio Sover, each probability vector must always sum to unity.
obtained by estimating the posterior 8f conditioned on

the observed image. In this paper, we propose and evaluate two distinct meth-

According to the mechanism MRF constraints are im- ods for optimizing MRF belonging to the second category

posed, two distinct generative model categories are gener—mc methods, that is the MRF is imposed on on the contex-

. tual mixing proportions. The first method introduces a novel
ally proposed. The first category assumes a Markov ran- . L ;
y prop gory strategy in updating field sites, as opposed to the standard

Giorgos Sfikas was supported by a grant frieégion AlsacéFrance) sequential raster scan of MRF sites. The second method ad-
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dresse the sum-to-unity constraint posed in every site to be 3. OPTIMIZATION OF THE MRF MESH

updated. Let us note that the proposed methods are comple-

mentary to each other and may thus be used in tandem. A simple and straightforward implementation for optimiza-
tion of (2) with regard tall would be to perform a raster
scan for each pixet € [1..N] in order to update the sites

2. MRF FORMULATION sequentially; this involves solving quadratic equations for
each site [8] and then projecting the resultitfigvector onto
Let Z be a mesh of zero-oné x 1 vectors,{z"}]_;, con-  the constraintgjz1 7; = 1andr; > 0[14]. This scheme
trolling to which of theJ classes of the image, the corre- would typically lead to a local maximum.
sponding pixel indexedw belongs to. ThusZ defines a However, in practice, this local maximum is often far

segmentation on the observed image. We define the vecfrom the desirable segmentation result both quantitatively
tor meshil = {r"}]\_, of contextual mixing proportions  and visually (a related work with a detailed discussion on
according top(z} = 1) = =7, in other words the prior  this issue is presented in [11]). This is due to the fact that

probability of pixeln belonging to class indexegis 77 . the values ofI have a direct impact on the segmentation as
We assume an MRF on the mesh of the class piibrs  the hidden variableg depend on them.
Consequently [13]IT is Gibbs-distributed: In order to illustrate the importance ®f and its opti-
mization, we have have performed segmentations on a test
p(I0) oc [T e (1) image using the Expectation Maximization -derived algo-
c rithm in [9], by applying two different initialization sche-

mes. At first, we have used a standértheans algorithm
wheres). is a function on clique:, calledclique potential \yhich is common in initializing mixture models. The sec-
function in the literature, and the product is over all minimal g approach consisted in using as initial condition the ground
cliques of the Markov random field. truth of the image. Although it is impossible to perform the
In the present work, we shall also assume that local |atter initialization in a real segmentation scenario, we ap-
differences in contextual mixing proportion values are nor- plied it in the sense of the best initialization a segmentation

mally distributed: method could potentially attain.
. . ‘ Araster scan was applied to both initialization approaches
m — i ~N(0,1/077), Vn,j,Vk € v(n) in order to sequentially optimize the parametdror each

_ o _ pixel. The results in table 1 and figure 1 validate that the
wherey (n) stands for the set of neighbouring pixels of pixel - ground truth is indeed a local optimum for our edge-preserving
indexedn. Parameter}” controls Gaussian distribution  g|gorithm. Howeverk-means initialization and standard

tightness; consequently as it tendsttoo, contextual mix-  raster scan MRF optimization lead to a solution that is sub-
ing proportion smoothness is forced and vice versa. Notegptimal both in terms of likelihood and visually.

that with indicesj, n, k on a;?k we imply that this smooth-
ness factor may be dependent on class (indexed)as
well as position on the MRF mesh (indexed hyand k Table 1. The RAND index [9] for the segmentations of the
respectively). In this manner, the MRF model presented degraded versions of the 3-class artifical image along dif-
here can represent models where the smoothness paraméerent iterations of the EM algorithm are presented. Method
ter is class-dependent [8] or not [14], or models where an hames followed by IT" refer to the hypothetical segmen-
edge-preserving line process is introduced [9] tations CompUtEd USing[ instead of the hidden variables
In this context, segmentation involves maximarmpos- Z 1o classify pixels. The average data log-likelihood at the
teriori (MAP) estimation of the likelihood functiop( X, IT; ), 1000thiteration is also shown.
with X being the observed image feature vectors @&rid-
cluding deterministic model parameters, including As-

