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ABSTRACT
In this paper, we propose a method for non-rigid image reg-
istration based on a spatially adaptive stochastic model. A
smoothness constraint is imposed on the deformation field
between the two images which is assumed to be a random
variable following a Gaussian distribution, conditioned on
the observations and maximum a posteriori (MAP) estima-
tion is employed to evaluate the model parameters. Further-
more, the model is enriched by considering the deformation
field to be spatially adaptive by assuming different density
parameters for each image location. These parameters are
assumed random variables generated by a Gamma distribu-
tion, which is conjugate to the Gaussian, leading to a model
that can be estimated. Numerical experiments are presented
that demonstrate the advantages of this model.

1. INTRODUCTION

Image registration is the process of determining an appropri-
ate transformation function which, applied to the coordinates
of one image (source image), aligns it with another (target
image). It is used either in an intra or an inter-subject level.
The involved transformations are divided into two main cat-
egories: rigid and non-rigid. Rigid transformations preserve
the distance between all points in an image and can be rep-
resented by shifting and rotating a cartesian system. In the
non-rigid case, straight lines are mapped to curves, increas-
ing the degrees of freedom of the problem and, consequently,
making it more difficult to solve. Medical imaging is one of
the main, if not the most important, application fields of non-
rigid image registration [8].

Non-rigid image registration methods [15] may be
grouped in two main subcategories, according to their the-
oretical foundation. In the first subcategory the deformation
is modeled using a set of basis functions. These can be B-
splines [18], wavelets [21] or radial basis functions [11]. On
the other hand, there are methods that connect the image data
with a physically deforming system. They use concepts from
continuum mechanics to model the source image as a ver-
sion of the target, embedded into a deformable medium. The
medium is then deformed subject to internal forces which
result in the reconfiguration to its original state (target im-
age). Well known methods are based on physical models
such as linear elasticity [9], viscus fluid flow [5] and optical
flow [19].

Non-rigid image registration yields a nonlinear ill-posed
inverse problem that require regularization [20]. Minimiza-
tion of the energy functional in the intensity based methods,
locates the optimal transformation function out of the space
of all admissible solutions. Even when local minima are

avoided, the transformation does not necessarily preserve the
topology of the image data. Topology preserving mapping
is required especially in inter-subject registration of medical
images, since anatomical structures have the same topology
for any individual. As a result, further constraints have to
be introduced, in order to restrict the space of admissible so-
lutions to those which provide anatomically coherent trans-
formations. In the physical models such as linear elastic-
ity, these constraints arise naturally, while another popular
choice is the Laplacian constraint [2]. Once the constraint
is chosen, it is minimized simultaneously with the energy
functional [7]. However, for large non-rigid transformations,
this leads to large computational cost, since the constraint, in
the linear regularization models, generally increases propor-
tionally to the deformation magnitude. Multiresolution tech-
niques, where coarse to fine strategies are used, have been
reported to reduce the computational demands [16]. Even in
that case, the task of estimating a transformation which pro-
vides both satisfactory and topology preserving mapping is
nontrivial. Inducing further restrictions to the above models,
such as setting the transformation to be diffeomorphic, seems
to result in topology preserving transformations [14]. How-
ever, in this case, the need to track the discrete Jacobian of
the transformation can be an important drawback. Similar in
spirit approaches were also proposed in [12, 1, 17].

In the present study, we propose a method motivated by
the constrained optical flow formulation for image registra-
tion [13]. At first, we impose a smoothness constraint on the
deformation field. Also, the deformation field is assumed to
be a random variable following a Gaussian pdf and we recur
to the maximum a posteriori (MAP) formulation in order to
evaluate the model parameters. Moreover, we assume a more
flexible model by considering different pdf parameters for
each image location, thus, making the model spatially adap-
tive. In the remainder of this paper, we present our spatially
adative model in section 2, numerical results and discussion
on the advantages and of the proposed model with respect to
both the constrained optical flow and the simple non adaptive
model are presented in section 3.

