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ABSTRACT

In the context of image segmentation, Markov random fields
(MRF) are extensively used. However solution of MRF-
based models is heavily dependent on how successfully the
MRF energy minimization is performed. In this framework,
two methodologies, complementary to each other, are pro-
posed for random field optimization. We address the spe-
cial class of models comprising a random field imposed on
the probabilities of the pixel labels. This class of segmenta-
tion models poses a special optimization problem, as, in this
case, the variables constituting the MRF are continuous and
subject to probability constraints (positivity, sum-to-unity).
The proposed methods are evaluated numerically in terms
of objective function value and segmentation performance,
and compare favorably to existing corresponding optimiza-
tion schemes.

1. INTRODUCTION

Markov random fields (MRF) have been successfully incor-
porated in various applications in the field of image process-
ing, such as image segmentation [1, 2] and restoration [3].
The foremost reason for their popularity is that they can el-
egantly and formally model the spatial coherence trait of
images.

In this paper we are interested in Markov random fields
in the context of image segmentation,i.e. clustering a given
image inJ non-overlappingmeaningfulregions. A mesh
of J-variate zero-one vectors is typically assumed (Z) that
serves to relate each image pixel to a unique cluster. Thus
effectively, meshZ conveys all information necessary about
the assumed segmentation. The observed feature vectors
are thence assumed to be generated independently given
knowledge of the cluster they belong to. Segmentation is
obtained by estimating the posterior ofZ conditioned on
the observed image.

According to the mechanism MRF constraints are im-
posed, two distinct generative model categories are gener-
ally proposed. The first category assumes a Markov ran-
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dom field directly on class labels. However, inference of
the posterior field distribution is typically intractable and es-
timation algorithms such as the computationally expensive
family of the Markov chain Monte Carlo techniques have to
be employed. Other inference methodologies propose con-
venient approximations for the posterior random field, such
as the pseudo-likelihood [4] or the simulated-field approxi-
mation [1]. Imposing a discrete MRF on the pixel labels is
successfully used in [5], [6] among others.

The second category of methods, which is an alternative
to avoid the computational cost of the pixel label MRF es-
timation is to model thecontextual mixing proportions, that
is probabilities of the pixel labels (or the mixing proportion
vector for each distinct pixel), as a Markov random field
[7, 8, 9]. In such models, MAP estimation of the contex-
tual mixing proportions is possible, and the computational
cost is transformed from a hard posterior inference prob-
lem, as in the discreteMRF-on-labelsmodel family, to a
difficult constrained optimization problem. In that case, the
constraint is that the contextual mixing proportions corre-
sponding to a pixel must always sum up to unity as they
must be probability vectors. However, as conjectured and
experimentally observed in [10], an advantage for the sec-
ond model would be a less sharply peaked likelihood func-
tion.

The resulting estimated segmentation, for any of the afore-
mentioned MRF schemes, relies heavily on parameter ini-
tialization and optimization [11]. There exist powerful opti-
mization schemes suitable for discrete MRFs, such as graph
cuts [6] or loopy belief propagation [12]. However such
schemes are not applicable in cases where the MRF is im-
posed directly on the pixel label priors. The difficulty con-
sists in the fact that the quantities to be optimized are proba-
bilities, meaning that the search space is continuous. More-
over, each probability vector must always sum to unity.

In this paper, we propose and evaluate two distinct meth-
ods for optimizing MRF belonging to the second category
of methods, that is the MRF is imposed on on the contex-
tual mixing proportions. The first method introduces a novel
strategy in updating field sites, as opposed to the standard
sequential raster scan of MRF sites. The second method ad-
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dresse the sum-to-unity constraint posed in every site to be
updated. Let us note that the proposed methods are comple-
mentary to each other and may thus be used in tandem.

