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Abstract 
The registration of multimodal images remains an 

intricate issue, especially when the multimodal image 
pair shows non overlapping structures, missing data, 
noise or outliers. In this paper, we present a de- 
formable model-based technique for the rigid registra- 
tion of 2 0  and 3D multimodal images. The deformable 
model embeds a priori knowledge of the spatial cor- 
respondence and statistical variability of the differ- 
ent (eventually non overlapping) image features which 
are used in the registration procedure. The method 
is applied to the intrasubject registration of medical 
MR/SPECT images of the brain b y  constructing a de- 
formable model incorporating information on both MR 
(head) and SPECT (brain) contours. In an off-line 
training procedure, the spatial relations between head 
and brain as well as the anatomical variations of these 
two structures are learned. The registration is per- 
formed by minimizing an objective function involving 
the contours of the MR and SPECT images. 

1 Introduction 
The goal of image registration is to geometrically 

align two or more images so that pixels (or voxels) 
representing the same underlying structure may be su- 
perimposed. Image registration is an important pre- 
liminary step in many application fields involving, for 
instance, the detection of changes in temporal image 
sequences or the fusion of multimodal images [l, 21. 
Medical imaging, with its wide variety of sensors (ther-. 
mal, ultrasonic, X-Ray, MRI and nuclear) is probably 
one of the first application field [ a ] ,  as are remote sens- 

ing, military imaging (visible, IR or radar), multisen- 
sor robot vision and multisource imaging used in the 
preservation of artistic patrimony. 

Although a large variety of image registration meth- 
ods have been proposed in the literature [l, 21, only a 
few techniques have attempted to address the registra- 
tion of multimodal images showing gross dissimilari- 
ties, non overlapping structures, missing data, noise 
and outliers. The registration problem is indeed par- 
ticularly difficult for multimodal images, showing an 
“overall” difference (due to differences in the char- 
acteristics of the scene observed by multiple sensors) 
and for which it is sometimes difficult to find image 
features that match exactly in the different modali- 
ties. This is the case when the multimodal pair is 
used for the complementary and non redundant infor- 
mation one image provides with respect to the other. 
When there are no overlapping structures in the im- 
age pair, the registration problem becomes involved. 
Image models, representing the relative location of the 
image features used in the different modalities, have 
to be introduced. 

Since the seminal work of Kass et al. [3] on 2D 
shape models, deformable models have gained increas- 
ing popularity in computer vision to segment, match 
or track rigid and nonrigid objects [4, 5, 6, 71. In med- 
ical image analysis, deformable models offer a unique 
and powerful approach to accommodate the significant 
variability of biological structures over time and across 
different individuals. A survey on deformable models 
as a promising computer-assisted medical image anal- 
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ysis technique may be found in [8]. A recent survey of 
medical image registration is presented in [a ] .  

Among the different registration methods that can 
be identified, segmentataon-based regastratlon methods 
rely on rigid or deformable models of the structures 
(usually regions, surfaces or curves) used in the align- 
ment procedure (see [a]). Statistical deformable mod- 
els [9, 10, 71 in particular, are good candidate for 
representing the spatial relations and the statistical 
variability of the image features which are used as a 
support for the registration. In [ I l l ,  for instance, a 
multislice 2D point distribution model (F’DM) [9] is 
deformed to match various structures in single modal 
PET images. The approach proposed heire relies on 
a 3D physical deformable model that embeds infor- 
mation on the structures that may be extracted from 
different image modalities. The different rnodel parts 
are statistically constrained to represent the structures 
of interest and their spatial relations in the different 
image modalities. These constraints are learned from 
a representative population in an off-line training pro- 
cedure. 

The approach is applied to the registration of 2D 
and 3D Magnetic Resonance (MR) and Single Photon 
Emission Computed Tomography (SPECT) images by 
modeling the head contour in the MR images and the 
brain contour in the SPECT volumes. These struc- 
tures are easily extracted from these ima,ge modali- 
ties (fig. 2 )  but they do not overlap in the registered 
image pair. The learning of the spatial relation be- 
tween head and brain (using a representative training 
set) thus provides a robust solution to the registration 
problem, although the images in the pair show differ- 
ent structures (see fig. 2). This approach is also a first 
step towards the creation of an anatomical atlas that 
may be used both for segmentation, intrasubject and 
intersubject registration [a, 121. 

