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Abstract. In this paper, we develop data driven registration algorithms,
relying on robust pixel similarity metrics, that enable an accurate (sub-
pixel) rigid registration of dissimilar single and multimodal 2D/3D im-
ages. A “soft redescending” estimator is associated to a top down stochatic
multigrid relaxation algorithm in order to obtain robust, data driven
multimodal image registrations. With the stochastic multigrid strategy,
the registration is not affected by local minima in the objective function
and a manual initialization near the optimal solution is not necessary.
The proposed robust similarity metrics are compared to the most popular
standard similarity metrics, on synthetic as well as on real world image
pairs showing gross dissimilarities. Two case-studies are considered: the
registration of single and multimodal 3D medical images and the match-
ing of multispectral remotely sensed images showing large overcast areas.

1 Introduction

Although a large variety of image registration methods have been proposed in
the literature, only a few techniques have attempted to address the registration
of images showing gross dissimilarities. If the case of single modal dissimilar
images has been considered in [1], to our knowledge, no specific model has
been proposed to handle multimodal images exhibiting large dissimilarities. The
problem is indeed particularly difficult for multimodal images, showing both
localized changes that have to be detected [2] and an “overall” difference (due
to differences in the characteristics of the scene observed by multiple sensors).
Medical imaging, with its wide variety of sensors (thermal, ultrasonic, X-Ray,
MRI and nuclear) is probably one of the first application field, as are remote
sensing, military imaging (visible, IR or radar) and multisensor computer vision.
In the present paper, we develop data driven registration methods, relying on

pixel (or voxel) similarity metrics, that enable an accurate (subpixel) rigid regis-
tration of dissimilar single or multimodal 2D/3D images. Gross dissimilarities are
handled by considering similarity measures related to robust M-estimators. In
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particular, a novel pixel similarity metric is proposed for the multimodal case.
This metric has shown very efficient for the registration of highly dissimilar
images, on which conventional techniques fail. An example of such a multimodal
image pair is given Fig. 5, showing two satellite images of France, taken at
different optical wavelengths and at different dates. Gross dissimilarities, due
to the presence of large overcast areas may be observed (Fig. 5(b)). Subpixel
registrations have been obtained in this case (see Section 4).
The remainder of this paper is organized as following.Background and related

approaches are presented in Section 2. In Section 3, we introduce two robust
similarity metrics for the registration of single and multimodal images. The
data-driven registration algorithm, based on these robust similarity measures,
is described in the same section. In Section 4, the robust similarity metrics are
compared to the most popular standard similarity metrics, on synthetic as well as
on real world image pairs showing gross dissimilarities. The registration accuracy
is evaluated for two case-studies: the registration of single modal (MRI/MRI)
and multimodal (MRI/SPECT) 3D medical images and the matching of multi-
spectral (visible/IR) satellite images showing large overcast areas. The proposed
robust similarity measures compare favourably with all standard (non robust)
techniques (including the quadratic similarity measure and the multimodality
registration criterion devised by Woods et al. [3]). The multimodal robust simi-
larity metrics shows also (excepted for one particular case) better performances
than the recently proposed mutual information criterion [4,5], that has been
recognized as the most efficient method in several recent studies.

2 Background and Standard Similarity Measures

A complete review of standard registration techniques may be found in [6], a
classification in [7] and a comparison in [8]. Similarity measure-based approaches
rely on the minimization of cost functions that express the pixel or voxel sim-
ilarity of the images to be aligned. They have been proposed for both single
and multimodal image registration [4,5,9,10,11,12]. Similarity metrics for the
registration of 2D single modal images, that are to a certain extent robust to
image changes have been described by Herbin et al. in [1]. Herbin et al. make use
of deterministic and stochastic sign change criteria to obtain robust registrations
of medical image sequences in critical situations corresponding for instance to
lesion evolutions [1]. Contrary to the metrics described below, this method does
not handle the case of multimodal images.
In this section we briefly present the most popular similarity metrics and

describe their limitations. These similarity metrics will be compared, in Section
4, to the robust metrics we propose.
Pixel (or voxel) similarity metric-based registration consists in estimating

the parameters Θ of the rigid transformation TΘ minimizing a cost function
E (Iref(.), Ireg(TΘ(.))), that expresses the similarity between the single or mul-
timodal image pair:

Θ∗ = argmin
Θ
[E (Iref (.), Ireg(TΘ(.)))] , (1)
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where Θ = (tX , tY , tZ, θ̂X , θ̂Y , θ̂Z)
T is a vector containing the 3D translation

parameters, (tX , tY , tZ) with respect to the X, Y and Z axis and the Euler

rotation angles (θ̂X , θ̂Y , θ̂Z), Iref (.) represents the reference image and Ireg(.)
the image to be registered.
The classical quadratic similarity metric assumes that the two registered

images differ only by an additive Gaussian noise [11], leading to the following
least squares cost function:

E (Iref (.), Ireg(TΘ(.))) =
∑
x

[Iref(x) − Ireg(TΘ(x))]
2 . (2)

where x designates the pixel (or voxel) coordinates. Quadratic similarity metrics
are related to gaussian sensor models [11], which do not take into account the
interimage dissimilarities that may occur in real world applications.
A popular similarity measure for the registration of multimodal image pairs

(widely used in medical imaging) is the multimodality similarity metric devised
by Woods et al. [3]. The fundamental assumption related to Woods criterion
is that a uniform region in the reference image corresponds, after registration,
to a region that is also uniform in the second image (inter-image uniformity
hypothesis).
The reference image is thus first partitioned into G grey level classes, where

G denotes the number of grey levels of this image. The resulting spatial partition
is projected on the image to be registered, yielding the same partition of this
second image. The expected values µg, g = 1, ..., G and the standard deviations
σg, g = 1, ..., G of each segmented region in the second image are then computed.
If the two images are correctly registered, Woods assumes that the normalized
variance

σg
µg
is minimum over the entire image [3]. The following inter-image

uniformity cost function is thus defined:

E (Iref(.), Ireg(TΘ(.))) =
G∑
g=1

Ng

N

σg(TΘ(.))

µg(TΘ(.))
, (3)

where:

σg(TΘ(.)) =

√ ∑
x|Iref (x)=g

[Ireg(TΘ(x)) − µg(TΘ(.))]2 , (4)

and:

µg(TΘ(.)) =
1

Ng

∑
x|Iref (x)=g

Ireg(TΘ(x)). (5)

In (3), N represents the number of voxels in the images and Ng stands for
the population of voxels having the value g in the reference image.
As pointed out by Woods [3], the inter-image uniformity hypothesis may

only be a crude approximation when gross dissimilarities are present in the
multimodal image pair. This is always the case when the multimodal pair is
used for the complementary and non redundant information one image provides
with respect to the other.
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We finally consider the criterion based on the maximization of the mutual
information proposed recently and independently in [4,5]. This criterion is based
on the same partitioning as in equation (3). The assumption is that the the
mutual information is maximum when the two images are correctly registered,
yielding the following mutual information cost function [4,5]:

E
(
Iref (.), Ireg(TΘ(.))

)
= −

G∑
g=1

K∑
k=1

p(g, k) log
p(g, k)

p(g)p(k)
(6)

where G and K stand for the number of grey levels of Iref and Ireg. The
joint probabilities p(g, k) are the elements of the cooccurrence matrix of Iref (.)
and Ireg(TΘ(.)) and p(g) and p(k) are the marginal probabilities of Iref (.) and
Ireg(TΘ(.)), both computed from the normalized histograms of the two images.
This criterion has been recognized, in several recent studies, as yielding the

best results in multimodal medical image registration. It will be compared to
our robust multimodal registration criterion in Section 4.

