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Abstract. We analyze and implement fully discrete schemes for periodic initial value problems
for a general class of dispersively modified Kuramoto–Sivashinsky equations. Time discretizations
are constructed using linearly implicit schemes and spectral methods are used for the spatial dis-
cretization. The general case analyzed covers several physical applications arising in multi-phase hy-
drodynamics and the emerging dynamics arise from a competition of long-wave instability (negative
diffusion), short–wave damping (fourth order stabilization), nonlinear saturation (Burgers nonlinear-
ity) and dispersive effects. The solutions of such systems typically converge to compact absorbing sets
of finite dimension (i.e., global attractors) and are characterized by chaotic behavior. Our objective
is to employ schemes which capture faithfully these chaotic dynamics. In the general case the dis-
persive term is taken to be a pseudo-differential operator which is allowed to have higher order than
the familiar fourth order stabilizing term in Kuramoto–Sivashinsky equation. In such instances we
show that first– and second–order time–stepping schemes are appropriate and provide convergence
proofs for the schemes. In physical situations when the dispersion is of lower order than the fourth
order stabilization term (for example a hybrid Kuramoto–Sivashinsky–Korteweg–deVries equation
also known as the Kawahara equation in hydrodynamics), higher order time–stepping schemes can
be used and we analyze and implement schemes of order six or less. We derive optimal order error
estimates throughout and utilize the schemes to compute the long time dynamics and to characterize
the attractors. Various numerical diagnostic tools are implemented, such as the projection of the
infinite–dimensional dynamics to one–dimensional return maps that enable us to probe the geometry
of the attractors quantitatively. Such results are only possible if computations are carried out for
very long times (we provide examples where integrations are carried out for 108 time units), and it is
shown that the schemes used here are very well suited for such tasks. For illustration, computations
are carried out for third order dispersion (the Kawahara equation) as well as fifth order disper-
sion (the Benney–Lin equation) but the methods developed here are applicable for rather general
dispersive terms with similar accuracy characteristics.
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1. Introduction. We consider the periodic initial value problem for the disper-
sively modified Kuramoto–Sivashinsky (KS) equation

(1.1) ut + uux + uxx + νuxxxx +Du = 0,

with u = u(x, t) a 2π−periodic function in the first variable, ν a positive constant
and u0 a given initial value,

(1.2) u(·, 0) = u0.

In (1.1), D is a dispersive linear pseudo–differential operator defined by

(D̂v)ℓ = if(ℓ) v̂ℓ,
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with v̂ℓ the Fourier coefficients of v, v(x) =
∑

ℓ∈Z
v̂ℓe

iℓx, and f a given odd real-valued
function, f(−ℓ) = −f(ℓ). Let us note that, in the case of vanishing D, equation (1.1)
reduces to the well-known Kuramoto–Sivashinsky equation. In the absence of the
Kuramoto–Sivashinsky terms (the second and fourth derivatives of u), equation (1.1)
reduces to a dispersive equation which is analogous to the Korteweg–deVries (KdV)
equation. Thus, the model considered here bridges two fundamental equations of
applied mathematics and our objective is in the accurate and efficient computation
of the dynamics of the hybrid system.

An equation of the form of (1.1) has been derived to describe the dynamics of
core–annular film flows with applications to lubricated pipelining, in which case

(1.3) f(ℓ) =
ℓ2I1(ℓ)

ℓI21 (ℓ)− ℓI20 (ℓ) + 2I0(ℓ)I1(ℓ)
,

and Ip = Ip(ℓ) denotes the modified Bessel function of the first kind of order p (see
[16, 21]). Localized versions of (1.1) with f(ℓ) a cubic or quintic polynomial have also
been derived in the context of viscous liquid films flowing down inclined planes (with
applications in coating technologies, for instance). In the former case we obtain the
so-called Kawahara equation

(1.4) ut + uux + uxx + δ3uxxx + νuxxxx = 0,

derived in [14, 19, 26], and note that the dispersive term is of lower order than the
stabilizing term uxxxx. Higher fifth order dispersion is retained in the equation

(1.5) ut + uux + uxx + δ3uxxx + νuxxxx + δ5uxxxxx = 0,

known as the Benney–Lin equation, which has been derived in the context of the one–
dimensional evolution of sufficiently small amplitude long waves in various problems
in fluid dynamics (see, for example, [8, 20]).

From an analytical perspective, the global well–posedness of the periodic initial
value problem (1.1)–(1.2) is derived from [25]. For example, global well–posedness
of the periodic initial value problem for (1.5) with initial data in Hs

per(R), s ≥ 0,
has been established in [10]; here, Hs

per(R) denotes the Sobolev space consisting of
the 2π−periodic functions with finite norm ‖v‖Hs ; for the definition of this norm see
(2.3) below. The boundedness of the solutions of (1.1) and the existence of compact
attractors was proved in [15]; more specifically it was proved that the initial value
problem possesses a maximal, connected, compact attractor in Hs

per(R) for any s < 2.
In [7], the modified KS equation (1.1) was rewritten in the form