2 A statistical deformable mulltimodel 
To provide a training set, a representative collection 

of 3D MR/SPECT image pairs of differeint patients 
have first been rigidly registered to a reference MR im- 
age. To this end a supervised Segmentation technique 
has been used, to remove non brain structures (skull 
and scalp), which are visible in the MR images, but 
have no counterpart in the SPECT images. The reg- 
istration is performed on these pre-processed images, 
using an unsupervised robust multimodal registration 
technique developed by the authors [13, 141. 

The head and the brain have then been segmented 
from the MR and the SPECT volumes respectively 
and have been parameterized by the amplitudes of the 
vibration modes of a deformable spherical mesh [15], 

by solving the system evolution equation: 

M U ( t )  + C U ( t )  + K U ( t )  = F ( t )  (1) 

where M, C ,  K are the mass, dumping and stiffness 
matrices of the system, U stands for the nodal dis- 
placements and F is the image force [16]. Equation 
(1) is of order 3 N ,  where N is the total number of 
nodes of the spherical mesh. It is solved in the sub- 
space of the vibration modes [15] using the following 
change of basis vectors: 

u = aTU = Ciiiq5i, (2) 
i 

where CP is a matrix and U is a vector, q5i is the ith row 
of @ and ii is a scalar. By choosing @ as the matrix 
whose columns are the eigenvectors of the eigenprob- 
lem: 

Kq5i = w?Mdi, (3) 
M and K are simultaneously diagonalized and the sys- 
tem (1) is simplified to 3N scalar equations [15]: 

E$) +&;.ti@) + w”&) = &(t ) .  (4) 

In equation (4), wi designates the ith eigenvalue of 
equation (3), iii is the amplitude of the corresponding 
vibEation mode, Ei ar_e the nonzero (diagonal) elements 
of C = G T C @  and f : ( t )  = aTF(t) .  

For each image yair i in the training set, a vector 
ai containing the N most important vibration modes 
describing the head in the MR image (uYR) and the 
N” most important vibration modes describing the 
brain in the SPECT image (uSPECT) is then created: 

(5) 
where: 

with 3 ( N ’  + N ” )  < 6N. 
Random vector ai is then statistically constrained 

by retaining the most significant variation modes in 
its Karhunen-Loeve (KL) transform [9, 7, 171: 

ai = 5 + Pbi (8) 

where % = ai is the average vector of the train- 
ing set, P is the matrix whose columns are the eigen- 
vectors of the covariance matrix 

r = E[(ai - %IT(ai - 5)] (9) 
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and 

are the coordinates of (ai -a) in the eigenvector basis. 
The deformable model (corresponding to the head 

and brain contours here) is finally parameterized by 
the m most significant statistical deformation modes 
stacked in vector b. By modifying b, both the head 
and the brain are deformed (fig. l), according to 
the anatomical variability observed in the training set. 
Given a double initial spherical mesh X H , B ,  the de- 
formable multimodel XH,B (b) is thus represented by: 

bi = PT(ai - 5) (10) 

XH,B (b) = XH,B + @a + @Pb (11) 

with a low dimension m << 3 (N’ + N ” )  for b. In 
our application, typical values are N N 20000, N’ 2: 
N” 2: $ N 5000 and m N 10. Thanks to the KL 
representation] only a few parameters are necessary to 
describe the variations of the deformable multimodel. 

3 Deformable model-based registra- 

Registration of the multimodal image pair consists 
in estimating the rigid transformation parameters STig 
(3D rotation and translation parameters) that have 
to be applied to the image to be registered (here the 
SPECT image) in order to match the reference image 
(here the MRI). The registration relies on (noisy) head 
contours extracted from the MRI and (noisy) brain 
contours extracted from the SPECT image. These 
structures do not overlap but the deformable model 
represents the relative location of the head and brain 
contours and accounts for the anatomical variability 
observed among the training population. The de- 
formable model is used as a probabilistic atlas that 
constrains the rigid registration of the image pair. The 
transformations between the deformable model and 
the image pair include the deformation parameter vec- 
tor b (representing anatomical variability) and a rigid 
transformation Smod. 