3 Robust Similarity Metrics-Based Registration

3.1 Robust similarity measures

Standard similarity-based approaches do not model the information differences
between images in a single or multimodal pair and, as a consequence, are not
robust with respect to them. To increase robustness, the cost function must thus
be forgiving about outlying measurements.
Robust estimators have become popular in computer vision applications be-

cause they have proven effective in tolerating gross outliers in data [13,14]. A
review on robust estimators in computer vision may be found in [13]. A collection
of non linear robust estimators, including least median of squares, least trimmed
squares, M-estimators, Hough transforms, RANSAC and MINPRAN algorithms
are presented in [15,14]. The robustness of these estimators to situations in which
mixture of data from multiple (coherent) structures plus gross outliers are to
be handled is studied in depth in [14]. Stewart [14] shows that the estimated
parameters may be heavily skewed in such situations.
In the following we consider the class of M-estimators [16] that has shown

attractive properties (i.e., satisfactory breakdown points and moderate com-
putational cost) in computer vision applications [15,17]. This class of robust
estimators reduces the optimization problem to a simple, low cost, weighted least
squares problem, as explained in [15,13]. A robust M-estimator of parameters
Θ is obtained by introducing a robust error norm (“loss” function) ρ in the
similarity metrics (2) and (3) [13].
For the single modality case, we consider the now standard robust least

squares cost function:

E (Iref (.), Ireg(TΘ(.))) =
∑
x

ρ {Iref(x) − Ireg(TΘ(x)), C} . (7)
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where C is a scale (noise) parameter and ρ is a non quadratic error norm (penalty
function) associated with the M-estimator. Variants of this robust cost function
have been used with success in image processing and computer vision problems
such as surface reconstruction [15], image segmentation, computed imaging, op-
tical flow measurement [18,17], etc.
For multimodal images, we define a robust inter-image uniformity cost func-

tion:

E (Iref (.), Ireg(TΘ(.))) =

G∑
g=1

Ng

N
σ̃g(TΘ(.)) (8)

where:

σ̃g(TΘ(.)) =

√ ∑
x|Iref (x)=g

ρ {Ireg(TΘ(x))− µ̃g(TΘ(.)), C} , (9)

and

µ̃g(TΘ(.)) = arg min
µg

1

Ng

∑
x|Iref (x̄)=g

ρ {Ireg(TΘ(x)) − µg, C} , (10)

Let us notice that the non robust cost functions (2) and (3) correspond to the
special case ρ(x, C) = x2 (for defining (8) we consider a non normalized version
of (3), which has shown more efficient than the original Woods’ criterion). In the
single modal case (7), the cost function is simply defined as a robust error norm
of the residual differences between the two registered images. In the multimodal
case (8), a “robust variance” σ̃g is computed for each region of the image to
be registered, according to (9). This robust variance does take into account
gross outliers in the registered image, thanks to the robust error norm ρ. A
robust estimation of the expected value µ̃g (10) of the region is simultaneously
computed by the same M-estimator.
For the experiments presented in this paper we have tested two “hard re-

descending” M-estimators [14] (namely the truncated quadratic ρ-function [15]
and the Tukey “biweight”ρ-function), as well as a “soft redescending” estima-
tor (the Geman-McClure ρ-function [15]). We privileged the Geman-McClure
estimator because it required less calculations for almost the same accuracy as
the Tukey “biweight”estimator. It showed less sensitive to initialization than the
truncated quadratic. The Geman-McClure ρ-function [15] is defined by:

ρ(x, C) =
x2

C2 + x2
.

As the magnitude of the residuals increases and grows beyond a point, its in-
fluence on the solution begins to decrease and the value of ρ(x) approaches a
constant. The scaling parameter C affects the point at which the influence of
outliers begins to decrease.
The calculation of the registration parameters Θ involves the minimization

of the non-linear cost functions (7) or (8) which depend on the scale parameter
C. A good strategy [14] consists in starting the optimization procedure with
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a high value for C. The value of C decreases during the minimization process
following the formula C = α.C with 0.8 < α < 1 until C reaches a predefined
value. The effect of this procedure is that initially no data are rejected as outliers
and a first, crude solution is obtained. During the following optimization steps
the influence of the outliers is gradually reduced by decreasing C, leading to a
reliable estimation of the rigid transformation parameters, which is robust to
gross image differences. In other experiments we have also estimated C as the
noise variance computed on homogeneous regions of the original images (other
statistical methods for estimating C from the data may be found in [14]). These
different strategies provided us with almost the same qualitative results.