2. REGISTRATION METHOD

2.1 Problem formulation

Let A(s) = A(x,y) be the target image and B(s) = B(x,y)
the source image to be aligned with A. We assume that we
are dealing with a single-modal image registration problem.
Our objective is to estimate a displacement field u, which



minimizes the energy function E between the two images:

E(u) =
∫
Ω
‖B(s+u(s))−A(s)‖2ds (1)

where Ω is the bounded domain defined by the images and
s = (x,y) is the position vector for a given pixel. Under the
assumption that the target image is a geometrically deformed
version of the source image with i.i.d. (independent and iden-
tically distributed) Gaussian noise added to each pixel, mini-
mization of (1) yields to the optimal solution in the maximum
likelihood sense.

Vectorizing the two images, we get two N-dimensional
discrete signals a(i) and b(i) where i∈ I ⊂Z

N , and I is an N-
dimensional discrete interval representing the set of all pixel
coordinates in the image. The deformation field is also vec-
torized in the form u = (uxuy)T, where ux,uy ∈ R

N. For
simplicity from now on u(s) = u.

First, we summarize the optical flow model for image
registration. In this model we start by retaining the first-order
terms of the Taylor expansion of the intensity function in the
source image.

b(s+u) = b(s)+uT∇b(s)+ ε(s), (2)

where ε(s) the residual of the Taylor expansion and is as-
sumed small. We assume

b(s+u)− a(s) � 0, (3)

or
b(s)+uT∇b(s)− a(s) = −ε(s), (4)

or
d(s)+uT∇b(s) = −ε(s), (5)

where d(s) = b(s)−a(s), is the intensity difference between
source and target image. Using this approximation we obtain
a displacement field to be applied in the source image. This
field implies a displacement in the direction of ∇b(s) and its
orientation is +∇b(s) if b(s) < a(s) and −∇b(s) otherwise.
No displacement occurs wherever the two intensities match.

The main disadvantage of this model is that since there
are no constraints in the deformation field, equation (5) does
not have a unique solution. In other words, from N observa-
tions stacked in vector d, 2N parameters stacked in vectors
ux, uy have to be estimated. This is an ill-posed problem
that requires regularization [20]. In this study, we apply the
Laplacian operator on the displacement field and then use
the Euclidian norm of the product for regularization. In sub-
section 2.2 we present a generalization of the above model
which uses concepts from stochastic estimation theory.

Let g(s) = ∇B(s) and Q = ∇2 be the Laplacian oper-
ator. Applying the optical flow model using, in the sense
mentioned above, the Laplacian operator as a constraint for
Tikhonov regularization, we come up with the following
minimization problem.

u = argmin
u

[‖ d+Gu ‖2 +α ‖ Qu ‖2] (6)

where α is a weight factor,

d = (d1d2...dN)T (7)

is a vector containing the temporal image differences and

G = diag{gx1,gx2, ...,gxN ,gy1,gy2, ...,gyN} (8)

is a matrix containing the image gradient with respect to the
horizontal and vertical directions. Taking the above formu-
lation into account and minimizing equation (6) with respect
to u yields:

(GGT +αQTQ)u = −Gd. (9)

Due to the high dimensionality of the involved matrices,
the above linear system may be approximately solved us-
ing the Conjugate Gradients Squared method (CGS). Once
we obtain the deformation field u, we compute the deformed
source image b∗ through cubic interpolation. The algorithm
iterates over time, producing an increasing deformation field
after each iteration. At the end of each iteration the deformed
image b∗ is resampled and used as the source image for the
next iteration.

2.2 Spatially adaptive model

It is well known that Tikhonov regularization has also a sto-
chastic interpretation using MAP estimation and introducing
an appropriate prior [10]. In this framework, we assign a
Gaussian prior probability distribution p(u) to the elements
of the deformation field. In our case, the observed data set is
the vector with elements the differences in intensity for each
pixel d = (d1d2...dN)T . The likelihood function p(d|u) is
related to the posterior probability p(u|d) through Bayes’
theorem:

p(u|d) ∝ p(d|u)p(u) (10)

We can now determine u by finding the most probable value
of u given the observations by MAP estimation.

The Gaussian pdf for a N-dimensional vector x of con-
tinuous variables is expressed by

N (x;μ ,Σ) =
1

(2π)
N
2 |Σ|12

exp−1
2 (x−μ)TΣ−1(x−μ) (11)

where N is the dimensionality of the vector and μ , Σ are the
mean vector and covariance matrix respectively. The inverse
of the covariance matrix is known as the precision matrix.
The prior pdf of u is:

p(u) = N (u;0,(αQTQ)−1) (12)

where α = (αxαy)T , whereas the conditional pdf:

p(d|u) = N (d;−Gu,γ−1I). (13)

Parameters α and γ , which control the precision and, con-
sequently, the distribution of model parameters, are called
hyperparameters. From this point we can proceed in two
ways.