’ Initialization \ 2 \ ) \ 20 \ 1000 \ Avg. L ‘

suming that the posterigr( Z|I1, X) is tractable, this prob- k-means 70 | .64 1 .62 | .62 | 59.0
lem is transformed to the optimization of the expectation | k-meansil) 70 .73 .76 | .17
with regard taZ| X, I1 of the surrogate functiop( X, Z, I1, ¥) Ground truth 99 1.99 1 .99 .99 | 129.0
[15]. Rewriting this latter in a more convenient manner, our | Ground truth{I) | .99 | .99 | .99 | .99

objective function with regard to the MRF-governed con-

textual mixing parameterd is Let us consider now the Markov random field example
in fig. 2. Each site represents a vectoicohtextual mixing
<Inp(Z|1)> +Inp(Il|o) + const. 2 proportionsfor a certain pixel location. Consider the white

sites having mixing proportion vectors equakte = 2" =
where<-> denotes expectation with respectZpX, I1. [0.5+¢,0.5—¢]T, with 0 < e < 0.5 and the gray sites have



Z-map

Fig. 1. Segmentation results of the 3-class synthetic image de-
graded by2 dB additive white Gaussian noise after 1000 itera-

tions. On the left are shown the segmentations computed using

the labels distributior?Z to classify the pixels. On the right are

Algorithm 1 Grid scan

1 Calculate the initial grid sizenax Level. This is empir-
ically set to

maxLevel — maz(_loggmaz(dimX,dimY).—3,3)

2 For eachL + maxLeveto 1 iterate:

3 Let subsetLength — 2%. Let G denote the set of sites,
with |G| = dimX x dimY'.

4 Partition thedim X x dimY sites intoL subsetq S?}L
Also we requireJ” | S; = GandS; U S; = 2, VZ 7é

j .

5 For each site subse&;, i = 1,...,
5.2.

L, repeat steps.1,

5.1 Define a set of site§(.S;) as

Si) £ {Uses, ()} \ Si

A(

shown the hypothetical segmentations computed using the contex5.2 Optimize the sites ir5; by solving the quadratic equa-

tual mixing proportiondT instead ofZ for classification.

n

= 2"=[0.5—-¢0.5+¢T.

Observe, that each gray site is surrounded by exactly

two gray and two white neighbors and that all white sites

have at most one gray neighbor each. Hence, given appro-

priate values for|, oo ande the gray sites may have their

tion (4), as if we had used raster-scan, witti*> and
~(n) being replaced by

= n
Gz Y <>
nes;

v = A(S:)

7 parameters updated to values closer to the values of théd End.

white sites. On the contrary, this will not be the case;*if

are such that the MRF smoothing effect is tight enough. In
that case, each individual update for the gray sites will nat-
urally leave their weights unaffected. Therefore, if the gray
sites are optimized jointly higher values for the data like-
lihood could be obtained. Intuitively, this can be achieved
by optimizing groups of pixels with the constraint of being
all set to the same value. In view of this conjecture, we ex-
tend the standard raster scan procedure to agrehscan
strategy which is described in Algorithm 1.
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Fig. 2. An example of Markov random field of 6x6 sites. The
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Fig. 3. Grid-scan updates on an example lattice with 8x8 ele-
ments andl** order neighborhoods. Black color shows the ele-
ments whose contextual mixing proportions need to be updated.
Gray color shows their neighboring pixels. (a) Single element to
be optimized and its neighbors. (b) Elements to be co-optimized
by a step of grid scan and their neighbors. (c) The same elements
to be co-optimized redrawn as one.

color of each site corresponds to the image class the pixel is morefithm are justified as follows. In each update step of a single

likely to belong.

