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Abstract. In this paper, a spatially constrained mixture model for the
segmentation of MR brain images is presented. The novelty of this work
is an edge-preserving smoothness prior which is imposed on the proba-
bilities of the voxel labels. This prior incorporates a line process, which
is modeled as a Bernoulli random variable, in order to preserve edges be-
tween tissues. The main difference with other, state of the art methods
imposing priors, is that the constraint is imposed on the probabilities of
the voxel labels and not onto the labels themselves. Inference of the pro-
posed Bayesian model is obtained using variational methodology and the
model parameters are computed in closed form. Numerical experiments
are presented where the proposed model is favorably compared to state
of the art brain segmentation methods as well as to a spatially varying
Gaussian mixture model.

1 Introduction

The segmentation of 3D brain magnetic resonance (MR) images into the three
main tissues, namely, white matter (WM), gray matter (GM) and cerebro-spinal
fluid (CSF) is of great importance in most neuroimaging applications. Although
many research studies have been presented in this area, MRI brain segmenta-
tion still remains a challenging issue due to specific difficulties of MRI, such as
intensity inhomogeneity, partial volume effect and acquisition noise. A first ap-
proach to the problem relied on the expectation-maximization (EM) algorithm
[1,2] which led to an important category of methods resorting to Gaussian mix-
ture models (GMM). Among them, many studies incorporate prior information
(e.g. anatomical atlases) on tissue topology [3,4,5,6] or constrain the segmenta-
tion to be spatially smooth and take into account edge discontinuities (e.g. using
Markov random field (MRF) priors) [7,8,9,10,11,12,13,14,15].

Modeling the probability density function (pdf) of pixel or voxel attributes with
a GMM [16] is a natural way to cluster data because it automatically provides a
grouping based on the components of the mixture that generated them. Further-
more, the likelihood of a GMM is a rigorousmetric for clustering performance. The
parameters of the GMM can be estimated very efficiently through maximum likeli-
hood (ML) estimation using the Expectation-Maximization (EM) algorithm [16].
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The prior knowledge that adjacent pixels most likely belong to the same
cluster is not used in standard GMM. To overcome this shortcoming, spatial
smoothness constraints may be imposed, generally applying an MRF prior, like
the spatially varying Gaussian mixture model (SVGMM) in [17]. However, this
model enforces smoothness between pixels belonging to different classes. Since
the seminal work in [18], line processes were also introduced in several applica-
tions, other than brain tissue classification, to respond to this drawback, see for
instance [19] and [20] for image restoration and superresolution respectively.

In this paper we propose a new, Bayesian, spatially varying Gaussian mixture
model for the classification of brain images to the three tissue types (WM, GM,
CSF).Themain contribution of themodel is that it takes into account not only that
adjacent voxels are more probable to belong to the same class but it also prohibits
smoothing across boundary voxels. Motivated by the studies in brain image seg-
mentation incorporating MRF-based prior knowledge [5,7,8,9,10,11,12,13,14,15]
we impose proper hyperpriors to simultaneously address local smoothing and edge
preservation. The main difference with other, state of the art methods imposing
MRF-type priors, is that the constraint is imposed on the probabilities of the voxel
labels (generally known in mixture modeling as contextualmixing proportions) and
not onto the labels themselves. By these means, closed form solutions are provided
for the model parameters through variational inference.

2 The Bayesian Edge Preserving Spatially Varying GMM

The K-kernel spatially varying GMM differs from the standard GMM in the
definition of the mixing proportions. More precisely, in the SVGMM, each voxel
xn, n = 1, ..., N has a distinct vector of mixing proportions denoted by πn

j , j =
1, ..., K. We call these parameters contextual mixing proportions to distinguish
them from the mixing proportions of a standard GMM. Hence, the probability
of a distinct voxel is expressed by:

f(xn; π, μ, Λ) =
K∑

j=1

πn
j N (xn; μj , Λj) (1)

where 0 ≤ πn
j ≤ 1,

∑K
j=1 πn

j = 1 for j = 1, 2, ..., K and n = 1, 2, ..., N , μj are
the Gaussian kernel means and Λj are the Gaussian kernel precision (inverse
covariance) matrices.

We now assume that the voxels X = {x1, x2, ..., xN} are independent and
generated by the graphical model shown in figure 1.

