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ABSTRACT

A probabilistic deformable model for the representation of brain structures is described. The statistically learned
deformable model represents the relative location of head (skull and scalp) and brain surfaces in MR/SPECT images
pairs and accommodates the significant variability of these anatomical structures across different individuals. To
provide a training set, a representative collection of 3D MRI volumes of different patients have first been registered to
a reference image. The head and brain surfaces of each volume are parameterized by the amplitudes of the vibration
modes of a deformable spherical mesh. For a given MR image in the training set, a vector containing the largest
vibration modes describing the head and the brain is created. This random vector is statistically constrained by
retaining the most significant variation modes of its Karhunen-Loeve expansion on the training population. By these
means, both head and brain surfaces are deformed according to the anatomical variability observed in the training
set. Two applications of the probabilistic deformable model are presented: the deformable model-based registration
of 3D multimodal (MR/SPECT) brain images and the segmentation of the brain from MRI using the probabilistic
constraints embedded in the deformable model. The multi-object deformable model may be considered as a first step
towards the development of a general purpose probabilistic anatomical atlas of the brain.

Keywords: Physics-based deformations, Karhunen-Loeve decomposition, stochastic and deterministic optimization,
image registration, image segmentation, Magnetic Resonance Imaging (MRI), Single Photon Emission Computed
Tomography (SPECT).

1. INTRODUCTION

Since the seminal work of Kass et al.1 on 2D shape models, deformable models have gained increasing popularity in
computer vision to segment, match or track rigid and nonrigid objects.2–7 In medical image analysis, deformable
models offer a unique and powerful approach to accommodate the significant variability of biological structures
over time and across different individuals. A survey on deformable models as a promising computer-assisted medical
image analysis technique has been presented by McInerney and Terzopoulos.8 Applications in medical image analysis
include the segmentation of anatomical structures and the registration of multiple images.

Among the different segmentation methods, deformable model-based segmentation relies on or deformable models
of the anatomical structures of interest. Statistical deformable models,2,3,9 in particular, are good candidate for
representing the statistical variability of anatomical structures. For instance, a multislice 2D point distribution
model (PDM)2 has been deformed to match various structures in single modal PET images.10 3D physically-based
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deformable models11–13 constrained by statistical analysis4,14 have also been applied to characterize pathological
shape deformations.15,16

A large variety of medical image registration methods has also been proposed in the literature.17,18 Among
them, deformable model-based registration methods use extracted or modeled anatomical structures (usually curves or
surfaces) to guide the matching process. The majority of these methods are concerned with non-rigid, intra-modality,
and inter-subject registrations. They are based on mathematical models carrying a priori knowledge (atlases), that
are deformed to match an image (model to modality registration)19,10,20,21 or on the elastic deformation of the entire
volume of a subject image to match another subject data (intra-modality inter-subject registration) under some
mathematical constraints.5,22–24

The approach proposed here relies on a 3D physical deformable model that embeds information on the structures
that may be extracted from different image modalities. The different model parts are statistically constrained to
represent the structures of interest and their spatial relations in the different image modalities. These constraints
are learned from a representative population in an off-line training procedure. The head (skull and scalp) and brain
surfaces are extracted from a training set of 3D MRI. These surfaces are then parameterized by the amplitudes of
the vibration modes of a physically-based deformable model4 and a joint model is constructed for each head/brain
pair. The joint model is then statistically constrained by a Karhunen-Loeve decomposition. By these means, the
spatial relation between head and brain structures, as well as, the anatomical variability observed in the training set
are compactly described by a limited number of parameters.

Two applications of the probabilistic deformable model are presented:

• The deformable model-based registration of 3D multimodal (MR/SPECT) brain images by optimizing an
energy function relying on the distance between the statistically constrained model parts and noisy multimodal
data.

• The segmentation of the brain from MRI using the probabilistic constraints embedded in the deformable model.
Given a MRI volume, the head is easily segmented by simple thresholding and region growing techniques.
The deformable model parameters that match the segmented head surface are next recovered by solving an
overconstrained linear system. The deformable model is then used to predict the brain surface in the same
image. This first, approximate, but generally already accurate segmentation, is finally refined using iterative
deterministic optimization.

