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ABSTRACT 

This paper addresses the problem of describing the signifi- 
cant intra and inter variability of 3D deformable structures 
within 3D image data sets. In pursuing it, a 3D probabilis- 
tic physically based deformable model is defined. The sta- 
tistically learned deformable model captures the spatial re- 
lationships between the different objects surfaces, together 
with their shape variations. The structures of interest in each 
volume are parameterized by the amplitudes of the vibra- 
tion modes of a deformable spherical mesh. For a given 
3D image in the training set, a vector containing the largest 
vibration modes describing the desired object is created. 
This random vector is statistically constrained by retaining 
the most significant variation modes of its Karhunen-Loeve 
(KL) expansion on the considered population. The surfaces 
of the modeled structures thus deform according to the vari- 
ability observed in the training set. A preliminary applica- 
tion of a 3D multi-object model for the segmentation of 3D 
brain structures from MR images is presented. 

1. INTRODUCTION 

Deformable models have shown to be an appealing approach 
for accommodating the intra- individuallinter-individual vari- 
ability of 3D anatomical structures in medical image data 
sets [I, 21. This paper presents results in the framework of 
brain imaging and forms part of an extension to the method 
described by Nikou et al. in [3]. The goal is the description 
of the spatial relationships between the structures of interest 
(corresponding here to brain anatomical structures) as well 
as the modeling of the shape variations observed over a rep- 
resentative image data set arising from different individuals. 

A 3D physically-based statistical deformable model car- 
rying information on multiple anatomical structures is pre- 
sented. This model describes the deformations of a given 
surface as the ordered superimposition of vibrations of an 

initial mesh, at different frequencies [ I ,  41. The vibration 
modes of the different anatomical structures are constrained 
by a statistical training, from a representative population. 
The remainder of the paper describes the construction and 
learning of the multi-object model, along with some pre- 
liminary results in the modeling of various brain anatomical 
structures. 

2. 3D MULTI-OBJECT DEFORMABLE MODEL 

In the proposed approach, the different structures have been 
extracted from a representative training set of fifty 3D MR 
images. The image data were first registered to a reference 
image, to compensate for rigid transformations [ 5 ] .  In a sec- 
ond step, the 3D anatomical structures of interest were seg- 
mented from the registered data set, using supervised 3D- 
watershed segmentation methods [6], combined with the 
deformable matching of a reference segmentation map [7]. 
Modeled anatomical structures include the head, brain, ven- 
tricles, cerebellum, corpus callosum and right hippocampus 
surfaces (see fig. 4). 

For a given 3D image in the training set, a vector con- 
taining the largest vibration modes describing the desired 
objects is created, [ l ,  41. This random vector is statisti- 
cally constrained by retaining the most significant variation 
modes of its KL expansion on the training population. The 
model consists of 3D points sampled on a spherical surface, 
following a quadrilateral cylinder topology [ 13. The model 
nodes are stacked in vector: 

ignates the number of points in the direction of the geo- 
graphical longitude and N’ is the number of points in the 
direction of the geographical latitude of the sphere. The 
physical model is characterized by its mass matrix M, its 
stiffness matrix K and its dumping matrix C. Its governing 

XO = (zl, 0 0 0  yl, zl, ..., x;,,,,, yN”, 0 0  z”,,,)~, where N des- 
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equation may be written as [ l ,  41: 

MU + CU + KU = F (1) 

where U stands for the nodal displacements of the initial 
mesh XO. The image force vector F is based on the eu- 
clidean distance between the mesh nodes and their nearest 
contour points [8]. 

Since equation (1) is of order 3N NI, where N NI is the 
total number of nodes of the spherical mesh, it is solved in a 
subspace corresponding to the truncated vibration modes of 
the deformable structure [l,  41, using the following change 
of basis: 

U = CPU = 
i 

where CP is a matrix and U is a vector, q5i is the ith column 
of @ and iii is the it* scalar component of vector U. By 
choosing CP as the matrix whose columns are the eigenvec- 
tors of the eigenproblem: 

and using the standard Rayleigh hypothesis [ 13, matrices K, 
M and C are simultaneously diagonalized: 

(4) 
CPTMCP = I 
GTK@ = !2' 

Cl2 is the diagonal matrix whose elements are the eigenval- 
ues w; and I is the identity matrix. Substituting (2) into (1) 
and premultiplying by aT yields: 

U + C U +  n2u = F (5)  

where C = CPTCCP and F = QTF. 
In many computer vision applications [4], when the ini- 

tial and the final state are known, it is assumed that a con- 
stant load F is applied to the object. Thus, equation (1) is 
called the equilibrium governing equation and corresponds 
to the static problem: 

K U = F  (6)  

In the new basis, equation (6) is simplified to 3"' scalar 
equations: 

w;iij = 5. (7) 