Note that a set Z = {zn
j }n=1..N,j=1..K of N × K latent variables is intro-

duced, in order to make inference tractable for the model. The Z variables are
distributed multinomially:

p(Z|Π) =
K∏

j=1

N∏

n=1

(πn
j )zn

j (2)

where each zn is a binary vector, with zn
j = 1 if datum n is generated by the

j -th kernel and zn
j = 0 otherwise.
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Fig. 1. Graphical model for the edge preserving spatially variant Gaussian mixture
model. Superscript n ∈ [1, N ] denotes voxel index, subscript j ∈ [1, K] denotes kernel
(segment) index and Γ ∈ [1, 26] describes the neighbourhood direction type.

Considering the set of contextual mixing proportions Π as random variables
and assuming a proper prior, we can incorporate the intuitive fact that neigh-
bouring voxels are more likely to share the same class label. We impose an edge
preserving Gaussian prior on Π :

p(Π |�; β) =
K∏

j=1

N∏

n=1

Γ∏

k=1

N (πn
j |πk

j ; β2
j )�nk

(3)

where �nk is a binary random variable we call line-process. If �nk = 1, then there
is a link on the random field between the voxel indexed n and its k-th possible
neighbour (we denote by πk the k-th neighbour of specific voxel n). Otherwise,
if �nk = 0 there is no link between them, signifying the presence of an edge.
We assume that two voxels can be possible neighbours when they are vertically,
horizontally or diagonally adjacent with regard to their spatial location in the
three-dimensional mesh, implying Γ = 26 neighbours per voxel.

Parameters β = {β2
1 , β2

2 , ..., β2
K} control the spatial smoothness of the contex-

tual mixing proportions. The prior in eq. (3) implies that

πn
j − πk

j ∼ N (0, β2
j ), ∀k ∈ [1, Γ ] | �nk = 1

reflecting the fact that the contextual mixing proportions which implicitly control
voxel class membership, are similar for neighbouring voxels except in case there
exists an edge.

We now regard the line process variables �nk as Bernoulli distributed random
variables , governed by a parameter set ξ = {ξ1, ξ2, ..., ξΓ }:

p(�|ξ) =
N∏

n=1

Γ∏

k=1

p(�nk|ξk) =
N∏

n=1

Γ∏

k=1

ξk�nk

(1 − ξk)(1−�nk) (4)

The Beta distribution is the conjugate for the Bernoulli pdf, therefore, we
impose it on the ξ parameters:
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p(ξ; αξ0, βξ0) =
Γ∏

k=1

Γ (αξk0 + βξk0)
Γ (αξk0)Γ (βξk0)

ξk(αξk0−1)
(1 − ξk)(βξk0−1) (5)

The main advantage of the model in fig. 1 is that (i) it takes into account that
neighboring voxels are more probably generated by the same Gaussian pdf and
(ii) it does not smooth adjacent voxels separated by an edge.

3 MAP Estimation Using Variational Inference

To perform segmentation, the evidence with respect to model parameters has to
be optimized:

argmax
μ,Λ,Π,β

ln p(X, Π ; μ, Λ, β)

This MAP solution cannot be computed directly, or even estimated using the
EM algorithm, due to the Π prior distribution complexity. Therefore, we resort
to variational inference [16]. This leads to an iterative scheme with one step for
the computation of the stochastic parameters Z, �, ξ and Π and one step for the
deterministic parameters μ, Λ and β. Due to lack of space we present here the
final expressions.

The expected values of the stochastic parameter are

<zn
j >= π̃n

j , <lnk>= ξ̃nk, <ln ξk>= ψ(αξk) − ψ(αξk + βξk),

<ln(1 − ξk)>= ψ(βξk) − ψ(αξk + βξk),

where ψ(·) is the digamma function and the expectations (denoted by a tilde)
being as follows, with sig(x) = (1 + e−x)−1:

π̃n
j =

πn
j N (xn; μj , Λj)

∑K
l=1 πn

l N (xn; μl, Λl)
,

ξ̃nk = sig

⎛

⎝
K∑

j=1

ln N (πk
j |πn

j ; β2
j )+ <ln ξk> − <ln(1 − ξk)>

⎞

⎠ ,

α̃ξk = αξ0 +
N∑

n=1

<lnk>, β̃ξk = βξ0 +
N∑

n=1

<1 − lnk> .