3.2 The Multiresolution Stochastic Registration Algorithm

The robust estimators and the registration criteria considered previously are
highly non linear, involving non convex cost functions having multiple local
minima [19]. In most image registration methods based on the minimization
of a cost function, deterministic optimization algorithms are applied. They are
known to be very sensitive to local minima, unless they are initialized close to
the optimal solution.
In order to increase robustness to local minima of the similarity function and

to obtain data driven registrations, the parameter space has been discretized and
a fast stochastic optimization algorithm has been applied. Stochastic optimiza-
tion, based on random sampling, is far less sensitive to local minima, yielding
better, often close to the optimal solutions [14]. The optimization technique used
in our implementation is based on the Gibbs sampler [20]. A high value is adopted
for the initial temperature in a simulated annealing procedure and a fast expo-
nentially decreasing temperature schedule is considered instead of the optimal
logarithmic descent [20]. The solution obtained after a given number of steps
is further refined by a deterministic extension of the above algorithm, known
as Iterated Conditional Modes (ICM). ICM is a deterministic Gauss-Seidel like
algorithm, that only accepts configurations decreasing the cost function. It has
fast convergence properties and local minima are not a problem, since the first
stochastic optimization step provides a good initialization.
The optimization algorithm was applied on a sequence of multiresolution

grids, using a standard top-down approach starting from the coarsest resolution
level [17,21]. The solution obtained at a given resolution level is interpolated
and forwarded to the next, finer resolution. The algorithm first carries out the
calculations for every 81st (16th) voxel (pixel) in the 3D (2D) images. After
the algorithm has converged, the resulting registration parameters represent the
initial estimate for the next level, where every 27th (8th) voxel is processed, then
every 9th (4th), every 3rd (2nd) and finally every voxel (pixel) in the image. The
search space and the visited configurations were reduced while the resolution
increases in order to gradually fine tune the solutions obtained on the coarser
resolution levels. The first grids generally provided a good approximation of
the final solution. Multigrid matching is usually motivated by the significant
computational gain obtained in the registration. As noticed by several authors
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[19], multigrid algorithms are also far less sensitive to local minima in the cost
function than single resolution optimization schemes. It has indeed been conjec-
tured that multigrid analysis may, to a certain extent, smooth the “landscape”
of the objective function to minimize. This yields fast convergence towards good
solutions [19].

4 Experimental Results

Registration experiments were performed with both 2D and 3D images. The
following similarity measures have been implemented and compared:

– the standard least-squares (LS) similarity measure (Eq. 2) ;
– the inter-image uniformity (IU) criterion [3] (Eq. 3) ;
– the mutual information (MI) criterion [4,5] (Eq. 6) ;
– the robust least-squares (RLS) similarity metrics (Eq. 7) ;
– the robust inter-image uniformity (RIU) criterion (Eq. 8).

LS and RLS may only be applied to single modal image registration, whereas
the other methods (IU, RIU, MI) have been tested both in single and multimodal
registration problems. Two representative case studies have been considered:
the registration of single modal (MRI/MRI) and multimodal (MRI/SPECT) 3D
medical images showing gross outliers or lesion evolution, and the matching of
multispectral (visible/IR) remotely sensed images showing large overcast areas.

4.1 Single Modal Image Registration

Medical Images. A first class of experiments consisted in applying a known
rigid transformation (3D translation and rotation) to a set of MRI volumes to
create a second image set. 25% of the transformed images was then corrupted
by salt and pepper noise, to simulate gross outliers (see Fig. 1(a-b)). For each
method, the estimated registration parameters were compared to the true ones
to determine the accuracy of the registration. Statistics on the registration errors
were computed on a set of 20 different registrations problems, involving trans-
lation parameters between −20 and +20 voxels and rotations between −30 and
+30 degrees. Let us notice that large rotations are generally difficult to handle
with standard, deterministic approaches (in which initializations close to the
desired solution are necessary). This is not the case of the stochastic sampling
algorithm used here.
As we can see in Table 1, the robust algorithms achieved subvoxel registration

