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Abstract 
In this paper, we introduce a statistical deformable 

model for the segmentation of the brain structure in 3D 
MRI. Our approach relies on a physically deformable 
multimodel that embeds information on head (skull and 
scalp) and brain by parameterizing these structures by 
the amplitudes of vibration of an initial spherical mesh. 
The spatial relation between head and brain is then 
statistically learned through an off-line training procedure 
using a representative population of 3D MRI. In order to 
segment the brain from a MR image not belonging to the 
training set, we first segment the head surface. The brain 
contour coordinates are then iteratively recovered using 
their statistical relations to the head coordinates. 

I .  INTRODUCTION 
Since the seminal work of Kass et al. [l] on 2D 

shape models, deformable models have gained increasing 
popularity in computer vision to segment, match or 
track rigid and nonrigid objects [2, 3, 4, 5 ,  6, 7, 81. In 
medical image analysis, deformable models offer a unique 
and powerful approach to accommodate the significant 
variability of biological structures over time and across 
different individuals. A survey on deformable models as 
a promising computer-assisted medical image analysis 
technique may be found in [9]. 

Among the different segmentation methods, 
deformable model-based segmentation relies on rigid or 
deformable models of the structures (usually regions, 
surfaces or curves) of interest. Statistical deformable 
models [3, 4, 101, in particular, are good candidate for 
representing the statistical variability of anatomical 
structures. In [ll], for instance, a multislice 2D 
point distribution model (PDM) [3] is deformed to 
match various structures in single modal PET images. 
More recently, 3D physically-based deformable models 
constrained by statistical analysis have also been applied 
to characterize pathological shape deformations in [12]. 

In this paper, we introduce a deformable model-based 

approach for the segmentation of the brain structure in 
3D MRI. Our approach relies on a learned deformable 
multimodel that embeds information about the different 
anatomical structures that are to be extracted from 
the MRI. The different model parts are statistically 
constrained to represent the structures of interest and 
their spatial relationships. These constraints are learned 
from a representative population in an off-line training 
procedure. This approach is applied here by modeling 
the head (skull and scalp) and brain contours in the MR 
images. As the head structure can easily be segmented 
from the MR volume, the brain contour coordinates may 
be recovered reliably using their statistical (anatomical) 
relationship to the head coordinates, as explained in the 
following. 

11. A STATISTICALLY LEARNED MULTIOBJECT 
DEFORMABLE MODEL 

To provide a training set, a representative collection 
of 3D MRI volumes of different patients have first been 
registered to a reference image using an unsupervised 
robust registration technique developed by the authors 
[13, 141. The head of each volume has then been 
segmented by simple thresholding [ 151 and region growing. 
The brain has also been segmented by a semi-manual 
technique consisting of thresholding and region growing 
[16]. Both head and brain contours have then been 
parameterized by the amplitudes of the vibration modes 
of a deformable spherical mesh [5] by solving the system 
evolution equation: 

MU(t) + CU( t )  + KU(t) = (F(t),d)d (1) 

where M,  C ,  K are the mass, dumping and stiffness matrix 
of the system, U stands for the nodal displacements, F is 
the image force at each-node of the spherical mesh, which 
is projected on vector n/ which is normal to the surface at 
each node, in order to capture fine details of the contour. 
The image force F(t) at each pixel is the chamfer distance 
between the image point and its nearest contour point 1171. 
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Equation (1) is of order 3 N ,  where N is the total 
number of nodes of the spherical mesh. It is solved in the 
subspace of the vibration modes [5] using the following 
change of basis vectors: 

i 

where 8 is a matrix and U is a vector, 4, is the i th row of 
8 and 4 is a scalar. By choosing 8 as the matrix whose 
columns are the eigenvectors of the eigenproblem: 

K& = w;M+~, ( 3 )  

M and K are simultaneously diagonalized and the 
system (1) is simplified to 3N scalar equations [5]: 

&(t)  + &it&) + w";(t) = j&. (4) 

In equation (4), wj designates the i th eigenvalue of 
equation ( 3 ) ,  iii is the amplitude of the corresponding 
vibration mode, E j  are the nonzero (diagonal) elements of 

c = a T C 8  (5) 

and 
&(t)  = @[(F(t),J)/ifi. ( 6 )  

The nondiagonal elements of are zero because we 
have simplified the dumping matrix of the system by 
assuming that the dumping matrix C is constructed using 
the Caughey series [18]: 

0 - 1  

(7) 
k=O 

For k = 2, equation (7) reduces to Rayleigh dumping [19]: 

C = aoM + alK (8) 

e=CXaI+pfl (9) 

and equation (5) provides us with the diagonal matrix: 

where I is the identity matrix and 51 is the diagonal matrix 
whose elements are the eigenvalues wi. 