The rigid and deformable transformation parame- 
ters &is, Smod and b yielding the overall “best” match 
of the deformable multimodei with the head contour in 
the MR image and the registered brain contour in the 
SPECT image are estimated by minimizing a global 
energy function based on a distance between the model 
and the contours extracted from the image pair [16]: 

tion 

min [E(Srig, Smod,  b)] 
arg S r z g i S n o d l b  

(Srig, b”) = 

(12) 
where: 

E ( . )  = E M R [ X H ( & “ , b ) ]  

+ ESPECT[XB(&ig, Smodjb)]. (13) 

EMR is an energy function computed only for the 
points of XH,B modeling the head and ESPECT de- 
pends only on the points of X H , B  modeling the brain : 

EMR[XH(&”,b)] = A M R ( P )  
P E X H  

EsPEcT[XB(S~~~, Smod, b)] = ASPECT(P) .  

In the above equation, A M R ( ~ )  and A S P E C T ( ~ )  des- 
ignate the chamfer distance between point p of the de- 
formable model and the nearest contour point in the 
MR and SPECT image respectively [16] (contours are 
extracted using simple thresholding techniques [ 141). 

The global minimization (12) may be performed 
by using a stochastic method, alternately minimizing 
the objective function I with respect to the differ- 
ent transformation parameters (S,ig,Smod,b) [6]. In 
practice, for the application considered here, we have 
resorted to the following suboptimal (but fast) esti- 
mation technique : 

P E X B  

0 Initialize the template by the average model 
X H , B  (0). 

0 Do until convergence: 

- Estimate Smod using a principal axes reg- 
istration technique, bringing into alignment 
the deformable model and the MRI. 

- Deform the average model by iteratively 
computing the components of b minimizing 
(13).  

0 Estimate Srig using a principal axes registration 
technique, by bringing into alignment the SPECT 
image with the deformable model. 

Figure 2 illustrates an example of a 2D (single slice) 
MRI/SPECT registration using the proposed tech- 
nique (experiments of the method on 3D images are 
in progress). As can be seen, although the MRI and 
SPECT head and brain contours do not overlap, the 
two images have been correctly registered. It was also 
not necessary to remove non brain structures (skull 
and scalp) before registration. 

4 Conclusion 
We have presented a statistical deformable model- 

based technique for the registration of non overlapping 
multimodal data. Thanks to the statistical constraints 
embedded in the deformable model, the registration of 
multimodal images showing gross dissimilarities, non 
overlapping structures, missing data, noise and out- 
liers becomes possible. 
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The technique is applied to the registration of MR 
and SPECT images, showing partially noli redundant 
(anatomical and functional) information. The above 
method is not limited to MR/SPECT modalities or 
medical images but may be adapted to other image 
modalities used in remote sensing, milita,ry imaging, 
multisensor robot vision or industrial applications. 

The described approach is also a first step towards 
the creation of an anatomical atlas that may be used 
for brain segmentation, intrasubject and htersubject 
registration. A first application concerning the seg- 
mentation of the brain in MR images is described in 
[121. 
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Figure 1: Deformations of a 30 multimodel b y  varying the first statistical mode in vector b between -6 and 
6. XI designates the first eigenvalue of the covariance matrix I?. (a) Configuration for b[l] = -6. (b) 
Configuration fo r  b[l] = 0 ,  i.e. the average model. ( e )  Configuration for b[l] = 3 6 .  Each row shows ci 

multiplanar (sagital, coronal, transversal) view of the 30 model. 

d 

Figure 2: 2 0  MR/SPECT registration using the deformable multimodel. (a) M R  image. (b) SPECT image. 
( e )  Registered SPECT image with the deformable multimodel superimposed. (d) The M R  image in (a)  with the 
resulting deformable multimodel superimposed. 
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