2. MRF FORMULATION

Let Z be a mesh of zero-oneJ × 1 vectors,{zn}N
n=1, con-

trolling to which of theJ classes of the image, the corre-
sponding pixel indexedn belongs to. ThusZ defines a
segmentation on the observed image. We define the vec-
tor meshΠ = {πn}N

n=1 of contextual mixing proportions
according top(zn

j = 1) = πn
j ; in other words the prior

probability of pixeln belonging to class indexedj is πn
j .

We assume an MRF on the mesh of the class priorsΠ.
Consequently [13],Π is Gibbs-distributed:

p(Π) ∝
∏
c

e−ψc(Π) (1)

whereψc is a function on cliquec, calledclique potential
function in the literature, and the product is over all minimal
cliques of the Markov random field.

In the present work, we shall also assume that local
differences in contextual mixing proportion values are nor-
mally distributed:

πn
j − πk

j ∼ N (0, 1/σnk
j ), ∀n, j, ∀k ∈ γ(n)

whereγ(n) stands for the set of neighbouring pixels of pixel
indexedn. Parameterσnk

j controls Gaussian distribution
tightness; consequently as it tends to+∞, contextual mix-
ing proportion smoothness is forced and vice versa. Note
that with indicesj, n, k on σnk

j we imply that this smooth-
ness factor may be dependent on class (indexed byj) as
well as position on the MRF mesh (indexed byn and k
respectively). In this manner, the MRF model presented
here can represent models where the smoothness parame-
ter is class-dependent [8] or not [14], or models where an
edge-preserving line process is introduced [9].

In this context, segmentation involves maximuma pos-
teriori (MAP) estimation of the likelihood functionp(X, Π;Ψ),
with X being the observed image feature vectors andΨ in-
cluding deterministic model parameters, includingσ. As-
suming that the posteriorp(Z|Π, X) is tractable, this prob-
lem is transformed to the optimization of the expectation
with regard toZ|X, Π of the surrogate functionp(X,Z, Π, Ψ)
[15]. Rewriting this latter in a more convenient manner, our
objective function with regard to the MRF-governed con-
textual mixing parametersΠ is

<ln p(Z|Π)> + ln p(Π|σ) + const. (2)

where<·> denotes expectation with respect toZ|X, Π.

3. OPTIMIZATION OF THE MRF MESH

A simple and straightforward implementation for optimiza-
tion of (2) with regard toΠ would be to perform a raster
scan for each pixeln ∈ [1..N ] in order to update the sites
sequentially; this involves solvingJ quadratic equations for
each site [8] and then projecting the resultingπn vector onto
the constraints

∑J
j=1 πj = 1 andπj > 0 [14]. This scheme

would typically lead to a local maximum.
However, in practice, this local maximum is often far

from the desirable segmentation result both quantitatively
and visually (a related work with a detailed discussion on
this issue is presented in [11]). This is due to the fact that
the values ofΠ have a direct impact on the segmentation as
the hidden variablesZ depend on them.

In order to illustrate the importance ofΠ and its opti-
mization, we have have performed segmentations on a test
image using the Expectation Maximization -derived algo-
rithm in [9], by applying two different initialization sche-
mes. At first, we have used a standardk-means algorithm
which is common in initializing mixture models. The sec-
ond approach consisted in using as initial condition the ground
truth of the image. Although it is impossible to perform the
latter initialization in a real segmentation scenario, we ap-
plied it in the sense of the best initialization a segmentation
method could potentially attain.

A raster scan was applied to both initialization approaches
in order to sequentially optimize the parametersΠ for each
pixel. The results in table 1 and figure 1 validate that the
ground truth is indeed a local optimum for our edge-preserving
algorithm. However,k-means initialization and standard
raster scan MRF optimization lead to a solution that is sub-
optimal both in terms of likelihood and visually.

Table 1. The RAND index [9] for the segmentations of the
degraded versions of the 3-class artifical image along dif-
ferent iterations of the EM algorithm are presented. Method
names followed by ”Π” refer to the hypothetical segmen-
tations computed usingΠ instead of the hidden variables
Z to classify pixels. The average data log-likelihood at the
1000th iteration is also shown.