The simplest is to assume that these hyperparameters are
spatially constant. This in effect implies that the statistics of
both the residual ε(s) in (2) and Qu are Gaussian indepen-
dent identically distributed. This is clearly an oversimplifi-
cation of reality. The residuals at areas of large deformations
will be larger since the linearization used in (2) would be less
accurate than in areas of small deformations. Furthermore, in



areas where we have abrupt changes of u the values of Qu
will be larger than in areas of smooth changes of u.

However, in this case it is very simple to obtain the MAP
estimates. Indeed by minimizing the negative log-posterior
distribution:

− ln p(u|d) (14)

with respect to u, we obtain the solution

(γGGT +αQTQ)u = −γGd (15)

The above linear system is approximately solved iteratively
using the CGS method. This time though, apart from the
source image, we also update the values for the parameters
γ,α , through the following equations, obtained by minimiz-
ing again (14) with respect to γ , αx and αy respectively:

γ =
N

‖ d+Gu ‖2 , (16)

αx =
N−1

‖ Qux ‖2 , (17)

and

αy =
N−1

‖ Quy ‖2 . (18)

In order to overcome the above mentioned difficulties
of the spatially invariant model we impose spatial adaptiv-
ity. In other words, the parameters of our model are spa-
tially varying taking different values for each pixel loca-
tion and it is possible to express them by the following vec-
tors: αx = (αx1αx2...αxn)T, αy = (αy1αy2...αyn)T and
γ = (γ1γ2...γn)T. Equations (12), (13) then become:

p(u) = N (u;0,(QTAQ)−1) (19)

and
p(d|u) = N (d;−Gu,Γ−1) (20)

where

A = diag{αx1,αx2, ...,αxN ,αy1,αy2, ...,αyN} (21)

and
Γ = diag{γ1,γ2, ...,γN ,γ1,γ2, ...,γN} . (22)

In such case, the proposed model will have 3N parameters
to be estimated from N observations. Clearly such model
although it has many advantages and capture the spatially
varying nature of the residual and Qu also overfits the data
and can not generalize [4]. For this purpose, we follow the
Bayesian paradigm and add one more layer to our model.
In other words, we assume (γi,αxi,αyi)i=1,...N to be ran-
dom variables and to follow a Gamma pdf parameterized by
l,m, p,qx,qy:

p(γi) ∝ γ
l−2
2

i exp−m(l−2)γi (23)

p(αxi) ∝ α
p−2
2

xi exp−qx(p−2)αxi (24)

and

p(αyi) ∝ α
p−2
2

yi exp−qy(p−2)αyi . (25)

We choose the Gamma distribution for the hyperparameters
because it is the conjugate prior for the precision of a univari-
ate Gaussian [4]. Furthermore, we chose this parametrization
for the Gamma pdf because of its intuitive interpretation [6].
Minimizing (14) this time leads to the following linear sys-
tem of equations:

(GΓGT +QTAQ)u = −GΓd, (26)

with the following update scheme for the spatially variant
hyperparameters:

γi =
l−1

(d+Gu)2
i +2m(l−2)

(27)

αxi =
p−1

(Qux)2
i +2qx(p−2)

(28)

and

αyi =
p−1

(Quy)2
i +2qy(p−2)

. (29)

The role of the Gamma pdf becomes apparent by observing
the above equations. For example when the deformation field
becomes smooth the first term of the denominator of (28) and
(29) becomes zero. Thus, without the Gamma pdf (qx,qy = 0
and p = 2) the estimates for αxi and αyi become unstable.

Parameters l and p may take values within the interval
(2,+∞). Their choice affects our model in the following way.
Consider for example equation (28): when p takes very close
to 2, the second term in the denominator ensures that αxi de-
pends on only on (Qux)2

i and thus the Gamma hyperprior
is non-informative since the estimates of αxi and αyi depend
only on the data. On the other hand, if we assign a large
values to p, the second term in the denominator of (28) and
(29) dominates. Then, the estimates of αxi and αyi do not
depend on the data and have the same value for all spatial
locations. As a result our model degenerates to a spatially
invariant model. Parameters m,qx,qy are extracted from the
data, since it turns out that they are proportional to the vari-
ances of (d+Gu), (Qux) and (Quy) respectively.

