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Abstract. An accurate, computationally efficient and fully-automated
algorithm for the alignment of 2D serially acquired sections forming a
3D volume is presented. The method accounts for the main shortcomings
of 3D image alignment: corrupted data (cuts and tears), dissimilarities
or discontinuities between slices, missing slices. The approach relies on
the optimization of a global energy function, based on the object shape,
measuring the similarity between a slice and its neighborhood in the
3D volume. Slice similarity is computed using the distance transform
measure in both directions. No particular direction is privileged in the
method avoiding global offsets, biases in the estimation and error prop-
agation. The method was evaluated on real images (medical, biological
and other CT scanned 3D data) and the experimental results demon-
strated the method’s accuracy as reconstruction errors are less than 1
degree in rotation and less than 1 pixel in translation.

1 Introduction

Three-dimensional reconstruction of medical images (tissue sections, CT and
autoradiographic slices) is now an integral part of biomedical research. Recon-
struction of such data sets into 3D volumes, via the registrations of 2D sections,
has gained an increasing interest. The registration of multiple slices is of utmost
importance for the correct 3D visualization and morphometric analysis (e.g. sur-
face and volume representation) of the structures of interest. Several alignment
algorithms have been proposed in that framework. A review of general medical
image registration methods is presented in [1], [2], [3].

The principal 3D alignment (reconstruction from 2D images) methods may be
classified in the following categories: fiducial marker-based methods [4], feature-
based methods using contours, crest lines or characteristic points extracted from
the images [5], [6], and gray level-based registration techniques using the intensi-
ties of the whole image [7], [8], [9], [10]. Most of the above mentioned techniques
do not simultaneously consider the two major difficulties involved in medical and
CT scanned data registration.
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At first, consecutive slices may differ significantly due to distortions, discon-
tinuities in anatomical structures, cuts and tears. These effects are more pro-
nounced when distant slices are involved in the registration. From this point of
view, a registration method must be robust to missing data or outliers [7], [10].

Besides, registering the slices sequentially (the second with respect to the
first, the third with respect to the second, etc.) leads to different types of mis-
registration. If an error occurs in the registration of a slice with respect to the
preceding slice, this error will propagate through the whole volume. Also, if the
number of slices to be registered is large, a global offset of the volume may be
observed, due to error accumulation [8].

In this paper, a solution to the above mentioned shortcomings is presented.
A global energy function having as variables the rigid transformation parameters
(2D translation and rotation) of a given slice with respect to a local symmet-
ric neighborhood is proposed. Global energy functions are a powerful tool in
computer vision applications but they have not yet been considered for the reg-
istration of serially acquired slices.

Our approach was inspired by the technique presented in [11], which consists
in minimizing a global energy function with the Iterative Closest Point algorithm
[12], to register multiple, partially overlapping views of a 3D structure. The
global energy function implemented in our approach is associated with a pixel
similarity metric based on the Euclidean distance transform [13].

The remainder of the paper is organized as follows. The global energy function
formulation and the associated registration algorithm is presented in section 2,
experimental results are presented in section 3 and conclusions are drawn in
section 4.

2 A Global Energy Function Formulation

Before presenting the alignment method, the notations used in our formulation
are introduced. A set of 2D serially acquired slices is represented by:

V = {Ii|i = 1 . . . N} (1)

where Ii is a slice (a 2D image) and N denotes the total number of slices. A
pixel of a 2D slice is represented by: p = (x, y)T , so that Ii(p) corresponds to
the gray level (intensity) of pixel p of slice i. Nx and Ny designate the number
of pixels of each slice in the horizontal and vertical direction respectively.

Standard two-dimensional rigid alignment consists of estimating the rigid
transformation parameters (translation tx, ty and rotation by angle θ) that have
to be applied to the image to be aligned (floating image) in order to match a
reference image.

In the approach proposed here, the alignment of the 2D sections, within the
3D volume, is considered globally by minimizing an energy function E(·), which
expresses the similarity between the 2D sections:
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E(Θ) =
N∑

i=1

N∑

j=1

Nx×Ny∑

p=1

f(Ii(TΘi
(p)), Ij(TΘj

(p))) (2)

where f(·) is a similarity metric, Ik denotes slice k and TΘk
designates a rigid

transformation with parameters Θk = {tkx, tky , θk}.