(1.6) ut +
1

ν
u+ uxx + νuxxxx +Du =

1

ν
u− uux,

or, with the operators L and B given by

(1.7) Lv =
(1
ν
v + vxx + νvxxxx

)
+Dv, B(v) =

1

ν
v − vvx,

in the equivalent form

(1.8) ut + Lu = B(u),
and its discretization in time by implicit–explicit multistep schemes was analyzed.
The fact that the operator L can be split into L = A+D, with A,

(1.9) Av :=
1

ν
v + vxx + νvxxxx,



Computational study of the dispersively modified KS equation 3

a symmetric and positive definite operator and D an antisymmetric operator, played
a key role in the analysis in [7]. For a general dispersive operator D, the disper-
sively modified KS equation can be stably discretized by A−stable schemes; hence, in
particular, the highest attainable order by multistep schemes is two. Thus, we have
chosen to discretize (1.1) by the implicit–explicit Euler and two-step BDF methods.
In contrast, in case of low order dispersive operators like in the Kawahara equation
(1.4), higher order time-stepping schemes may be stable, see [7]; due to this fact, we
devote here a separate section to the discretization of the Kawahara equation.

One of our purposes is to combine the time stepping schemes with a pseudo-
spectral method for the space discretization to construct and analyze fully discrete,
implementable methods.

An outline of the paper is as follows: In Section 2 we consider the general case
of the dispersively modified KS equation. We discretize in time by first– and second–
order schemes and derive optimal error estimates. In subsection 2.4, as an example
of low order dispersive terms, we focus on the special case of the Kawahara equation;
in this case higher order time-stepping schemes may also be used. In all cases the
spatial discretization is accomplished with a pseudo-spectral method. In Section 3, we
briefly discuss issues of the numerical implementation of the schemes and in Section 4
present extensive results of the computational study of the dispersively modified KS
equation. Finally, in Section 5 we summarize our conclusions.

2. Linearly implicit spectral schemes for dispersively modified KS equa-

tions. In this section we present the numerical schemes, first the time stepping
schemes and subsequently the fully discrete schemes, and derive optimal order er-
ror estimates for equation (1.1). In subsection 2.4 we concentrate on equation (1.4).

2.1. Discretization in time by implicit–explicit multistep schemes. Let
(α, β) and (α, γ) be implicit and explicit, respectively, q−step schemes, characterized
by three polynomials α, β and γ,

α(ζ) =

q∑

i=0

αiζ
i, β(ζ) =

q∑

i=0

βiζ
i, γ(ζ) =

q−1∑

i=0

γiζ
i.

Combining schemes (α, β) and (α, γ), we construct an implicit–explicit (α, β, γ)−sche-
me for the discretization of equation (1.1), written in the form (1.8). Let N ∈ N,
k := T/N be the time step, tn := nk, n = 0, . . . , N, and u the solution of (1.1)–(1.2).
The linear part of equation (1.8) is discretized by the implicit scheme (α, β) and the
nonlinear part by the explicit scheme (α, γ), i.e., we define approximations Un to the
values un := u(tn) := u(·, tn) by the linearly implicit scheme

(2.1)

q∑

i=0

αiU
n+i + k

q∑

i=0

βiLUn+i = k

q−1∑

i=0

γiB(Un+i),

for given starting approximations U0, . . . , U q−1. In particular, we are interested in the
implicit–explicit BDF schemes: For q∈{1, 2, 3, 4, 5, 6}, let consider polynomials

α(ζ) :=

q∑

j=1

1

j
ζq−j(ζ − 1)j, β(ζ) := ζq and γ(ζ) := ζq − (ζ − 1)q.

The corresponding (α, β)−scheme is the q−step BDF scheme; its order is p = q.
These schemes are strongly A(0)−stable and, for q = 1, 2, A−stable. The order of
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the explicit scheme (α, γ) is also p = q. In this case, scheme (2.1) reduces to

(2.2)

q∑

i=0

αiU
n+i + kLUn+q = k

q−1∑

i=0

γiB(Un+i).

2.2. Discretization in space. For s∈R let Hs(T) denote the Sobolev space
of order s, consisting of the 2π−periodic functions with norm

(2.3) ‖v‖Hs =
(∑

ℓ∈Z

(1 + ℓ2)s
∣∣v̂ℓ

∣∣2
)1/2

,

whenever v(x) =
∑

ℓ∈Z
v̂ℓe

iℓx. The inner product in H := L2(T) = H0(T) is denoted
by (·, ·), and the induced norm by ‖ · ‖. Let ||| · ||| denote the norm of the space V =
D(A1/2), defined by |||v||| := ‖A1/2v‖. We identify H with its dual, and denote by V ′

the dual of V, again by (·, ·) the duality pairing between V ′ and V, and by |||·|||⋆ the dual
norm on V ′, |||v|||⋆ := ‖A−1/2v‖. Let M ∈N and SM := span{ϕ−M+1, . . . , ϕM}, with
ϕℓ(x) := eiℓx. Let PM : V ′ → SM denote the orthogonal L2−projection operator onto
SM , i.e., (v−PMv, χ) = 0, for all χ ∈ SM . If we expand v∈L2(T) in a Fourier series,

v =
∑∞

ℓ=−∞ v̂ℓ ϕℓ, then PMv corresponds to the partial sum PMv =
∑M

ℓ=−M+1 v̂ℓ ϕℓ.
Since differentiation commutes with PM , we have PML = LPM . Furthermore, we
define the discrete nonlinear operator BM : H2(T) → SM , BM := PMB. In the
semidiscrete problem corresponding to (1.1)–(1.2) we seek a function uM , such that
uM (t) := uM (·, t) ∈ SM , satisfying