3. EXPERIMENTAL RESULTS

Intensity similarity measures between the deformed source
image and the target image are widely used criteria while
evaluating a deformable registration algorithm. The main
disadvantage of these criteria is that they do not provide any
information about the topology preservation during the trans-
formation. In this study, we used an alternative evaluation
scheme, which combines the quantitative measurement of
the intensity differences, with the qualitative estimation of
the topological characteristics of the transformation.

A deformation field u is topologically coherent when it
is ”smooth”. In that case the deformation vector for neigh-
boring pixels must be similar. As a result, the spatial gradient
of the field should not take large values. Based on the above,
we define the smoothness of the deformation field as:

S =
1

‖ ∇u ‖ (30)

We also define an error in the intensity matching between the
deformed source image and the target image as:

E =
1
N

N

∑
i=1

| b∗i −ai | (31)



where we remind that b∗ is the deformed source image.
Given (30) and (31) the fraction E

S will clearly take smaller
values, as the deformation either introduces smaller error or
becomes smoother.

In this experiment, we use a 2D image, which is a brain
MRI slice as the target image. The target image is deformed
using a known non-linear formula. We produced two source
images, one with relatively small deformation and one with
a relatively large deformation. We registered the source im-
ages to the target image using the stationary and the non sta-
tionary algorithms described in section 2.

At first, we perform one iteration of the constrained op-
tical flow equation (9), selecting one value for the constant
weight α . The resulting deformation field is then used to ini-
tialize the hyperparameters (27)-(29) for the non-stationary
equation (26), which we let it iterate until convergence. The
results of this scheme are shown in figures 1 and 2, for the
small and the large deformation respectively. We observe
that there is a significant improvement in the intensity differ-
ences for both deformations. For the large deformation, we
notice that the algorithm fails to fully align the two images in
regions where the initial error is too large. This is caused by
the regularization term, which does not allow non-continuous
mapping between neighboring pixels. A reduction in the con-
straint weight would produce a result with less error, but not
topologically coherent. For the small deformation, it is hard
to obtain a good visualization of the differences between the
images. Nevertheless, there are many non-zero values and
a deformation does indeed take place, as it is confirmed by
the differences in the final result when we additionally let the
constrained optical flow algorithm converge.

We also calculate the values of the fraction E
S for both

methods. The results, for various initial values of α , are illus-
trated in figure 3, for the small (a) and the large (b) deforma-
tion. It becomes clear from the above figure that applying the
non-stationary method to the problem provides better results,
as far as our evaluation criterion is concerned. It is notable
that independently from the initial, arbitrary, choice of α ,
spatial variance seems to either reduce the error of the regis-
tration or increase the smoothness of the deformation field, or
both. In that way, the bias introduced by the non-automatic
initialization of the constraint weight factor (9) may be re-
duced. Moreover, we observed that the execution time is
shorter for the non-stationary method, up to a percentage of
70%. This can prove very crucial during the registration of
high-dimensional images, especially in the 3D case.

4. CONCLUSION

In this paper, we presented a method for non rigid image
registration based on a spatially variant model. The model
imposes smoothness on the deformation field which is as-
sumed to be a random variable conditioned on the obser-
vations (inter-image differences). The obtained registration
errors are inferior to the errors provided by the simple sta-
tionary model. Future directions of this study are the exten-
sion of the method to 3D MRI registration where the model
non stationarity will provide a more clear advantage. Also,
comparison with other state of the art methods [3, 5], though
difficult due to absence of golden standards and ground truth,
is a key element and an issue of ongoing research.
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Figure 1: Registration example with relatively small image deformations. (a) Reference image, (b) image to be registered to
the reference image, (c) difference between the unregistered images, (d) registered image, (e) difference between the registered
image and the reference image.

(a) (b) (c) (d) (e)

Figure 2: Registration example with relatively large image deformations. (a) Reference image, (b) image to be registered to
the reference image, (c) difference between the unregistered images, (d) registered image, (e) difference between the registered
image and the reference image.
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Figure 3: Registration error over smoothness curves for various values of the parameter α for the stationary and the non
stationary registration models. (a) Small deformation (fig. 1), (b) large deformation (fig. 2).
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