Initialization 2 5 20 1000 Avg. L

k-means .70 .64 .62 .62 59.0
k-means (Π) .70 .73 .76 .77
Ground truth .99 .99 .99 .99 129.0
Ground truth (Π) .99 .99 .99 .99

Let us consider now the Markov random field example
in fig. 2. Each site represents a vector ofcontextual mixing
proportionsfor a certain pixel location. Consider the white
sites having mixing proportion vectors equal toπn = zn =
[0.5+ ε, 0.5− ε]T , with 0 < ε < 0.5 and the gray sites have



Z-map
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Π-map
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Fig. 1. Segmentation results of the 3-class synthetic image de-
graded by2 dB additive white Gaussian noise after 1000 itera-
tions. On the left are shown the segmentations computed using
the labels distributionZ to classify the pixels. On the right are
shown the hypothetical segmentations computed using the contex-
tual mixing proportionsΠ instead ofZ for classification.

πn = zn = [0.5− ε, 0.5 + ε]T .
Observe, that each gray site is surrounded by exactly

two gray and two white neighbors and that all white sites
have at most one gray neighbor each. Hence, given appro-
priate values forσ1, σ2 andε the gray sites may have their
π parameters updated to values closer to the values of the
white sites. On the contrary, this will not be the case ifσnk

j

are such that the MRF smoothing effect is tight enough. In
that case, each individual update for the gray sites will nat-
urally leave their weights unaffected. Therefore, if the gray
sites are optimized jointly higher values for the data like-
lihood could be obtained. Intuitively, this can be achieved
by optimizing groups of pixels with the constraint of being
all set to the same value. In view of this conjecture, we ex-
tend the standard raster scan procedure to a newgrid scan
strategy which is described in Algorithm 1.

Fig. 2. An example of Markov random field of 6x6 sites. The
color of each site corresponds to the image class the pixel is more
likely to belong.

The update equations in step5 of the proposed algo-

Algorithm 1 Grid scan

1 Calculate the initial grid size,maxLevel. This is empir-
ically set to

maxLevel ← max(xlog2max(dimX, dimY )y−3, 3)

2 For eachL← maxLevelto 1 iterate:

3 Let subsetLength ← 2L. Let G denote the set of sites,
with |G| = dimX × dimY .

4 Partition thedimX×dimY sites intoL subsets{Si}L
i=1.

Also we require∪L
i=1Si = G andSi ∪ Sj = ∅,∀i 6=

j.

5 For each site subsetSi, i = 1, . . . , L, repeat steps5.1,
5.2.

5.1 Define a set of sites̃γ(Si) as

γ̃(Si) , {∪s∈Si
γ(s)} \ Si

5.2 Optimize the sites inSi by solving the quadratic equa-
tion (4), as if we had used raster-scan, with<zn

j > and
γ(n) being replaced by

<z̃j>←
∑

n∈Si

<zn
j >

γ ← γ̃(Si)

6 End.

(a) (b) (c)

Fig. 3. Grid-scan updates on an example lattice with 8x8 ele-
ments and1st order neighborhoods. Black color shows the ele-
ments whose contextual mixing proportions need to be updated.
Gray color shows their neighboring pixels. (a) Single element to
be optimized and its neighbors. (b) Elements to be co-optimized
by a step of grid scan and their neighbors. (c) The same elements
to be co-optimized redrawn as one.

rithm are justified as follows. In each update step of a single
grid S, we need to optimize (2):

<ln p(Z|Π)> + ln p(Π|σ) + const. =



J∑

j=1

{
ln πj

∑

n∈S

(<zn
j >)+

+
∑

n∈S

∑

k∈γ(n),k/∈S

(
−σnk

j (πj − πk
j )2

)}
+ const. (3)

with respect toπj , ∀j ∈ [1..J ]. We can easily conclude that
the resulting second-order equation

an
j

(
π

n(t+1)
j

)2

+ βn
j

(
π

n(t+1)
j

)
+ c

n(t+1)
j = 0 (4)

to be solved has coefficients given by:

an
j = −

{∑

n∈S

∑

k∈γ(n),k/∈S

σ
nk(t)
j

}
,

βn
j =

{∑

n∈S

∑

k∈γ(n),k/∈S

σ
nk(t)
j π

k(t)
j

}
,

cn
j =

1
2

∑

n∈S

<zn
j >(t) .

which makes the derivation of algorithm step5 straightfor-
ward.