Equation (2) indicates that for a given set of rigid transformation parameters
TΘi

, applied to the slice to be aligned Ii, the similarity between the transformed
slice Ii(TΘi

(p)) and all of the other already transformed slices Ij(TΘj
(p)) in the

volume is accumulated in the energy function.

Assuming that function f(·) is symmetric:

f(Ii(TΘi
(p)), Ij(TΘj

(p))) = f(Ij(TΘj
(p)), Ii(TΘi

(p))) (3)

which is the case for the pixel similarity functions considered here, yields the
following global minimization problem:

Θ̂ = arg min
Θ

E(Θ) = arg min
Θ

N∑

i=1

N∑

j=1
j<i

Nx×Ny∑

p=1

f(Ii(TΘi(p)), Ij(TΘj (p))) (4)

Without additional constrains, the optimization problem (4) has clearly
an infinite number of solutions (if the set of rigid transformations
{TΘ̂1

, TΘ̂2
, . . . TΘ̂N

} is a solution, the same holds true for {TΘ̂1
◦ T∆, TΘ̂2

◦
T∆, . . . TΘ̂N

◦ T∆}, where T∆ is an arbitrary 2D rigid transformation). To re-
move this ambiguity, the transformation TΘ̂l

applied to an arbitrary chosen slice
k is constrained to the identity transformation (we have chosen k = 1 in our
implementation). As a result, there are 3(N − 1) parameters to estimate.

It is common sense that distant slices present very little similarity due to
anatomy and it would be more appropriate to measure the energy function only
for slices presenting at least some similarities. Therefore, the support region of
function f(·) has been limited to a neighborhood of radius R centered at each
slice and set:

f(Ii(TΘi(p)), Ij(TΘj (p))) = 0, ∀ |i − j| > R (5)

Thus, the following alignment algorithm is associated with the energy func-
tion (4):

– do until convergence.
• declare all slices unvisited.
• do until all slices are declared visited.

∗ randomly chose an unvisited slice Ii ∈ V .
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∗ update the rigid transformation parameters TΘi
bringing into align-

ment slice Ii with the other slices in the neighborhood of i, by min-
imization of the following local energy function:

Ei(Θi)
def=

N∑

i=1

N∑

j=1
|i−j|≤R

Nx×Ny∑

p=1

f(Ii(TΘi
(p)), Ij(TΘj

(p))) (6)

∗ declare slice Ii visited.
• end do

– end do

The minimization of the local energy function (4) is conducted by a deter-
ministic optimization algorithm, known as Iterated Conditional Modes (ICM)
[14]. ICM is a discrete Gauss Seidel-like optimization technique, accepting only
configurations decreasing the objective function. Let us notice that the parame-
ter Θ̂i corresponding to the minimum value of the local energy function Ei(Θi)
(Equ. 6) also corresponds to a local minimum value of the global energy function
E(Θ) with respect to Θi, keeping all other parameters Θj , j �= i fixed. It is thus
easy to see that the described algorithm converges towards a local minimum of
the initial energy function (2). This local minimum corresponds to a satisfactory
registration, since the initial alignment of the 2D sections is generally close to
the desired solution (if this is not the case, a good initialization may be obtained
by a standard coarse alignment technique such as principal axes registration).
It is thus not necessary to resort here to greedy global optimization procedures,
such as simulated annealing or genetic algorithms.

Further improvement of the solution is obtained by a gradient decent tech-
nique. To speed the algorithm up a multigrid data processing is also imple-
mented.

The pixel similarity metric associated with the above described global energy
function is based on a distance transform ([13], [15]) (also known as chamfer
matching technique [16]) and it is computed from the 3D object contours [17]. A
distance transformation is an operation that converts a binary picture, consisting
of feature and non-feature elements (contours), to a picture where each pixel has
a value that approximates its distance to the nearest contour point.

Thus, using the distance transform D(p) of the reference slice the method
aligns the floating slice by minimizing the distance between the contours of the
images. For further details of the chamfer matching method the reader may refer
to [16].