(2.4)

{
∂tuM (t) + LuM (t) = BM (uM (t)), 0 < t ≤ T,

uM (0) = u0
M ,

with u0
M ∈SM a given approximation to u0. To construct implementable, fully discrete

schemes, we discretize the initial value problem (2.4) for a system of o.d.e’s in time
by the implicit–explicit (α, β, γ)−scheme, i.e., we recursively define a sequence of
approximations U ℓ∈SM to u(tℓ) by

(2.5)

q∑

i=0

αiU
n+i + k

q∑

i=0

βiLUn+i = k

q−1∑

i=0

γiBM (Un+i).

2.3. Error estimates. Clearly, the operator A (see (1.9)) maps H4(T) into H,
A : H4(T) → H. Also, A is self-adjoint and positive definite operator,

(2.6) (Av, v) ≥ γ|||v|||2 for all v ∈ V,

for an appropriate positive constant γ, with V = H2(T); cf. [6]. Furthermore, the
operator B : V → H satisfies the local Lipschitz condition

(2.7) |||B(v)− B(w)|||⋆ ≤ µ‖v − w‖ for all v, w ∈ Tu

in a tube Tu around the solution u defined in terms of the norm of H,

(2.8) Tu :=
{
v ∈ V : min

0≤t≤T
‖v − u(t)‖ ≤ 1

}
,

with (cf. [6])

(2.9) µ :=
1√
ν

[
2
√
π
(
1 + max

0≤t≤T
‖u(t)‖

)
+
√
2
]
.
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The projection PM : V ′ → SM has the following approximation property: For m∈N,
there exists a constant c, independent of v and M, such that, for v ∈ Hm(T)

(2.10) ‖v − PMv‖Hℓ ≤ cM ℓ−m‖v(m)‖,

for ℓ = 0, . . . , m (cf. [9, 11]). Let W (t) ∈ SM denote the L2−projection of u(t) in
SM ,W (t) := PMu(t), t∈ [0, T ]. Let EM (t)∈SM denote the consistency error of the
semidiscrete equation (2.4) for W ,

(2.11) EM (t) := Wt(t) + LW (t)− BM (W (t)), t ∈ [0, T ].

It is readily seen that

EM (t) = Wt(t) + PMLu(t)− PMB(W (t)),

and thus, in view of (1.8),

EM (t) = PM

[
B(u(t))− B(W (t))

]
.

To estimate EM (t) ∈ SM we take here the inner product with v ∈ SM and ob-
tain (EM (t), v) = (B(u(t)) − B(W (t)), v). Hence, we infer |||EM (t)|||⋆ ≤ |||B(u(t)) −
B(W (t))|||⋆. Therefore, in view of (2.7), |||EM (t)|||⋆ ≤ µ‖u(t)−W (t)‖, and thus, using
(2.10), we arrive at the desired optimal order estimate for the consistency error EM ,

(2.12) max
0≤t≤T

|||EM (t)|||⋆ ≤ C(u)M−m with C(u) := cµ max
0≤t≤T

∥∥∂
mu

∂xm
(t)

∥∥.

Notice also that we immediately infer from (2.10) that W (t)∈Tu, for sufficiently large
M.

Due to the presence of a dispersive operator D in equation (1.1), we assume that
the scheme (α, β) is A−stable; this condition is needed for stability even in the case
B = 0 in (1.8). Consequently, according to the second Dahlquist barrier, the highest
attainable order of the scheme (α, β) is two. Thus, in the remaining part of this
subsection we consider one first order implicit–explicit scheme, namely the implicit–
explicit Euler scheme, and one second order implicit–explicit scheme, namely the
implicit–explicit two–step BDF scheme. The implicit–explicit Euler scheme for the
semidiscrete problem (2.4) reads: Seek U ℓ ∈ SM such that

(2.13)

{
Un+1 + kLUn+1 = Un + kBM (Un), n = 0, . . . , N − 1,

U0 = u0
M .

To utilize the implicit–explicit two–step BDF scheme,

(2.14)
3

2
Un+2− 2Un+1+

1

2
Un+ kLUn+2 = 2kBM (Un+1)−kBM(Un)

we let U0 = u0
M , perform one step with the implicit–explicit Euler scheme to compute

U1, and let the approximations U2, . . . , UN be given by the implicit–explicit BDF
scheme. We can now derive optimal order error esimates:

Theorem 2.1 (Error estimates). Let m∈ N and assume that the starting approx-

imations U0 is such that

(2.15) ‖u0 − U0‖ ≤ cM−m.
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Assume that the solution u of (1.1)–(1.2) is sufficiently smooth such that C(u) be

finite; see (2.12). Furthermore, we suppose that u is sufficiently smooth such that

sup
0<t<T

|||utt(t)|||⋆ and sup
0<t<T

‖ut(t)‖

in the case of the scheme (2.13), and

sup
0<t<T

|||uttt(t)|||⋆ and sup
0<t<T

∣∣∣∣∣∣∂
2B(u(t))
∂t2

∣∣∣∣∣∣
⋆

in the case of the scheme (2.14), respectively, are finite. Let Un∈SM , n = 1, . . . , N, be
recursively defined by (2.13) or by (2.14), respectively. Then, there exists a constant

C, independent of k and M, such that, for k sufficiently small and M sufficiently

large,

(2.16) max
0≤n≤N

‖u(tn)− Un‖ ≤ C(k +M−m),

if the approximations are computed by (2.13), and

(2.17) max
0≤n≤N

‖u(tn)− Un‖ ≤ C(k2 +M−m),

if the approximations are computed by (2.14).
Proof. We shall prove only the estimate (2.17); the proof of (2.16) goes along

the same lines. Let W̃ 0 := W (·, 0), and define W̃n ∈ SM , n = 1, . . . , N, by applying
one step of the implicit–explicit Euler scheme and subsequently the implicit–explicit
BDF2 scheme, cf. (2.14), to equation (2.11), i.e., by

(2.18)





W̃ 1 + kLW̃ 1 = W̃ 0 + k
[
BM (W̃ 0) + EM (t0)

]
,

3

2
W̃n+2− 2W̃n+1+

1

2
W̃n+ kLW̃n+2 = 2k

[
BM (W̃n+1) + EM (tn+1)

]

−k
[
BM (W̃n) + EM (tn)

]
, n = 0, . . . , N − 2.

Then, according to Proposition 3.1 of [7], we have

(2.19) max
0≤n≤N

‖W (tn)− W̃n‖ ≤ Ck2.

In view of (2.10) and (2.19), it remains to estimate ϑn := W̃n − Un. Now, since on
the right-hand side of the local Lipschitz condition (2.7) only the norm ‖ · ‖ appears,
i.e., in the notation of [7] we have λ = 0, we may use the stability estimate of Remark
3.2 of [7] to estimate ϑn. Indeed, subtracting (2.14) from (2.18), we conclude that

(2.20) ‖ϑn‖2 + k|||ϑn|||2 ≤ c
[
‖ϑ0‖2 + k

n−1∑

ℓ=0

|||EM (tℓ)|||2⋆
]
.

From this estimate, (2.12) and (2.15), we easily conclude, for k sufficiently small and
M sufficiently large,

(2.21) max
0≤n≤N

‖W̃n − Un‖ ≤ C(k2 +M−m).

From (2.10), (2.19) and (2.21) the desired estimate (2.17) follows.
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Remark 2.1. Here we shall justify the regularity requirements in Theorem 2.1.
First, obviously, the boundedness of C(u) is needed in the estimate (2.12). Fur-
thermore, in the case of the implicit–explicit Euler scheme, with En denoting its
consistency error in the case of discretization in time only, see (2.2) for q = 1, we have

kEn = un+1 + kLun+1 − un − kB(un).

Using the differential equation (1.8), we rewrite this relation in the form

kEn = un+1 − un − kut(t
n+1) + k

[
B(un+1)− B(un)

]

= −
∫ tn+1

tn
(s− tn)utt(s) ds+ k

[
B(un+1)− B(un)

]
.

Therefore, in view of the local Lipschitz condition (2.7),

k|||En|||⋆ ≤
∫ tn+1

tn
(s− tn)|||utt(s)|||⋆ ds+ µk‖un+1 − un‖

≤
∫ tn+1

tn
(s− tn)|||utt(s)|||⋆ ds+ µk

∫ tn+1

tn
‖ut(s)‖ ds,

and thus, under our smoothness assumptions, we infer that the following optimal
order consistency estimate is valid

max
0≤n≤N−1

|||En|||⋆ ≤ Ck.

Analogously, in the case of the implicit–explicit two–step BDF scheme, using the
representation of the consistency error of [7, p. 156], we infer, under our smoothness
assumptions, that the following optimal order consistency estimate is valid

max
0≤n≤N−1

|||En|||⋆ ≤ Ck2.

2.4. The Kawahara equation. In this section we consider the periodic initial
value problem for the Kawahara equation (1.4), in which the dispersive term is of
order lower than the one of A, which allows us to use higher order implicit–explicit
multistep schemes, as we shall see. First, we write the equation in the form

(2.22) ut +
1

ν
u+ uxx + νuxxxx =

1

ν
u− δ3uxxx − uux.

Thus, with the operator A given in (1.9) and the nonlinear operator B̃,

(2.23) B̃(v) := 1

ν
v − δ3 vxxx − vvx,

the Kawahara equation takes the form

(2.24) ut +Au = B̃(u).