errors while the non robust (LS and IU) techniques failed. The MI method, the
“best” method referenced at the present time, also achieved subvoxel registration
but its performances are slightly inferior to the results obtained by the RLS
technique.
Figure 1(c) shows an example where the standard method (LS) failed to

correctly register the MR slices shown in Figures 1(a) and 1(b), but where
the RLS achieved accurate matching by discarding outliers. The difference in
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a b

c d

Fig. 1. Robust registration of MR images. (a) Reference image. (b) Image in (a)
rotated by 20 deg, translated by 10 pixels along the x-axis, 10 pixels along the
y-axis and corrupted at 25% with salt and pepper noise with large magnitude.
(c) Difference between the (noise free) registered image and the image in (a)
(LS similarity metric). (d) Difference between the (noise free) registered image
and the image in (a) (RLS similarity metric)

accuracy is readily visible on the registration error shown in Figures 1(c) and
1(d).
We also show in Fig. 2 an example of the application of the RLS algorithm

to the detection of changes in a set of MRI slices of a multiple sclerosis patient,
acquired at different dates. Figure 2 illustrates a case on which small differences
due to lesion evolution, which were not well distinguished previously due to
misalignment by the standard LS similarity metric (Fig. 2(c)), are now clearly
identified by simple image subtraction (Fig. 2(d)). This result has been validated
by an expert physician from IPB.

Remotely Sensed Images. Two images of France, in the infra-red band of
NOAA (Fig. 3(a-b), acquired at different dates and showing large overcast areas,
were manually registered by an expert from LSIIT to establish ground truth. One
of the images has been transformed using different 2D rotation and translation
parameters and the registration algorithms were applied. This case, contrary
to the example considered previously (Section 4.1), does not correspond to a
corruption of the data by gross outliers, but to the presence of multiple coherent
structures (i.e. ground and clouds) in the data. Mixture of data frommultiple (co-
herent) structures introduces a significant bias in all robust estimators, as shown
in a recent study by Stewart [14]. The performances of the robust methods are
affected by this bias, as can be seen in Table 2 in which the different approaches
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Table 1. Single modal registration of 3D MRI images. An MR volume was
artificially transformed using 20 different rigid transformations and the images
were corrupted at 25% by salt and pepper noise. The average and the standard
deviation of the registration errors computed from the 20 registrations are pre-
sented for the different approaches. Translation errors are given in voxels and
rotation errors in degrees

Approach ∆tx ∆ty ∆tz ∆θ̂x ∆θ̂y ∆θ̂z
LS 2.30± 1.75 2.53± 1.56 2.77± 1.83 4.71± 2.89 5.33± 3.40 5.05± 3.51
IU 1.49± 1.40 1.56± 1.41 1.93± 1.63 3.75± 2.03 3.65± 2.54 2.99± 3.06
MI 0.05± 0.06 0.22± 0.15 0.09± 0.14 0.35± 0.35 0.27± 0.32 0.44± 0.69
RLS 0.04± 0.07 0.16± 0.11 0.06± 0.10 0.41± 0.21 0.16± 0.22 0.33± 0.24
RIU 0.09± 0.05 0.18± 0.14 0.10± 0.05 0.22± 0.34 0.24± 0.17 0.40± 0.59

are compared. The registrations are not as accurate as in the previous case,
although a subpixel accuracy is reached, and the difference between methods is
less pronounced. The robust methods produce nevertheless the best results and
compare favourably to the MI approach.
Figure 3 illustrates the contribution of the RLS metric with respect to a

non robust LS metric, in the registration of the original infra-red image pair.
The original images show a misregistration of about 3 pixels. Clouds in the
second image lead the LS technique to a slight misalignment (Fig. 3(c)) while the
RLS measure provides a more accurate registration (Fig. 3(d)). The difference
is readily visible along the south-west coast of France. The registration errors
presented in Figures 3(c-d) are obtained by subtraction of the registered image
from the reference image in Figure 3(a), followed by contrast modifications for
visualization purpose.