The contextual mixing proportions πn
j are computed as the roots of a quadratic

equation:
an

j

(
πn

j

)2 + bn
j

(
πn

j

)
+ cn

j = 0 (6)

with coefficients:

an
j = −

Γ∑

k=1

<lnk>, bn
j =

Γ∑

k=1

<lnk> πk
j , cn

j =
<zn

j > β2
j

2
.
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The form of the coefficients guarantees that there is always a non negative
solution. The solutions of eq. (6) however will not in general satisfy the constraint∑K

j=1 πn
j = 1,πj ≥ 0, ∀j ∈ [1..K] so we project the corresponding πn vectors

∀n ∈ [1..N ] onto the constraints subspace; this is done using the quadratic
programming algorithm described in [21].

Furthermore, the deterministic parameters are also obtained in closed form:

μ̃j =

∑N
n=1 <zn

j > xn

∑N
n=1 <zn

j >
, Λ̃−1

j =

∑N
n=1 <zn

j > (xn − μj)(xn − μj)T

∑N
n=1 <zn

j >
(7)

β̃2
j =

∑N
n=1

∑Γ
k=1 <lnk> (πn

j − πk
j )2

∑N
n=1

∑Γ
k=1 <lnk>

(8)

The above update equations, for both the stochastic and deterministic param-
eters, are considered for the full range of each of the indices, namely n, j and k and
are computed iteratively until convergence [22] of the variational lower bound.

4 Experimental Results

We have evaluated the proposed model on simulated images with known ground
truth from the BrainWeb database [23],[24] using the voxel intensities as features.

(a) (b)

(c) (d)

Fig. 2. Dice metric as a function of noise level for data without bias field. (a) Gray
matter, (b) white matter, (c) CSF, (d) mean over gray and white matter. The dashed
lines plot the results for the same images as presented in [5] and [10]. Results are not
provided by the respective publications for the case in (c).
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Table 1. Mean values for the Dice metric as a function of noise level over the three
tissue types. The compared methods are the proposed method (Bayes-SVGMM), the
non edge preserving spatially varying GMM (SVGMM) proposed in [17] and a standard
GMM.

Noise (%) Bayes-SVGMM SVGMM GMM
0 96.6 96.5 77.2
1 96.6 96.5 89.8
3 96.0 95.9 95.3
5 94.2 94.2 94.1
7 91.8 91.7 90.8
9 88.9 88.8 86.8

Prior to segmentation, we have preprocessed each volume so that only WM, GM
and CSF are included (fig. 2). Hence, we set the number of kernels in our model
to K = 3. The hyperparameter values of the Beta prior distribution were set to
αξk0 = βξk0 = 1, ∀k, making the prior uninformative as the data size N � 1.

The algorithm was applied to a simulated T1-weighted data without any bias
field and with intensity noise levels between 0% and 9%. The noise percentages
were defined with respect to the mean intensity of each tissue class. We have
compared our segmentation results with two of the state of the art methods of
Van Leemput et al. [10] and Tasdizen et al. [5]. In both of these studies, the
Dice metric was used for evaluation. Therefore we present our results using this
performance measure. Figure 2 summarizes the Dice metrics for the compared
methods. In that figure, the curves for the state-of-the-art methods are repro-
duced from the respective publications [10,5]. As it can be observed, in all cases,
our method provides better segmentations with respect to the method in [10].
Also, for low level noise the Dice metric of the proposed method is higher with re-
spect to the method proposed in [5]. On the other hand, the method of Tasdizen
et al. [5] performs better for noise levels of 7% and 9%. However, our method
takes no more than 50 minutes to run on a 2.7 GHz standard PC whereas the
method in [5] requires at least six hours runtime for convergence.

We have also compared our Bayesian model to a standard GMM as well
as to the spatially varying GMM (SVGMM) proposed in [17]. In all cases, our
model performed better than both methods. Both of the spatially varying models

Fig. 3. Axial slices of a 3D segmentation example. From left to right: original MR
slice with (9%) noise, ground truth, segmentation using a GMM, and the proposed
method.
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provided Dice metrics significantly better than the standard GMM. Moreover,
the difference between our model and the SVGMM [17] is small but consistently
in favor of our method. These differences are underpinned in table 1. A repre-
sentative segmentation example is presented in figure 3.

5 Conclusion

We have presented a framework for segmenting the brain anatomy from 3D
MRI. The proposed method relies on a Bayesian finite mixture model with a
Gauss-Markov random field prior on the probabilities of the pixel labels. Also,
the model incorporates a probabilistic line process for edge preservation. The
quantitative evaluation reveals that the method not only improves the standard
GMM and refines the SVGMM [17] but also performs at least at the same level
as other state-of-the-art methods. A perspective of this study is the extension
of the model to include more brain tissues and to integrate bias field correction
into the segmentation procedure.
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