To evaluate the proposed MRF optimization strategy, we
computed a number of segmentations using the grid-scan
versus the raster-scan optimization method. All tests were
performed on noisy versions of a synthetic3-class image
(fig. 4) using the MRF model of [9]. In table 2 we present a
comparison of raster-scan and grid-scan algorithms in terms
of model likelihood and ratio of misclassified pixels (MCR).
Likelihood scores are consistently better for grid-scan for
all tested noise levels. Visual result as represented with the
segmentation MCR however worsens with grid-scan opti-
mization on low-noise levels. This is justified since as the
noise level decreases, the need for smoothing decreases as
well and higher probability model states may well be corre-
sponding to undesirable smoothing in the resulting segmen-
tation. However, this is an issue of a MRF prior in general.

Table 2. Comparison in terms of likelihood and misclassifica-
tion ratio (MCR) between raster-scan and grid-scan optimization
methods.

Raster-scan Grid-scan
σ Av.Likelihood MCR Av.Likelihood MCR
25 43.9 .1% 51.9 .13%
28 40.5 .17% 47.5 .18%
47 27.8 .5% 34.6 .5%
52 28.3 .8% 33.5 .6%
95 28.9 3.7% 31.5 3.2%

σ = 28 σ = 52 σ = 95

Fig. 4. Top row: A synthetic 3-class image degraded by
white Gaussian noise, with varying standard deviationsσ =
{28, 52, 95}. Bottom row: Corresponding segmentations using
the proposed optimization schemes.

4. PROJECTION ONTO CONSTRAINTS
HYPERPLANE

We have already discussed that we need a maximizer for (3)
also satisfying the constraints:

J∑

j=1

πn
j = 1, πn

j >= 0, ∀j ∈ [1..J ], ∀n ∈ [1..N ].

In the general case, the solution of (4) does not satisfy the
above constraints, that is, the computed contextual mixing
proportionπn

j , j = 1, ..., J for a given pixeln are not the
components of a probability vector. A standard approach
in the relevant literature is to project the solution forπn

j to
the unit simplex [14]. We present here a more general and
accurate projection method.

It can be easily seen, that, for a particular siten, eq. (3)
has the form:

xT Ax + xT b + c ln x + d (5)

where we have denoted[πn
1 πn

2 · · ·πn
J ] asx for convenience.

Also, note that the above function is concave and theJ × J
matrixA is diagonal and negative definite.

An approximation of the objective function (3) is ob-
tained by dropping the term involving the logarithm:

N∑
n=1

∑

k∈γ(n)

{
−σnk

j (πn
j − πk

j )2
}

+ const. (6)

Let y? be the constrained maximizer of the objective
function (6), andt a point on the constraints plane other
thany?. It can be shown thaty? will have to satisfy(y? −
α?)T A(t − y?) = 0 for any plane pointt. This can be
expressed otherwise, as looking fory such that the projec-
tion of α′ ≡ A

1
2 α? on the transformed plane defined by



t′ ≡ A
1
2 t will be y′ ≡ A

1
2 y. Thus, formally, we have the

following quadratic programming problem to solve:

arg min
y′

‖ α′ − y′ ‖,
∑

j

yj = 1, yj > 0, j = 1, ..., J.