Let us recall from [7] that

(2.25) |||B̃(v)− B̃(ṽ)|||⋆ ≤ ε|||v − ṽ|||+ Cε‖v − ṽ‖ for all v, ṽ ∈ Tu,
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with the tube Tu as in (2.8), for any positive ε and a constant Cε depending on δ3, ε
and max0≤t≤T ‖u(t)‖. Thus, all linearly implicit schemes of [1], and, in particular, the
implicit–explicit q−step BDF schemes, with q = 1, . . . , 6, see [6], are locally stable
for (2.24) and consequently suitable for the discretization of (1.4). We will use the
notation introduced in the previous section. Furthermore, we let the operator B̃M

be given by B̃M := PM B̃; see (2.23). In the semidiscrete problem corresponding to
the periodic initial value problem (1.4) with (1.2) we seek a function uM (t) ∈ SM ,
satisfying

(2.26)

{
∂tuM (t) +AuM (t) = B̃M (uM (t)), 0 < t ≤ T,

uM (·, 0) = u0
M ,

with u0
M ∈SM a given approximation to u0. Let W (t)∈SM denote the L2−projection

of u(t) in SM , W (t) = PMu(t), t∈ [0, T ]. Let ẼM (t)∈SM denote the consistency error

of the semidiscrete equation (2.26) for W ,

(2.27) ẼM (t) := Wt(t) +AW (t) − B̃M (W (t)), t ∈ [0, T ].

Clearly, with Lv := Av + δ3 vxxx,

ẼM (t) = Wt(t) + PMLu(t)− PMB(W (t)),

and the consistency estimate

(2.28) max
0≤t≤T

|||ẼM (t)|||⋆ ≤ C(u)M−m

is a particular case of the more general result (2.12). We discretize the initial value
problem (2.26) for a system of o.d.e’s in time by an implicit–explicit (α, β, γ)−scheme,
i.e., we recursively define a sequence of approximations U ℓ∈SM to u(tℓ) by

(2.29)

q∑

i=0

αiU
n+i + k

q∑

i=0

βiAUn+i = k

q−1∑

i=0

γiB̃M (Un+i),

i = 0, . . . , N − q, for given starting approximations U0, . . . , U q−1 ∈ SM . We assume
that the implicit scheme (α, β) is strongly A(0)−stable and let p be the order of both
schemes (α, β) and (α, γ); see [2] and [3]. Then, we have the following error estimate:

Proposition 2.2 (Error estimates). Let m ∈ N and assume that the starting

approximations U0, . . . , U q−1 are such that

(2.30) max
0≤j≤q−1

(
‖W j − U j‖+

√
k |||W j − U j|||

)
≤ c(kp +M−m).

Assume that the solution u of (1.4)–(1.2) is sufficiently smooth such that C(u) (see
(2.12)),

sup
0<t<T

∣∣∣∣∣∣∂
p+1u

∂tp+1
(t)

∣∣∣∣∣∣
⋆

and sup
0<t<T

∥∥ ∂p+2u

∂tp ∂x2
(t)

∥∥

be finite. Let Un ∈ SM , n = q, . . . , N, be recursively defined by (2.29). Then, if the

solution u of (1.4)–(1.2) is sufficiently smooth, there exists a constant C, independent
of k and M, such that, for k sufficiently small and M sufficiently large,

(2.31) max
0≤n≤N

‖u(tn)− Un‖ ≤ C(kp +M−m).
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Proof. Let W̃ j := W (tj), j = 0, . . . , q − 1, and define W̃n∈SM , n = q, . . . , N, by
applying the implicit–explicit (α, β, γ)−scheme to equation (2.27), i.e., by

(2.32)

q∑

i=0

αiW̃
n+i + k

q∑

i=0

βiAW̃n+i = k

q−1∑

i=0

γi
[
B̃M (W̃n+i) + ẼM (tn+i)

]
,

i = 0, . . . , N − q. Then, according to Theorem 4.1 of [1] (see, also, [3]), we have

(2.33) max
0≤n≤N

‖W (tn)− W̃n‖ ≤ Ckp.

In view of (2.10) and (2.33), it remains to estimate ϑn := W̃n − Un. Subtracting
(2.29) from (2.32) and using the stability estimate (4.6) of [1], we conclude that

(2.34) ‖ϑn‖2 + k

n∑

ℓ=0

|||ϑℓ|||2 ≤ c
[ q−1∑

j=0

(
‖ϑj‖2 + k|||ϑj |||2

)
+ k

n−q∑

ℓ=0

|||ẼM (tℓ)|||2⋆
]
.

From this estimate, (2.28) and (2.30), we easily conclude, for k sufficiently small and
M sufficiently large,

(2.35) max
0≤n≤N

‖W̃n − Un‖ ≤ C(kp +M−m).

From (2.10), (2.33) and (2.35) the desired estimate (2.31) follows.
Remark 2.2. Here we shall justify the regularity requirements in Proposition

2.2. First, obviously, the boundedness of C(u) is needed in the estimate (2.28). Fur-
thermore, the consistency error of the (α, β, γ)−scheme for equation (2.24) in the case
of discretization in time only, cf. (2.29), is given by

kEn =

q∑

i=0

αiu
n+i + k

q∑

i=0

βiAun+i − k

q−1∑

i=0

γiB̃(un+i).