The update equations in stépof the proposed algo-

grid S, we need to optimize (2):

<lnp(Z|I)> +Inp(Il|o) + const. =



nes

+y > (—ayk(wj - w;?)?)} + const.  (3)

neS key(n), k¢S

J
Z{ln j Z(<z}‘>)+
j=1

with respect tar;, Vj € [1..J]. We can easily conclude that
the resulting second-order equation

a <7T;L(t+1))2 o (ﬂ_;z(tJrl)) +C§;(t+1) —0 @

A h h

to be solved has coefficients given by:

gAY S o

n€s kevy(n) k¢S

{5 ¥ o)

neS key(n), k¢S

1
- - n (t)
G <> . .
T2 nze;g I We have already discussed that we need a maximizer for (3)
also satisfying the constraints:

white Gaussian noise, with varying standard deviatiens=
{28,52,95}. Bottom row: Corresponding segmentations using
the proposed optimization schemes.

} Fig. 4. Top row: A synthetic 3-class image degraded by

4. PROJECTION ONTO CONSTRAINTS
HYPERPLANE

which makes the derivation of algorithm stgstraightfor-
ward. J

To evaluate the proposed MRF optimization strategy, we ~ > 7 =1, ™} >=0, Vj € [L.J], ¥n € [L.N].
computed a number of segmentations using the grid-scan 7=t
versus the raster-scan optimization method. All tests were|n the general case, the solution of (4) does not satisfy the
performed on noisy versions of a syntheliclass image  ahove constraints, that is, the computed contextual mixing
(fig. 4) using the MRF model of [9]. In table 2 we present a proportionz”, j = 1,..., J for a given pixeln are not the
comparison of raster-scan and grid-scan algorithms in termscomponents of a probability vector. A standard approach
of model likelihood and ratio of misclassified pixels (MCR). i the relevant literature is to project the solution fdf to
Likelihood scores are consistently better for grid-scan for the unit simplex [14]. We present here a more general and
all tested noise levels. Visual result as represented with thezccurate projection method.
segmentation MCR however worsens with grid-scan opti- |t can be easily seen, that, for a particular sifeq. (3)
mization on low-noise levels. This is justified since as the p35 the form:
noise level decreases, the need for smoothing decreases as
well and higher probability model states may well be corre- 2T Az + 2Tb 4 clnz +d (5)

sponding to undesirable smoothing in the resulting segmen- h h q - N ; )
tation. However, this is an issue of a MRF prior in general. Where we have denoted;'73 - - - w7 asz for convenience.
Also, note that the above function is concave andtheJ

matrix A is diagonal and negative definite.
Table 2. Comparison in terms of likelihood and misclassifica- An approximation of the objective function (3) is ob-
tion ratio (MCR) between raster-scan and grid-scan optimization tained by dropping the term involving the logarithm:
methods.

N
Raster-scan Grid-scan >N {—a?k(w;? - nf)Q} + const. (6)
o | Av.Likelihood | MCR | Av.Likelihood | MCR n=1kevy(n)
25 43.9 1% 51.9 13%

Let y* be the constrained maximizer of the objective

ii ;1(;2 '157;6 gig '158(;% function (6), andt a point on the constraints plane other
- 070 - 070 thany*. It can be shown thaj* will have to satisfy(y* —
52 28.3 8% 33.5 6%

a*)TA(t — y*) = 0 for any plane point. This can be
95 28.9 3.7% 31.5 3.2% expressed otherwise, as looking fpsuch that the projec-
tion of o/ = Aza* on the transformed plane defined by




' = Azt willbe y = Azy. Thus, formally, we have the %
following quadratic programming problem to solve:

argnzl]i/n | o =" |, Zyj =1, y; 20, j=1,...,J
J
We now employ an active set type method as suggested
in [14], allowing to derive closed form expressions for the

Lagrange multipliers. The associated Lagrange function is
given by:

L(ya )\07 )\) =
1 J
2 2
— s — baas )2 — 1) = e\ . o ) )
2 Zla)jyj bi03)" = Ao (z_; Yi ) Zle Aii Fig. 5. Example projection to the constraints plane, in the
= 7= = two-dimensional casg/ = 2. Ellipses represent contours of
Where Ao is the multiplier for the equality, and;,j = the quadratic approximation to the objective function; the line