Table 2. Single modal registration of 2D remotely sensed infra-red images.
Two images of the infra-red electromagnetic band of NOAA satellite acquired
at different dates have been manually registered to create ground truth. One
of the images has undergone 20 different rigid transformations using different
translation and rotation values. The average and the standard deviation of the
registration errors are presented for the different approaches. Translation errors
are given in pixels and rotation errors in degrees

Approach ∆tx ∆ty ∆θ̂

LS 0.42± 0.18 0.31± 0.41 0.32± 0.18
IU 0.52± 0.21 0.77± 0.40 0.30± 0.25
MI 0.49± 0.54 0.63± 0.25 0.75± 0.89
RLS 0.36± 0.10 0.27± 0.37 0.30± 0.25
RIU 0.34± 0.17 0.70± 0.28 0.18± 0.13
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a b

c d

Fig. 2. Change detection in a MRI image sequence. (a)Multiple sclerosis patient
MR image. (b) Image of the same patient acquired several months later. (c)
Difference between the registered image and the image in (a) (LS similarity
metric). (d)Difference between the registered image and the image in (a) (robust
RLS similarity metric)

a b

c d

Fig. 3. Single modal registration of remotely-sensed images. (a) Image of France
in the infra-red band of NOAA (02/10/97). (b) Image of France in the infra-red
band of NOAA (02/05/97). (c) Registration error (LS similarity metric). (d)
Registration error (robust RLS similarity metric)
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4.2 Multimodal Registration

Medical Images. To evaluate the ability of the robust similarity metrics to
handle multimodal image pairs, a 3D SPECT image volume has been manually
registered to its corresponding MRI volume with the aid of an expert physician
from IPB. The manually registered SPECT volume was then transformed using
the same 3D translation and rotation parameters as in the previously described
experiments (Section 4.1). To simulate outliers, 25% of the SPECT image was
corrupted by salt and pepper noise. The robust inter-image uniformity technique
RIU has been compared to the inter-image uniformity similarity function IU [3]
and to the mutual information MI criterion [4,5]. Table 3 shows the robustness of
the different similarity measures to gross outliers. The error for the RIU method
is about 1 voxel for the translation parameters and 1 degree for the Euler rotation
angles. This is significantly more accurate than the IU approach. The proposed
robust similarity metric also compares favourably to the MI criterion which
yields registrations that are better than the IU criterion but are generally below
RIU.

Table 3. Multimodal registration of 3D MRI/SPECT images. A 3D SPECT
image volume manually pre-registered by an expert to its MRI counterpart was
artificially transformed using 20 different translation and rotation parameters
and corrupted at 25% by salt and pepper noise. The average and the standard
deviation of the registration errors are presented for the different approaches.
Translation errors are given in voxels and rotation errors in degrees

Approach ∆tx ∆ty ∆tz ∆θ̂x ∆θ̂y ∆θ̂z
IU 3.85± 5.59 3.02± 4.78 4.16± 4.38 8.33± 4.51 6.23± 3.52 6.80± 4.15
MI 1.41± 0.74 1.38± 1.23 2.06± 1.29 0.94± 1.58 1.04± 1.15 1.36± 0.77
RIU 0.82± 0.53 0.61± 0.50 0.83± 0.60 0.21± 0.48 1.14± 0.26 0.71± 0.94

Figure 4 shows a real example of a patient SPECT image volume registered
with respect to its MRI counterpart by the robust algorithm. The accuracy of
the registration has been evaluated by visual inspection and has been considered
as satisfactory by an expert.