The remainder of this paper is organized as follows : in Section 2, the parameterization of the head and brain
structures by the vibration modes of a spherical mesh is presented. The statistical training procedure is described
in Section 3. The application of the probabilistic model to multimodal image registration is presented in Section 4.
Brain segmentation from MRI is described in Section 5. Finally, discussion and conclusion are presented in Section
6

2. A MULTI-OBJECT PHYSICS-BASED DEFORMABLE MODEL

To provide a training set, a representative collection of 3D MRI volumes of different patients have first been registered
to a reference image using an unsupervised robust registration technique developed by the authors.25,26 The head
of each volume has then been segmented by simple thresholding27 and region growing. The brain has also been
segmented by a semi-manual technique consisting of thresholding and region growing.28 Both head and brain
contours have been parameterized by the amplitudes of the vibration modes of a deformable spherical mesh.4

The model consists of 3D points sampled on a spherical surface, following a quadrilateral cylinder topology in
order to avoid singularities due to the poles. Each node has a mass m and is connected to its four neighbours with
springs of stiffness k. The model nodes are stacked in vector:

X = (x1, y1, z1, ..., xN , yN , zN , ..., x2N , y2N , z2N , ..., xN ′N , yN ′N , zN ′N )T (1)

where N is the number of points in the direction 0 ≤ φ ≤ 2π and N ′ is the number of points in the direction
0 ≤ θ ≤ π. The model is also characterized by its mass matrix M, its stiffness matrix K and its evolution over time
is controled by its dumping matrix C. The system evolution equation is :

MÜ(t) + CU̇(t) + KU(t) = F(t) (2)



where
U = [~UT

1 (t), ..., ~UT
N (t), ..., ~UT

2N (t), ..., ~UT
N ′N (t)]T (3)

stands for the nodal displacements. Vector ~UT
i (t) represents the displacement of node i with respect to the x, y and

z axes.

The image force vector F(t) is constructed as following: at first, a scalar gi(t) corresponding to the chamfer
distance between node i and its nearest contour point is computed29 (fig. 1). The gradient ∇gi(t) of the above
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Figure 1. (a) A MR image of the training set. (b) Image in (a) segmented from its background. (c) Binary contour
of image in (b). (d) Chamfer distance transform of image in (c).

potential with respect to the three Euclidean space directions provides the following force vectors:

G(t) = [∇gT
1 (t), ...,∇gT

N (t), ...,∇gT
2N (t), ...,∇gT

N ′N (t)]T (4)

In order to catch fine details of the object surface, the force G is projected onto the vector normal to the surface

at each model node. By these means, each point of the spherical mesh evolves along its normal direction and the
amplitude of the displacement is determined by the projection of the image force onto this normal vector :

F(t) = 〈G(t), ~N〉 ~N (5)

where
N (t) = [ ~N T

1 (t), ..., ~N T
N (t), ..., ~N T

2 (t), ..., ~N T
N ′N (t)]T (6)

~N T
i (t) designates the normal to the surface vector at node i and 〈, 〉 stands for the dot product.



Change of basis

Since equation (2) is of order 3NN ′, where NN ′ is the total number of nodes of the spherical mesh, it is solved in a
subspace corresponding to the truncated vibration modes4 using the following change of basis:

U = ΦŨ =
∑

i

ũiφi, (7)

where Φ is a matrix and Ũ is a vector, φi is the ith row of Φ and ũ is a scalar. By choosing Φ as the matrix whose
columns are the eigenvectors of the eigenproblem:

Kφi = ω2
i Mφi, (8)

M and K are simultaneously diagonalized and the system (2) is simplified to 3NN ′ scalar equations4:

¨̃ui(t) + c̃i
˙̃ui(t) + ω2

i ũi(t) = f̃i(t). (9)

In equation (9), ωi designates the ith eigenvalue, ũi is the amplitude of the corresponding vibration mode, c̃i are
the nonzero (diagonal) elements of