Using here the differential equation (2.24), Taylor expanding around tn and using the
order properties of the schemes (α, β) and (α, γ), we easily see that

kEn =
1

p!

q∑

i=0

∫ tn+i

tn
(tn+i − s)p−1

[
αi(t

n+i − s)− pkβi

]∂p+1u

∂tp+1
(s) ds

+
k

(p− 1)!

q∑

i=0

(βi − γi)

∫ tn+i

tn
(tn+i − s)p−1A∂pu

∂tp
(s) ds,

with γq = 0. Therefore, under our smoothness assumptions, we infer that the following
optimal order consistency estimate is valid

max
0≤n≤N−1

|||En|||⋆ ≤ Ckp.

Remark 2.3. The q−step implicit–explicit BDF schemes, q = 1, . . . , 6, satisfy
the conditions of Proposition 2.2 and their order is p = q. For q = 1 and q = 2, both
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Theorem 2.1 and Proposition 2.2 apply for the Kawahara equation. We emphasize
that the schemes in this and the previous subsection do not coincide; indeed, here the
dispersive term is discretized explicitly while in the previous subsection it is discretized
implicitly. Also, the condition (2.30) on the starting approximations in Proposition
2.2 is stronger than the corresponding condition (2.15) in Theorem 2.1.

Remark 2.4. The results of this subsection can be easily extended to the general
class of linearly implicit schemes considered in [1].

3. Numerical implementation. In our analysis of the implicit–explicit BDF
schemes that approximate solutions of equation (1.1), we worked with an equation of
the form ut+Lu = B(u), with the operators L and B of (1.7). We consider spatially
2π−periodic solutions and express u as

(3.1) u(x, t) =
∑

j∈Z

ûj(t) e
ijx =

1

2
a0 +

∞∑

j=1

(
aj(t) cos jx+ bj(t) sin jx

)
.

The coefficient a0 is constant due to the conservative nature of (1.1), and is taken to
be zero (without loss of generality) by Galilean invariance. The nonlinear term −uux

is expressed as

(3.2) −u(x, t)ux(x, t) =
∑

j∈Z

f̂j(t) e
ijx =

∞∑

j=1

(
Aj(t) cos jx+Bj(t) sin jx

)
,

where, for j∈N,

Aj(t) = − j

2

∑

k+ℓ=j

akbℓ +
j

2

∑

k−ℓ=j

(akbℓ − aℓbk),

Bj(t) =
j

4

∑

k+ℓ=j

(akaℓ − bℓbk) +
j

2

∑

k−ℓ=j

(akaℓ − bℓbk).

The dispersive term D in Fourier space diagonalizes as
(
D̂u

)
j
= dj ûj , j∈Z, where

dj ∈ R is the symbol of the operator D, d−j = −dj, and from (3.1) it follows that

Du(x, t) =
∞∑

j=1

dj
(
bj(t) cos jx− aj(t) sin jx

)
.

Also (since u is real), ûj(t) = 1
2

(
aj(t) − ibj(t)

)
and f̂j(t) = 1

2

(
Aj(t) − iBj(t)

)
.

Replacing the operators L and B, according to (1.7), in the implicit–explicit two–step
BDF scheme (2.14) we obtain

(3.3)

(3
2
+

k

ν
+ k∂2

x + kν∂4
x + ikD

)
Un+2 =

(
2 +

2k

ν

)
Un+1 −

(1
2
+

k

ν

)
Un − 2kUn+1Un+1

x + kUnUn
x ,

which in Fourier space takes the form

(3.4)
Ûn+2
j =

(
2 +

2k

ν

)
(ξj − ikdj)

ξ2j + k2d2j
Ûn+1
j −

(1
2
+

k

ν

)
(ξj − ikdj)

ξ2j + k2d2j
Ûn
j

+
2k(ξj − ikdj)

ξ2j + k2d2j
F̂n+1
j − k(ξj − ikdj)

ξ2j + k2d2j
F̂n
j ,
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where ξj = 3
2 +

k
ν −kj2+kνj4, with Ûm

j the Fourier coefficients of the approximation

Um. Separating (3.4) into real and imaginary parts, with Ûm
j = amj − ibmj and F̂m

j =
Am

j − iBm
j , gives the second order scheme

(3.5)

an+2
j =

ξj

(
2+

2k

ν

)

ξ2j + k2d2j
an+1
j −

kdj

(
2+

2k

ν

)

ξ2j + k2d2j
bn+1
j −

ξj

(1
2
+
k

ν

)

ξ2j + k2d2j
anj +

kdj

(1
2
+
k

ν

)

ξ2j + k2d2j
bnj

+
2kξj

ξ2j + k2d2j
An+1

j − 2k2dj
ξ2j + d2j

Bn+1
j − kξj

ξ2j + k2d2j
An

j +
k2dj

ξ2j + k2d2j
Bn

j ,

bn+2
j =

kdj

(
2+

2k

ν

)

ξ2j + k2d2j
an+1
j +

ξj

(
2+

2k

ν

)

ξ2j + k2d2j
bn+1
j −

kdj

(1
2
+
k

ν

)

ξ2j + k2d2j
anj −

ξj

(1
2
+
k

ν

)