Considering the slices per triplets, which is very common for standard recon-
struction problems (i.e. setting R=1 in eq. 5), the estimation of the alignment
parameters Θ involves the non-linear similarity metric:

f(TΘi(p)) = Di−1(TΘi−1(p)) + Di+1(TΘi+1(p)), Ii(TΘi(p)) �= 0 (7)

where Ii(TΘi(p)) �= 0 means that only the contour points of Ii are involved.
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A large number of interpolations are involved in the alignment process. The
accuracy of estimation of the rotation and translation parameters is directly re-
lated to the accuracy of the underlying interpolation model. Simple approaches
such as the nearest neighbor interpolation are commonly used because they are
fast and simple to implement, though they produce images with noticeable ar-
tifacts. Besides, as the translation and rotation parameters should compensate
for accuracy by having subvoxel values, this type of interpolation would not be
appropriate. More satisfactory results can be obtained by small-kernel cubic con-
volution techniques, bilinear, or convolution-based interpolation. According to
sampling theory, optimal results are obtained using sinus cardinal interpolation,
but at the expense of a high computational cost. As a compromise, a bilinear
interpolation technique has been used in the optimization steps. At the end of
the algorithm, the alignment parameters are refined using a sinus cardial inter-
polation that preserves the quality of the image to be aligned. This technique
has proven to be fast and efficient.

a b

c d

Fig. 1. Reconstruction of a 3D scanned mechanical part volume of 109 slices. (a)
Multiplanar view of the volume before registration. (b) Three-dimensional view of the
volume before registration. (c) Multiplanar view of the volume after registration. (d)
Three-dimensional view of the volume after registration.
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Table 1. A set of 109 slices of a 3D CT scanned mechanical part volume were artificially
transformed using different rigid transformation parameters. Each slice was randomly
transformed using translations varying from -10 to +10 pixels and rotations varying
from -20 to +20 degrees. Statistics on the alignment errors for the rigid transformation
parameters are presented. Translation errors are expressed in pixels and rotation error
in degrees.

∆tx ∆ty ∆θ

median 0.33 0.31 0.06
maximum 1.07 0.93 0.25
mean ± s. dev 0.35 ± 0.25 0.38 ± 0.25 0.07 ± 0.06

3 Experimental Results

To evaluate our method, we applied the algorithm to the reconstruction of an
artificially misaligned 3D CT scanned mechanical part (figure 1). The slices of
the original 256 × 256 × 109 CT volume were transformed using translations
varying from -10 to +10 pixels and rotations varying from -20 to +20 degrees.

Table 2. A set of 100 slices of a 3D CT scanned mechanical part volume were ar-
tificially transformed using different rigid transformation parameters. Each slice was
translated by 0.2 pixels in both directions and rotated by 0.4 degrees with respect to
its preceding slice. Different statistics on the errors for the rigid transformation pa-
rameters are presented. Translation errors are expressed in pixels and rotation error in
degrees.

∆tx ∆ty ∆θ

median 0.19 0.23 0.05
maximum 0.99 0.87 0.32
mean ± s. dev 0.29 ± 0.26 0.31 ± 0.26 0.07 ± 0.07

The transformations for each slice were random following a uniform distribu-
tion in order not to privilege any slice (figures 1(a) and 1(b)). Table 1 presents
statistics on the alignment errors. The algorithm revealed robust in aligning this
type of image providing small registration errors. Figures 1(c) and 1(d) present
the reconstructed volume.

Moreover, we have uniformly transformed 100 slices of the same 3D volume
(mechanical part of an engine) by applying to each slice Ii a translation of
tix = ti−1

x + 0.2 pixels and tiy = ti−1
y + 0.2 pixels and a rotation of θi = θi−1 + 0.4

degrees. As the volume has 100 slices, the last slice is translated by 20 pixels
in both directions and rotated by 40 degrees with respect to its initial position.
Table 2 presents the registration errors of the method. It is illustrated that our
approach has subvoxel mean, median and maximum errors.
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a b

c d

Fig. 2. Reconstruction of a 3D human skull volume of 140 slices. (a) Multiplanar
view of the volume before registration. (b) Three-dimensional view of the volume
before registration. (c) Multiplanar view of the volume after registration. (d) Three-
dimensional view of the volume after registration.

Table 3. A set of 140 slices of a 3D CT human skull volume were artificially trans-
formed using different rigid transformation parameters. Each slice was randomly trans-
formed using translations varying from -10 to +10 pixels and rotations varying from
-20 to +20 degrees. Different statistics on the errors for the rigid transformation pa-
rameters are presented. Translation errors are expressed in pixels and rotation error in
degrees.