- J are the multipliers for the inequality constraints. Pa- joining thez; andz» axes is the linear constraints plane, here

rameterdy are the diagonal elements of the Hessian matrix #1 + #2 = 1,z1,z2 > 0. The unconstrained maximizer is
A the constrained maximizer is" andt is a point on the constraints

Z . plane. Point shows the location of the solution proposed in [14].
ol
J

kev(n)
where we have omitted the data index fromb andw for To evaluate the proposed algorithm we have compared it
convenience. First-order necessary conditions imply: to the projection algorithm in [14]. We have segmented the
\ color Churchimage (Berkeley database [16]] #8035) us-
Y=o + bg A @) ing the segmentation model proposed in [9]. The resulting

comparison revealed that the new algorithm provides con-

S ) o sistently higher values for the data likelihood (fig. 6).
and injecting it into the equality constraint yields:

1 Zj Qj Zj Aj

Ao = - - (8)
-2 —2 —2
b7 b X 120/ [ PEI-FTEEE
<+ 1-I -
Finally, by combining (7) and (8) we obtain: e =
é 80 4
J J 3
2 60F
yj - aj o Cj + Cj Z a + Cj Z )\l + Aj (9) S — — — Projection introduced in Blekas et al.
=1 =1 Z 40t Proposed projection
b72 20
wherec; = —pﬂ;ﬁ. ol
=171
Let us notice that the vecter; — ¢; +¢; Y5, a; is the 10 20 30 40 50 60 70 8 9 100

EM iterations

projection ofa* on the constraints hyperpla@j:1 Y; =
1. The set of Lagrange multipliers;, j = 1, ..., J must sat-

isfy the inequality constraints. Karush-Kuhn-Tucker condi- Fig. 6.  Comparison of data likelihood values for the projec-

. o tion method in [14] and the projection algorithm proposed in this
tions state _that at the m'n'_m'zgr W? must hav,@‘j >0 paper: The test image ([16], see main text) was segmented into
and); > 0if y7 = 0 which is the active constraint. three classes using the model of [9]. The solid curve shows our

Contrary to the projection in [14], we may point out that yesults using the proposed projection against the results using the
in our method we have constructed our reasoning based orprojection proposed in [14], shown by the dashed curve. For each
the sole hypothesis that the logarithm in eq. (5) is a negli- configuration, we ran the segmentatiod times usingk-means
gible quantity with respect to the other terms; this provided, initialization perturbed by additive white Gaussian noise0cf
our method will necessarily give the correct constrained op- units standard deviation. Likelihood values (averaged over num-
timum. Note also that the projection in [14] could be seen ber of pixelsV and over the 0 different initializations) are shown
as a particular case of our projection methodjfoe b, =  for the first100 EM iterations.

-=1by.



Algo

rithm 2 Projection on constraints hyperplane

1 Lety denote the vector at the current iteration. Initially,

2 V)
3V

we sety; < b;,Vj = 1,2,...,J. In the general case,
there existm negative componentg;. The corre-
sponding set of indiceS = {j, with y; < 0} consti-

tutes the active set of constraints for the current vector

Y.
¢ S, set\; — 0.

€ S, sety; = y; < 0 and we compute the cor-
responding); by solving anm x m linear system

that forces the inequalities to be satisfied as equalities,

namelyy; + A; + ¢; Zle Aj = 0, written in matrix
form as(I + 1c7)\ = y. The Sherman-Morisson
formula [17] gives:

D 1es Qi

i — C == 7
7Y Digs G

4 Compute the updateg; values forj ¢ S by (9), using

the new vecton.

5 Return to steg until convergence.

5. CONCLUSION

While MRF-driven image analysis and in particular image

segmentation can yield excellent results, it is always very
dependent on the mechanism the field itself is optimized

with

vation, we have proposed a strategy for optimizing an MRF
mesh, as well as a novel projection method for comput-

regard to the likelihood function. In view of this obser-

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

ing the contextual mixing proportions, applicable in cases [13]

where the Gibbs clique potentials are normally distributed.

Numerical results showed that our approach compares fa-

vora

bly with approaches used for similar-structured MRF

in image segmentation models.
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