C̃ = ΦT CΦ (10)

and
f̃i(t) = ΦT [〈F(t), ~N〉 ~N ]. (11)

The nondiagonal elements of C̃ are zero because we have simplified the dumping matrix of the system by assuming
that the dumping matrix C is constructed using the Caughey series30:

C = M
p−1∑

k=0

αk[M−1K]k (12)

For k = 2, equation (12) reduces to Rayleigh dumping11:

C = α0M + α1K (13)

and equation (10) provides us with the diagonal matrix:

C̃ = αI + βΩ (14)

where I is the identity matrix and Ω is the diagonal matrix whose elements are the eigenvalues ωi.

In our application, the deformable spherical mesh has a cylinder topology in order to avoid singularities due to
the two poles. Let us also notice that the eigenvectors and the eigenvalues of a quadrilateral mesh with cylinder
topology have an explicit expression. The eigenvalues are given by the equation:

ω2
p,p′ =

4k

m

(
sin2 pπ

2N
+ sin2 p′π

N ′

)
(15)

and the eigenvectors are obtained by:

φp,p′ =
[
..., cos

(2n− 1)pπ

2N
cos

2n′p′π
N ′ , ...

]T

(16)

with n ∈ {1, 2, ..., N} et n′ ∈ {1, 2, ..., N ′}. For a cylinder topology:




p ∈ {0, ..., N − 1} ,

p′ ∈ {−N ′
2 + 1, ..., N ′

2 } , N ′ even

p′ ∈ {−N ′−1
2 , ..., N ′−1

2 } , N ′ odd
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Figure 2. Head and brain parameterization from 3D MRI. (a) A head image and the initial spherical mesh super-
imposed. (b) The deformable model at equilibrium. (c) The segmented brain from the image in (a) and the initial
spherical mesh superimposed. (d) The deformable model at equilibrium.

3. STATISTICAL TRAINING

For each image pair i = 1, ..., n in the training set, a vector ai containing the M
′

lowest frequency vibration modes
describing the head (ũh

i ) and the M
′′

lowest frequency vibration modes describing the brain (ũb
i ) is then created:

ai = (ũh
i , ũb

i )
T (17)

where:

ũh
i = (ũh

1 , ũh
2 , . . . , ũh

M ′ )i (18)

ũb
i = (ũb

1, ũ
b
2, . . . , ũ

b
M ′′ )i (19)

with 3(M
′
+ M

′′
) < 6NN ′.

Random vector a is statistically constrained by retaining the most significant variation modes in its Karhunen-
Loeve (kl) transform2,3,14:

a = ā + Pb (20)

where

ā =
1
n

n∑

i=1

ai (21)



is the average vector of vibration amplitudes of the structures belonging to the training set, P is the matrix whose
columns are the eigenvectors of the covariance matrix

Γ = IE [(a− ā)T (a− ā)] (22)

and
bi = PT (ai − ā) (23)

are the coordinates of (a− ā) in the eigenvector basis.

The deformable model (corresponding to the head and brain contours) is finally parameterized by the m most
significant statistical deformation modes stacked in vector b. By modifying b, both the head and the brain are
deformed (fig. 3), according to the anatomical variability observed in the training set. Given the double initial
spherical mesh:

X̄ =
(

X̄H

X̄B

)
(24)

where

X̄H = (x̄h
1 , ȳh

1 , z̄h
1 , . . . , x̄h

N ′N , ȳh
N ′N , z̄h

N ′N )T (25)

X̄B = (x̄b
1, ȳ

b
1, z̄

b
1, . . . , x̄

b
N ′N , ȳb

N ′N , z̄b
N ′N )T (26)

the deformable multimodel X(b) is thus represented by:

X(a) = X̄ + Φa (27)

Combining equations (20) and (27) we have:

X(b) = X̄ + Φā + ΦPb (28)

where

Φ =
(

ΦH 0
0 ΦB

)
, P =

(
PHB

PBH

)
(29)

and

ā =
(

āH

āB

)
(30)