ξ2j + k2d2j
bnj

+
2k2dj

ξ2j + k2d2j
An+1

j +
2kξj

ξ2j + k2d2j
Bn+1

j − k2dj
ξ2j + k2d2j

An
j −

kξj
ξ2j + k2d2j

Bn
j ,

where j ∈ N. Analogous formulæ for the implicit–explicit q−step BDF scheme,
where q = 1, 3, 4, 5, 6, may be found in [5].
In our space discretization, we project the solution onto the finite dimensional space
SM =

{
eiℓx : ℓ = −M + 1, . . . ,M

}
, where M is a suitably chosen integer. The

justification of finite–dimensional truncations stems from the global boundedness of
the Sobolev normsHs

per(R), s ≤ 2 (see [15]), which establish that the sequence {ωj}j∈N

ωj = lim sup
t→+∞

(a2j + b2j)
1
2 , j ∈ N ,

decays faster than j−1. Clearly such analytical estimates are not sharp and from a
practical point of view the number of determining modes in the presence of dispersion
is determined by numerical experimentation. Our extensive numerical experiments
reveal that ωj = O(e−βj), where the strip of analyticity β depends on ν and the
dispersion. As we shall verify numerically in Section 4, for the specific cases of the
Kawahara (1.4) and Benney–Lin (1.5) equations β = O(ν1/2), as ν tends to zero, for
any amount of dispersion.

4. Numerical experiments. In this section we present the results of extensive
numerical experiments obtained by implemention of the schemes analyzed in Section
2. We have found that these schemes are both accurate and efficient when used for
the numerical approximation of solutions to dispersive–dissipative equations like the
ones studied here (many physical models fall in this class of evolution PDEs; see [7]).

In such types of equations it is important to carry out large time computations
in order to establish the presence of attractors and quantify their characteristics in
the presence of dispersion. To fix matters we consider the Benney–Lin equation (1.5),
which has the advantage of retaining dispersive terms not dominated by the usual
fourth order dissipation term of the KS equation. However, the presence of high
order dispersion (fifth order in our case) restricts us to using first or second order
implicit–explicit BDF schemes. On the other hand, the Kawahara equation (1.4),
where only third–order dispersion is present, can be stably discretized by implicit–
explicit BDF schemes of order up to six (numerical experiments showing the predicted
theoretical accuracy are presented later).

4.1. Preliminary runs.
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(b) Spectra of solutions of (1.5).
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(c) Exponential decay rate variation with ν from
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(d) Exponential decay rate variation with ν
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Fig. 4.1. Decay of Fourier coefficients as ν decreases. Kawahara equation (1.4) with δ3 = 1,
panels (a) and (c); Benney-Lin equation (1.5) with δ3 = 0, δ5 = 1/2, panels (b) and (d). Panels
(a) and (b) show log-linear plots of the spectrum of the solution and the values of ν are given in the
figures. Panels (c) and (d) are logarithmic plots of the slopes of the spectra (i.e., the exponential
decay rate at large wavenumbers) in (a) and (b), respectively, estimated using a least squares fit,
against ν; in both cases a power law νq is predicted with q ≈ 1/2.

Decay of Fourier modes. We have carried out numerical experiments in order
to quantify the number of determining modes that contribute numerically to the
solution. To fix matters, we consider the separate cases of vanishing δ5 (δ3 6= 0) or
vanishing δ3 (δ5 6= 0) in equation (1.5). The results are shown in Figures 4.1(a)-
4.1(d). Panels 4.1(a) and 4.1(b) depict the decay of the Fourier coefficients as ν
decreases for the two cases (i) δ3 = 1, δ5 = 0, and (ii) δ3 = 0, δ5 = 1/2; both
plots are log-linear with the Fourier wavenumber on the abscissæ and ln |ûj| on the
ordinates, where | · | denotes the modulus. Here ûj(t) are the Fourier coefficients of
the solution and depend on t; spectral plots such as the ones in Figures 4.1(a)–4.1(b)
were obtained by integrating to a sufficiently large time to ensure that the dynamics
enter the attractor, and then taking a time average of the spectra over a prescribed
time interval (typical length 5 − 10 time units), or at the final time of integration.
We observed that the high wavenumber behavior of the resulting plots are essentially
the same and lead to identical conclusions regarding the analyticity of the solutions
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– in Figures 4.1(a)–4.1(d) we provide spectra from the final computed times. The
results provide conclusive evidence that the decay is exponential and of the form
|ûj| = O(e−β(ν)|j|). A least squares linear regression was used to estimate β(ν) for
each of the curves in these two panels (typically regression over the modes 40 ≤ j ≤ 80
was used; extending the range to higher values of j produces the same conclusions).
The results are given in Tables 4.1 and 4.2 and also depicted using log-log coordinates
in panels 4.1(c) and 4.1(d) for cases (i) and (ii), i.e., vanishing and non-vanishing δ5
runs, respectively. We find strong evidence that β(ν) ∼ νq, and the exponent q has
been estimated using least squares regression to obtain the values 0.57 and 0.54 for
cases (i) and (ii), respectively. Our numerical experiments indicate, therefore, that
β(ν) ∼ ν1/2, a result that has been found numerically for the Kuramoto–Sivashinsky
equation and related systems in the absence of dispersion (see [4, 12]).