We now employ an active set type method as suggested
in [14], allowing to derive closed form expressions for the
Lagrange multipliers. The associated Lagrange function is
given by:

L(y, λ0, λ) =

1
2

J∑

j=1

(bjyj − bjαj)2 − λ0

( J∑

j=1

yj − 1
)
−

J∑

j=1

b2
jλjyj

whereλ0 is the multiplier for the equality, andλj , j =
1 · · · J are the multipliers for the inequality constraints. Pa-
rametersbj are the diagonal elements of the Hessian matrix
A:

bj =
√ ∑

k∈γ(n)

σnk
j

where we have omitted then data index fromb andu for
convenience. First-order necessary conditions imply:

yj = αj +
λ0

b2
j

+ λj (7)

and injecting it into the equality constraint yields:

λ0 =
1∑

j b−2
j

−
∑

j αj∑
j b−2

j

−
∑

j λj∑
j b−2

j

(8)

Finally, by combining (7) and (8) we obtain:

yj = αj − cj + cj

J∑

l=1

αl + cj

J∑

l=1

λl + λj (9)

wherecj ≡ − b−2
jPJ

l=1 b−2
l

.

Let us notice that the vectorαj − cj + cj

∑J
l=1 αl is the

projection ofα? on the constraints hyperplane
∑J

j=1 yj =
1. The set of Lagrange multipliersλj , j = 1, ..., J must sat-
isfy the inequality constraints. Karush-Kuhn-Tucker condi-
tions state that at the minimizery? we must haveλj > 0
andλj > 0 if y?

j = 0 which is the active constraint.
Contrary to the projection in [14], we may point out that

in our method we have constructed our reasoning based on
the sole hypothesis that the logarithm in eq. (5) is a negli-
gible quantity with respect to the other terms; this provided,
our method will necessarily give the correct constrained op-
timum. Note also that the projection in [14] could be seen
as a particular case of our projection method, forb1 = b2 =
· · · = bJ .

x

t

y*

α*

x

2

1

ξ

Fig. 5. Example projection to the constraints plane, in the
two-dimensional caseJ = 2. Ellipses represent contours of
the quadratic approximation to the objective function; the line
joining the x1 and x2 axes is the linear constraints plane, here
x1 + x2 = 1, x1, x2 > 0. The unconstrained maximizer isa?,
the constrained maximizer isy? andt is a point on the constraints
plane. Pointξ shows the location of the solution proposed in [14].

To evaluate the proposed algorithm we have compared it
to the projection algorithm in [14]. We have segmented the
color Churchimage (Berkeley database [16], #118035) us-
ing the segmentation model proposed in [9]. The resulting
comparison revealed that the new algorithm provides con-
sistently higher values for the data likelihood (fig. 6).
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Fig. 6. Comparison of data likelihood values for the projec-
tion method in [14] and the projection algorithm proposed in this
paper: The test image ([16], see main text) was segmented into
three classes using the model of [9]. The solid curve shows our
results using the proposed projection against the results using the
projection proposed in [14], shown by the dashed curve. For each
configuration, we ran the segmentation10 times usingk-means
initialization perturbed by additive white Gaussian noise of0.2
units standard deviation. Likelihood values (averaged over num-
ber of pixelsN and over the10 different initializations) are shown
for the first100 EM iterations.



Algorithm 2 Projection on constraints hyperplane

1 Let y denote the vector at the current iteration. Initially,
we setyj ← bj , ∀j = 1, 2, ..., J . In the general case,
there existm negative componentsyj . The corre-
sponding set of indicesS = {j, with yj < 0} consti-
tutes the active set of constraints for the current vector
y.

2 ∀j /∈ S, setλj ← 0.