∆tx ∆ty ∆θ

median 2.10 0.33 0.07
maximum 1.45 2.02 2.42
mean ± s. dev 0.37 ± 0.28 0.38 ± 0.30 0.19 ± 0.35

The same evaluation procedure was performed on a 3D human skull volume
with 140 slices (figure 2). The algorithm aligned the artificially (randomly and
uniformly) misaligned slices of the volume and the errors are drawn in Tables
3 and 4. Human skull presents discontinuities, and consecutive slices may differ
significantly due to anatomy but the global energy function is robust to these
shortcomings. As it can be seen, median and mean translation and rotation
errors are less than 1 pixel and 1 degree respectively. Also maximum errors are
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a b

c d

Fig. 3. Reconstruction of a 3D tooth volume of 265 slices. (a) Multiplanar view of
the volume after alignment by an expert dentist. (b) Three-dimensional view of the
volume after alignment by an expert dentist. (c) Multiplanar view of the volume after
registration. (d) Three-dimensional view of the volume after registration.

Table 4. A set of 140 slices of a 3D CT human skull volume were artificially trans-
formed using different rigid transformation parameters. Each slice was translated by
0.15 pixels in both directions and rotated by 0.3 degrees with respect to its preced-
ing slice. Different statistics on the errors for the rigid transformation parameters are
presented. Translation errors are expressed in pixels and rotation error in degrees.

Alignment error statistics
∆tx ∆ty ∆θ

median 0.23 0.21 0.26
maximum 1.95 1.94 1.64
mean ± s. dev 0.33 ± 0.32 0.34 ± 0.33 0.25 ± 0.25

slightly superior to 1 pixel and 1 degree respectively showing the robustness of
the technique.

Furthermore, the algorithm was applied to the reconstruction of volumes
(tooth germs, biological tissues) with unknown ground truth. The method’s per-
formance was compared with the manual alignment accomplished by an expert
physician. Figure 3 shows the reconstruction of a tooth germ by an expert den-
tist (fig. 3(a) and 3(b)) and by our method (fig. 3(c) and 3(d)). It is illustrated
that human intervention fails to correctly align the slices, whilst our method is
efficient and can achieve alignment with high accuracy.
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a b

c d

Fig. 4. Reconstruction of a 3D tooth volume of 194 slices. (a) Multiplanar view of
the volume after alignment by an expert dentist. (b) Three-dimensional view of the
volume after alignment by an expert dentist. (c) Multiplanar view of the volume after
registration. (d) Three-dimensional view of the volume after registration.

The same stands for the example presented in figure 4 where another tooth
reconstruction is presented.

Also, Figure 5 depicts a 3D tissue containing a large number of vessels. Fig-
ures 5(a) and 5(b) show the volume aligned by an expert biologist and Figures
5(c) and 5(d) the tissue after alignment by our method.

This volume presents cuts and discontinuities and the tissues had been
stretched during the cut procedure. Despite these drawbacks, according to the
expert biologist, the algorithm aligned correctly the slices.

Finally, let us notice that the algorithm has a computational complexity
O(NxNyN) and requires approximately 10 min. to reconstruct a 256 × 256 ×
140 volume on a Pentium III (800 MHz) workstation.

4 Conclusion

The alignment method described in this paper is akin to the global energy func-
tion formulation proposed in [11] to register multiple views of a 3D surface in
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a b

c d

Fig. 5. Reconstruction of a 3D tissue volume of 237 slices. (a) Multiplanar view of
the volume after alignment by an expert biologist. (b) Three-dimensional view of the
volume after alignment by an expert biologist. (c) Multiplanar view of the volume
after registration. (d) Three-dimensional view of the volume after registration.

computer vision applications. The main contribution of the approach is to con-
sider the alignment problem globally on the 3D volume, by minimizing a global
objective function expressing the similarity between neighboring slices. The ap-
proach does not privilege any particular direction in the registration process.
By these means, the major problems set by the registration of serially acquired
slices are addressed. With the global (isotropic) formulation of the registration
problem (rather than a standard step by step, sequential formulation), no global
offset nor error propagations are observed in the final alignment. The approach
seems promising and its association to more sophisticated but time consum-
ing pixel similarity metrics (mutual information [18], robust estimation-based
measures [19]) may improve its accuracy and is a perspective of this work.
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