For each image p,air i in the training set, a vector 
ai containing the N most important vibration modes 
describing the head (fit) and the NI' most important 
vibration modes describing the brain (6:) is then created: 

where: 

with 3(N' + N " )  < 6 N .  

Random vector ai is then statistically constrained 
by retaining the most significant variation modes in its 
Karhunen-Loeve (KL) transform [3, 4, 201: 

ai = B + Pbi (13) 
where 

i=l  

is the average vector of vibration amplitudes of the 
structures belonging to the training set, P is the matrix 
whose columns are the eigenvectors of the covariance 
matrix 

and 

are the coordinates of (ai - 5) in the eigenvector basis. 
The deformable model (corresponding to the head and 

brain contours) is finally parameterized by the m most 
significant statistical deformation modes stacked in vector 
b. By modifying b, both the head and the brain are 
deformed (fig. l) ,  according to the anatomical variability 
observed in the training set. Given the double initial 
spherical mesh 

r = E[(ai - 6)T(aj - E)] 

bi = PT(ai - 5) 

(15) 

(16) 

a = ( % )  (17) 

where 

(18) 
h h h  h h T  

wH = y1 > 7 . * 2 x$ > y N ,  z N ' )  

X B  = ( E ! ,  y!, z!, . . , Z ~ I I ,  & I ,  % ; I I ) ~  (19) 

the deformable multimode1 X(b) is thus represented by: 

X(b) = X + @E+ 8 P b  (20) 
where 

and . = ( E )  
In equation (21), the columns of the 3N x 3N' matrix 

Fl 
OH are the eigenvectors of the spherical mesh describin 
the head surface and the columns of the 3N x 3N 
matrix Q B  are the eigenvectors of the spherical, mesh 
describing the brain surf:Fe. Besides, the 3N x m 
matrix PHB and the 3N x m matrix PBH describe 
the statistical dependences of head and brain vibration 
amplitudes observed in ,the training ,set. Vectors 5~ 
and 5~ are of order 3N x 1 and 3N x 1 respectiveAy, 
and vector b has a low dimension m << 3 ( N  + N ). 
In our pre1imi:ary implementation, typical values are 
N N 20000, N 5: N N 4 N 5000 and m N 10. As 
it can be seen, thanks to the K L  representation, only a 
few parameters (m N 10) are necessary to describe the 
variations of the deformable model. 
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b[l] = -6 b[l] = 0 b[ll = f i  
Figure 1: Deformations of a 3D multimodel by varying the first statistical mode in vector b between -A and A. XI 
designates the first eigenvalue of the covariance matrix I?. Each column shows a multiplanar (sagittal, coronal, transversal) view 
of the SD model. 

111. BRAIN SEGMENTATION 

In order to extract the brain structure from a patient 
MRI volume not belonging to the training set, we first 
represent its head contour (that has been easily extracted 
by simple thresholding) by the amplitudes of the vibration 
modes of X H .  The head contour coordinates are then 
stacked in a vector XH. We solve equation (20) in the 
reduced space corresponding to the head coordinates only, 
to obtain a first least-squares estimate for vector b that 

matches the observed head contour: 

Let us notice that the above solution is constrained by 
the matrix P H B  which relates the brain contour to the 
head contour coordinates, as learned from the training set. 
Equation (23) provides thus also a good initial estimation 
of the location of the brain contour. 

Further improvement of this initial solution may be 
obtained by alternately optimizing an energy function 
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parameterized by the m components of vector b [4], in 
order to fit the part of the model describing the brain to 
a noisy contour map IC extracted from the image [21] (fig. 
2c) ,  In our case, the cost function E to be optimized is 
defined as: 

“ I  

iEXBlk1 
E =  I c ( X E ( b ) )  (24) 

The above equation counts the number of points of the 
model located on a contour point. 

To summarize, the overall segmentation algorithm is 
based on the following steps: 

0 Computation of the statistical deformation 
parameters b by solving the overconstrained 
system (23). 

0 Prediction of the brain surface by equation (20). 

0 Fine-tuning of the solution by deterministic 
optimization of the cost function (24). 

The whole segmentation process takes about 20 min CPU 

time on a HP C200 workstation for a 1283 image volume. 
Figure 3 illustrates a preliminary exemple of segmentation 
obtained with this technique. 

IV. CONCLUSION 
We have presented a statistical deformable model- 

based technique for the segmentation of the brain 
structure in 3D MRI. Thanks to the statistical constraints 
embedded in the deformable model, the method should 
be robust and it could be applied to the segmentation 
of the brain structure from post operative images where 
missing anatomical structures lead standard voxel-based 
techniques to erroneous segmentations. This aspect is a 
perspective of our study. 

The method is not limited to MRI brain segmentation 
but it may be adapted to other image modalities and/or 
to other anatomical structures or functional information. 
The described approach is also a first step towards the 
creation of an anatomical atlas that may be used for brain 
segmentation, intrasubject and intersubject registration. 
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