In equation (7), wi designates the it* eigenvalue, the scalar 
iii is the amplitude of the corresponding vibration mode 
(corresponding to eigenvector q5i). Equation (7), indicates 
that instead of computing the displacements vector U from 
equation (6), its decomposition may be computed in terms 
of the vibration modes of the original mesh. The number of 

vibration modes retained in the object description, is chosen 
so as to obtain a compact but adequately accurate represen- 
tation. A typical apriori value covering many types of stan- 
dard deformations is the quarter of the number of degrees of 
freedom in the system [l] (i.e. 25% of the modes are kept). 
Figure 1 shows the parameterization of the head surface 
considered for a subject belonging to the training set, by 
the 25% lowest frequency modes. Although not providing 
a high resolution description of the surfaces, this truncated 
representation provides a satisfactory compromise between 
accuracy and complexity of the representation. The spheri- 
cal model is initialized around the structures of interest (fig. 
l(a)). The vibration amplitudes are explicitly computed by 
equation (7), where rigid body modes (wi = 0) are dis- 
carded and the nodal displacements may be recovered using 
equation (2). The physical representation X(U) is finally 
given by applying the deformations to the initial spherical 
mesh: 

X(U) = xo +CPU (8) 

This parameterization is applied for the different seg- 
mented objects (fig. 4) in the training set and their statistical 
learning is performed. For each image i = 1, . . . , n (n  = 50) 
in the training set, a vector ai containing the M,  lowest fre- 
quency vibration modes describing the S different anatom- 
ical structures is created: 

ai = (Ut,  U: . . . ,US>' (9) 

where: 

Random vector a is statistically constrained by retaining 
the most significant variation modes in its KL transform: 

where % is the average vector of vibration amplitudes of 
the structures belonging to the training set, P is the ma- 
trix whose columns are the eigenvectors of the covariance 
matrix I' = [(a - (a - a)] and b; = PT (ai - 5) are the 
coordinates of (a - a) in the eigenvector basis. 

The deformable multi-object model is finally parameter- 
ized by the m most significant statistical deformation modes 
stacked in vector b. By modifying b, the different ob- 
jects are deformed in conjunction (fig. 3), according to the 
anatomical variability observed in the training set. 

Given a set of S initial spherical meshes, X I N I T ,  cor- 
responding to the structures described by the joint model: 
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Fig. 1. Brain structure parameterization from 3 0  MRZ. (a) 
shows the initial spherical mesh superimposed to the struc- 
ture to be parameterized. (b) presents the deformable model 
at equilibrium (25% of the modes). 

the statistical deformable model X(a) is thus represented 
by : 

X(a) = XINIT +Sa (13) 

Combining equations (1 1) and (13) we have: 

X(b) = XINIT i- yii + ZPb 

1 @I 0 . . .  0 ) 

(14) 

where: 

T = l  - . . . 0 I ,  (15) 
0 @2 . . .  

In equation (13,  the columns of any 3”’ x 3M, ma- 
trix @, are the eigenvectors of the spherical mesh describing 
surface s. Therefore, the spatial relation between the differ- 
ent structures, as well as the anatomical variability observed 
in the training set are compactly described by a limited num- 
ber of parameters (typically m E 10, corresponding to a 
compression ratio of about 10000: 1). 

The statistical multi-objet model. may be used as a gen- 
eral purpose probabilistic atlas for the segmentation, label- 
ing and interpretation of patient images. In fig. 2, we present 
a preliminary result corresponding to the segmentation of 
internal brain structures, for a 3D patient MR image not be- 
longing to the training set. The segmentation method, de- 
scribed in [9], relies on two steps: the patient head surface 
is first segmented and parameterized by the model. The ex- 
tracted head surface is then combined with the probabilistic 
model to provide a good initial prediction for the other inter- 
nal anatomical structures. A standard matching algorithm is 
finally applied to adjust the predicted surfaces to the patient 
image data. 

Fig. 2. (a) Prediction of the different anatomical structures 
sulfaces using the head su$ace and the probabilistic de- 
formable model. (b) 3 0  rendering of (a). 

3. CONCLUSION 

The construction of a 3D multi-object statistical deformable 
model embedding information on the spatial relationships 
and anatomical variability of multiple anatomical structures 
in 3D medical images has been presented. This 3D multi- 
object deformable model is part of an on going project aim- 
ing at the development of a general purpose probabilistic 
atlas of the brain, to be used for the segmentation, regis- 
tration, labeling and interpretation of 3D (MWSPECT) im- 
ages. While the results are emphasized in the medical do- 
main, the approach may be applied to other modeling prob- 
lems iyolving the description of the spatial, temporal or 
statistical variability of multiple interacting structures. 
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b[l] = - 3 f i  b[l] = 0 b[l] = 3 6  

Fig. 3. Deformations of the 3 0  joint model by varying the$rst statistical mode in vector b between -A and 6. A i  
designates the it eigenvalue of the covariance matrix r. Each image shows a multiplanar (sagittal, coronal, transversal) 
view of the 3 0  multi-object model. 
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Fig. 4. 3 0  rendering of a subset of the different segmented anatomical structures and the corresponding average physically- 
based model. The structures shown are: (a) ventricles, (b) cerebellum, (c) corpus callosum and ( d )  right hippocampus. 
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