3 ∀j ∈ S, setyj = y?
j ← 0 and we compute the cor-

respondingλj by solving anm × m linear system
that forces the inequalities to be satisfied as equalities,
namelyyj + λj + cj

∑J
l=1 λj = 0, written in matrix

form as(I + 1cT )λ = y. The Sherman-Morisson
formula [17] gives:

λj ← yj +
∑

l∈S clyl∑
l/∈S cl

4 Compute the updatedyj values forj /∈ S by (9), using
the new vectorλ.

5 Return to step2 until convergence.

5. CONCLUSION

While MRF-driven image analysis and in particular image
segmentation can yield excellent results, it is always very
dependent on the mechanism the field itself is optimized
with regard to the likelihood function. In view of this obser-
vation, we have proposed a strategy for optimizing an MRF
mesh, as well as a novel projection method for comput-
ing the contextual mixing proportions, applicable in cases
where the Gibbs clique potentials are normally distributed.
Numerical results showed that our approach compares fa-
vorably with approaches used for similar-structured MRF
in image segmentation models.

6. REFERENCES

[1] G. Celeux, F. Forbes, and N. Peyrard, “EM procedures us-
ing mean field-like approximations for Markov model-based
image segmentation,”Pattern Recognition, vol. 36, pp. 131–
144, 2003.

[2] D. Benboudjema and W. Pieczynski, “Unsupervised sta-
tistical segmentation of nonstationary images using triplet
Markov fields,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 8, pp. 1367–1378, 2007.

[3] R. Molina, J. Mateos, A. K. Katsaggelos, and M. Vega,
“Bayesian multichannel image restoration using compound
Gauss-Markov random fields,”IEEE Transactions on Image
Processing, vol. 12, pp. 1642–1654, 2003.

[4] J. Besag, “Statistical analysis of non-lattice data,”Statisti-
cian, vol. 24, pp. 179–195, 1975.

[5] J. Marroquin, E. Arce, and S. Botello, “Hidden Markov mea-
sure field models for image segmentation,”IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 11, pp. 1380–1387, 2003.

[6] R. Zabih and V. Kolmogorov, “Spatially coherent clustering
using graph cuts,” inProceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’04), 2004,
vol. 2, pp. 437–444.

[7] S. Sanjay-Gopal and T. Hebert, “Bayesian pixel classifica-
tion using spatially variant finite mixtures and the general-
ized EM algorithm,” IEEE Transactions on Image Process-
ing, vol. 7, no. 7, pp. 1014–1028, 1998.

[8] C. Nikou, N. Galatsanos, and A. Likas, “A class-adaptive
spatially variant mixture model for image segmentation,”
IEEE Transactions on Image Processing, vol. 16, no. 4, pp.
1121–1130, 2007.

[9] G. Sfikas, C. Nikou, and N. Galatsanos, “Edge preserv-
ing spatially varying mixtures for image segmentation,” in
CVPR’08, Anchorage, AK, USA, 2008.

[10] A. Diplaros, N. Vlassis, and T. Gevers, “A spatially con-
strained generative model and an EM algorithm for image
segmentation,”IEEE Transactions on Neural Networks, vol.
18, no. 3, pp. 798–808, May 2007.

[11] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother, “A com-
parative study of energy minimization methods for Markov
random fields with smoothness-based priors,”IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol.
30, no. 6, pp. 1068–1080, 2008.

[12] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized be-
lief propagation,”Advances in Neural Information Process-
ing Systems (NIPS’00), pp. 689–695, 2000.

[13] S. Geman and D. Geman, “Stochastic relaxation, Gibbs
distribution and the Bayesian restoration of images,”IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 6, pp. 721–741, 1984.

[14] K. Blekas, A. Likas, N. Galatsanos, and I. Lagaris, “A spa-
tially constrained mixture model for image segmentation,”
IEEE Transactions on Neural Networks, vol. 16, no. 2, pp.
494–498, 2005.

[15] D. Tzikas, A. Likas, and N. Galatsanos, “The variational ap-
proximation for Bayesian inference,”IEEE Signal Process-
ing Magazine, vol. 25, no. 6, pp. 131–146, November 2008.

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics,” inProceedings of the 8th International Con-
ference on Computer Vision (ICCV ’01), July 2001, vol. 2,
pp. 416–423.

[17] J. Nocedal and S. J. Wright, Numerical Optimization,
Springer-Verlag, 1999.