In equation (29), the columns of the 3NN ′×3M
′
matrix ΦH are the eigenvectors of the spherical mesh describing

the head surface and the columns of the 3NN ′×3M
′′

matrix ΦB are the eigenvectors of the spherical mesh describing
the brain surface. Besides, the 3M

′ × m matrix PHB and the 3M
′′ × m matrix PBH describe the statistical

dependences of head and brain vibration amplitudes observed in the training set. Vectors āH and āB are of order
3M

′ × 1 and 3M
′′ × 1 respectively, and vector b has a low dimension m ¿ 3 (M

′
+ M

′′
). In our preliminary

implementation, typical values are NN ′ ' 20000, M
′ ' M

′′ ' NN ′
4 ' 5000 and m ' 10. As it can be seen, thanks

to the kl representation, only a few parameters (m ' 10) are necessary to describe the variations of the deformable
model.

4. DEFORMABLE MODEL-BASED REGISTRATION

Registration of the multimodal image pair consists in estimating the rigid transformation parameters Srig (3D rotation
and translation parameters) that have to be applied to the image to be registered (here the SPECT image) in order to
match the reference image (here the MRI). The registration relies on (noisy) head contours extracted from the MRI
and (noisy) brain contours extracted from the SPECT image. These structures do not overlap but the deformable
model represents the relative location of the head and brain contours and accounts for the anatomical variability
observed among the training population. The deformable model is used as a probabilistic atlas that constrains the
rigid registration of the image pair. The transformations between the deformable model and the image pair include
the deformation parameter vector b (representing anatomical variability) and a rigid transformation Smod.

The rigid and deformable transformation parameters Srig, Smod and b yielding the overall “best” match of the
deformable multimodel with the head contour in the MR image and the registered brain contour in the SPECT



b[1] = −√λ1 b[1] = 0 b[1] =
√

λ1

Figure 3. Deformations of a 3D multimodel by varying the first statistical mode in vector b between −√λ1 and
√

λ1.
λ1 designates the first eigenvalue of the covariance matrix Γ. Each column shows a multiplanar (sagittal, coronal,
transversal) view of the 3D model.

image are estimated by minimizing a global energy function based on a distance between the model and the contours
extracted from the image pair31:

(S∗rig,S∗mod,b
∗) = arg min

Srig,Smod,b
[E(Srig,Smod,b)] (31)

where:
E(S∗rig,S∗mod,b

∗) = EMR[XH(Smod,b)] + ESPECT [XB(Srig,Smod,b)]. (32)

EMR is an energy function computed only for the points of XH,B modeling the head and ESPECT depends only on
the points of XH,B modeling the brain :

EMR[XH(Smod,b)] =
∑

p∈XH(Smod,b)

∆MR(p)

ESPECT [XB(Srig,Smod,b)] =
∑

p∈XBSrig,Smod,b)

∆SPECT (p).

In the above equation, ∆MR(p) and ∆SPECT (p) designate the chamfer distance between point p of the deformable
model and the nearest contour point in the MR and SPECT image respectively31 (contours are extracted using
simple thresholding techniques26).



The global minimization (31) may be performed by using a stochastic method, alternately minimizing the objective
function E with respect to the different transformation parameters (Srig,Smod,b).7 In practice, for the application
considered here, we have resorted to the following suboptimal (but fast) estimation technique :

• Initialize the template by the average model X(b = 0).

• Do until convergence:

– Estimate Smod using a principal axes registration technique, bringing into alignment the deformable model
and the MRI.

– Deform the average model by iteratively computing the components of b minimizing (32).

• Estimate Srig using a principal axes registration technique, by bringing into alignment the SPECT image with
the deformable model.

Figures 4 and 5 illustrate an example of a MRI/SPECT registration using the proposed technique. As can be
seen, although the MRI and SPECT head and brain contours do not overlap, the two images have been correctly
registered. It was also not necessary to remove non brain structures (skull and scalp) before registration. The images
in figure 4(a-b) show the two volumes before and after registration. The different steps of the procedure are presented
in figure 5: registration of the average model with respect to the MRI (5(a)), deformation of the head part of the
average model with regard to the MRI contours (fig. 5(b)) and matching of the SPECT volume to the deformed
part of the model describing the brain (fig. 5(c)). The whole registration procedure takes about 20 min cpu time on
a HP C200 workstation for a 1283 image volume.