Remotely Sensed Images. We consider again the case of multispectral re-
motely sensed images, presenting coherent data corruption due to large overcast
areas. Two images, one in the visible and one in the infrared band of NOAA,
acquired at different dates (Fig. 5(a-b)) were manually registered to establish
ground truth. One of the images has been transformed using different rotation
and translation parameters and the multimodality registration algorithms were
applied. The performances of the different methods are summarized in Table
4. As expected the robust RIU criterion provides registrations that are signifi-
cantly more accurate than the non robust IU technique. The difference between
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Fig. 4. Robust MRI/SPECT volume registration. The SPECT and MRI vol-
umes with the SPECT contours superimposed on the MRI are shown (multipla-
nar visualization) after robust registration (RIU similarity metric)

the tested similarity metrics is however not as pronounced as for the medical
images registration problem (in which gross outliers were considered). This may
again be explained by the bias introduced by the mixture of data from multiple
coherent structures on the robust estimation [14]. In this particular case, the
mutual information MI criterion yields, in the average, the best results. Let us
however notice that the variance of the MI estimate is significantly higher than
the variance of the robust RIU criterion (see Table 4), which tends to temper
the conclusion in this case.

Table 4. Multimodal registration of 2D visible/infra-red images. Two images,
one of the visible and one of the infra-red electromagnetic band of NOAA satellite
acquired at different dates have been manually registered to create ground truth.
One of the images has undergone 20 different rigid transformations using different
translation and rotation values. The average and the standard deviation of the
registration errors are presented for the different approaches. Translation error
are given in pixels and rotation errors in degrees

Approach ∆tx ∆ty ∆θ̂

IU 1.34± 0.87 1.04± 0.34 0.34± 0.27
MI 0.40± 0.68 0.31± 0.74 0.24± 0.37
RIU 0.51± 0.34 0.76± 0.37 0.26± 0.20

Figure 5 presents the registration of the original multimodal pair. The images
from the NOAA visible band (Fig. 5(a)) and from the NOAA infra-red band (Fig.
5(b)), acquired at different dates have been registered using the IU, RIU and
MI approaches. In this particular case, the non robust IU metric and the MI
criterion provided the same final registrations. As may be seen Fig. 5 (c), the
IU metric, yields a misregistration, that is visible on the error image, along the
south-west coast of France. This is not the case of the robust RIU similarity
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measure (Fig. 5 (d)) which provides an accurate registration of this dissimilar
multimodal image pair. Let us notice that the multimodal registration error
shown in Fig. 5 (c-d) is defined as the difference between the registered IR image
and the IR image acquired at the same instant as the visible band reference
image.

a b

c d

Fig. 5. Multimodal registration of visible/IR remotely-sensed images. (a) Image
of France in the visible band of NOAA (02/10/97) (reference image). (b) Image
of France in the infrared band of NOAA (02/05/97). (c) Registration error (IU
similarity metric). (d) Registration error (robust RIU similarity metric). The
registration error is defined as the difference between the registered IR image
and the IR image acquired at the same instant as the visible band reference
image (a)

The LS and RLS techniques require approximately the same average com-
putation times: 20 mn cpu time for 3D 128× 128× 128 images on a HP 715/80
workstation. For the same data size, the IU method takes 35 mn, the MI tech-
nique 40 mn and the RIU method needs 60 mn cpu time. In the case of 2D
images (256 × 256), the RIU metric requires 4 mn cpu time while each of the
other techniques takes approximately 1-2 minutes. As can be seen, the additional
computational complexity introduced by the robust estimation is acceptable and
these methods may thus be used with profit to improve the accuracy in many
critical single or multimodal image registration problems.
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5 Conclusion

The robust similarity metrics-based registration methods described in this paper
were motivated by the lack, in existing approaches, of specific models for gross
dissimilarities or outlying data that are often present in single and multimodal
image pairs. The proposed stochastic multigrid registration algorithms have two
major advantages over standard methods:

– No manual initialization near the optimal solution is required to obtain an
accurate registration. Local minima, a major problem in standard image
registration techniques, are avoided by the use of fast multigrid random
sampling algorithms. This results in a fully data driven method that requires
no human interaction.

– Gross image differences are taken into account efficiently by robust M-
estimators. To our knowledge, the registration of multimodal images showing
gross dissimilarities or mixture of data from multiple coherent structures has
never been evoked until now.

As a conclusion, let us emphasize that the approach proposed in this paper
is comprehensive and not limited to medical or remotely-sensed images. Other
potential application fields [6] such as military imaging, multisensor robot vi-
sion or the multisource analysis of artistic patrimony [2] may benefit from the
robustness of these methods.
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