5. BRAIN SEGMENTATION

In order to extract the brain structure from a patient MRI volume not belonging to the training set, we first represent
its head contour (that has been easily extracted by simple thresholding) by the amplitudes of the vibration modes
of X̄H . The head contour coordinates are then stacked in a vector XH . We solve equation (28) in the reduced space
corresponding to the head coordinates only, to obtain a first least-squares estimate for vector b that matches the
observed head contour:

b = [(ΦHPHB)T ΦHPHB ]−1(ΦHPHB)T (XH − X̄H −ΦH āH). (33)

Let us notice that the above solution is constrained by the matrix PHB which relates the brain contour to the
head contour coordinates, as learned from the training set. Equation (33) provides thus also a good initial estimation
of the location of the brain contour.

Further improvement of this initial solution may be obtained by alternately optimizing an energy function para-
meterized by the m components of vector b,3 in order to fit the part of the model describing the brain to a noisy
contour map Ic extracted from the image.32 In our case, the cost function E to be optimized is defined as:

E =
∑

p∈XB(b)|i=1

Ic(p) (34)

The above cost function simply counts the number of points of the model located on a contour point of the brain.

To summarize, the overall segmentation algorithm is based on the following steps:

• Computation of the statistical deformation parameters b by solving the overconstrained system (33).

• Prediction of the brain surface by equation (28).

• Fine-tuning of the solution by deterministic optimization of cost function (34).

Figure 6 presents an example of brain segmentation from 3D MRI. The image in figure 6(a) is a post-operative
MRI. In figure 6(b) the head surface is segmented and parameterized by the physics-based deformable model. The
head surface coordinates combined with the probabilistic model provides a good prediction of the brain surface (fig.
6(c)) which is then fine-tuned (fig. 6(d)-(e)). The whole segmentation process takes about 10 min cpu time on a HP
C200 workstation for a 1283 image volume.
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Figure 4. MRI/SPECT registration using the deformable multimodel. (a) MRI and SPECT volumes before (a)
and after (b) registration. The SPECT contours are superimposed onto the MRI. The intermediate steps of the
registration procedure are shown in figure 5

6. DISCUSSION AND CONCLUSION

We have presented a probabilistic deformable model carrying information both on the spatial relation between
head and brain structures and on the anatomical variability of these two structures observed over a representative
population. Applications of the probabilistic model include the registration of multimodal image pairs (MRI/SPECT)
and the segmentations of anatomical structures from a given modality (MRI).

The major advantage of the technique is that it is based on a priori statistical knowledge rather than grey-
level information and consequently it is not affected by noise, missing data or outliers. Thanks to the statistical
constraints embedded in the deformable model, the method could be applied to the segmentation of the brain
structure from post operative images where missing anatomical structures lead standard voxel-based techniques to
erroneous segmentations.

The major perspective of our work is to incrementally extend the model by representing other anatomical struc-
tures of the brain (ventricules, corpus callosum, hippocampus, etc.) in order to create probabilistic anatomical atlas
of the brain.
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Figure 5. MRI/SPECT registration of the images in figure 4 using the deformable multimodel. (a) Registration of
the part of the average model describing the head structure to the MRI. The same rigid transformation parameters
are applied to the part of the model describing the brain. (b) Deformation of the part of the average model describing
the head structure to the MRI head surface. The same deformation parameters are applied to the part of the model
describing the brain. (c) Registration of the SPECT volume to the part of the deformable model describing the brain.
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Figure 6. (a) A patient’s MR image. (b) Head surface extraction and parameterization of the image in (a). (c)
Brain surface prediction using the head surface in (b) and the probabilistic deformable model. (d) The segmented
brain in multiplanar view. (e) The segmented brain in 3D view.
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