ν 0.8 0.4 0.2 0.1 0.025 0.01 0.005

β 3.31 2.17 1.46 0.999 0.438 0.264 0.176

βν−1/2 3.70 3.43 3.27 3.16 2.77 2.64 2.49

Table 4.1
The least squares estimates of the decay rate β from the runs of Figure 4.1(a), with δ3 = 1 and

δ5 = 0. The last row indicates that β(ν) = O(ν1/2).

ν 0.8 0.4 0.2 0.1 0.05 0.01

β 3.93 2.81 1.97 1.37 0.96 0.388

βν−1/2 4.39 4.44 4.41 4.33 4.30 3.88

Table 4.2
The least squares estimates of the decay rate β from the runs of Figure 4.1(b), with δ3 = 0 and

δ5 = 1/2. The last row indicates that β(ν) = O(ν1/2).

The conclusion from these runs is that the solution can be computed with a finite
number of Fourier modes. As an approximate and practical rule of thumb, in our
experiments the size of the truncation is a small multiple of ν−1/2, e.g., N = 4[ν−1/2].
There is an interplay between the value of N and the size of the time–step required
to maintain relative accuracy in the computation of the highest frequencies in the
truncation. Such issues have been fully accounted for in all computational results
presented here.

Accuracy of computed characteristics of the attractors. In the class of
dissipative dynamical systems investigated here, our main interest is the prediction
and quantification of the long time dynamics, which enable us to construct a picture of
the global attractors. Hence, it is important to use schemes which maintain stability
and accuracy over very long times. In Figure 4.2, for example, which depicts the
foliations in a return map of a chaotic attractor, it was necessary to integrate to at
least T = 4 × 104 time units with a time step k = 10−4. Table 4.3 shows the effect
of the time-step and the order p = q of the implicit–explicit q−step BDF scheme,
q = 1, . . . , 6, for time steps k = (16, 8, 4, 2, 1) × 10−4, when ν = 1/2, δ3 = 1 and
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k 16× 10−4 8× 10−4 4× 10−4 2× 10−4 10−4

Energy

p = 1 9.54606134 9.55217514 9.55522645 9.55675069 9.55751247
p = 2 9.55827155 9.55827339 9.55827385 9.55827397 9.55827399
p = 3 9.45762169 9.50677972 9.53222200 9.54517007 9.55170233
p = 4 9.55827400 9.55827400 9.55827400 9.55827400 9.55827400
p = 5 9.55827400 9.55827400 9.55827400 9.55827400 9.55827400
p = 6 9.55827400 9.55827400 9.55827400 9.55827400 9.55827400

Speed

p = 1 −0.32349136 −0.32189521 −0.32109850 −0.32070049 −0.32050157
p = 2 −0.32030389 −0.32030300 −0.32030278 −0.32030273 −0.32030271
p = 3 −0.36396608 −0.34268118 −0.33163562 −0.32600603 −0.32316370
p = 4 −0.32030271 −0.32030271 −0.32030271 −0.32030271 −0.32030271
p = 5 −0.32030271 −0.32030271 −0.32030271 −0.32030271 −0.32030271
p = 6 −0.32030271 −0.32030271 −0.32030271 −0.32030271 −0.32030271

Table 4.3
The computed values of the energy (L2−norm) and speed c of the traveling wave solution, for

different time steps and a final time of integration of 30 time units, when ν = 1/2, δ3 = 1 and
δ5 = 0, where p is the order of the implicit–explicit BDF scheme.

δ5 = 0. The Table depicts computed values of the energy of the solution E(t) defined
by

E(t) =
(∫ 2π

0

∣∣u(x, t)
∣∣2 dx

)1/2

= ‖u(·, t)‖,(4.1)

and constant speed c of the traveling wave solutions u ≡ u(ξ), where ξ = x− ct. The
exact value of c can be found by substituting u(x, t) = u(ξ) in (1.1) and taking the
inner product of the resulting equation with uξ to give

(4.2) c =

∫ 2π

0
u(ξ)u2

x(ξ) dξ −
∫ 2π

0
uξ(ξ)Du(ξ) dξ

∫ 2π

0 u2
ξ(ξ) dξ

.

In a transient computation the expression (4.2) with u(ξ) replaced by u(x, t) at a given
time t, becomes a spectrally accurate approximation of the traveling-wave speed at
large times, as is done in the results presented in Table 4.3. One can easily infer from
the results that for q = 1, 2, 3, the accuracy in computing these quantities is the same
as the accuracy p = q of the scheme (i.e., |Ek −Eexact| ∼ kp, where E denotes either
the L2−norm or the speed). For q = 4, 5, 6, the relative error is significantly less than
10−8 and is too small to be seen in the results presented.

4.2. Numerical integration of the Kawahara equation. In what follows
we select certain interesting numerical experiments to illustrate the capabilities of our
algorithms and attractor quantification data diagnostic tools. The extensive solution
phase-space is characterized by the two independent parameters ν and δ3 (three in the
case of the Benney–Lin equation, including δ5), and the scope of the present study is
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not in the full characterization of the attractors but rather an illustration of certain
solutions. A reverse period doubling cascade is presented first, which exhibits the
rich dynamical nature of the system, and secondly we compute stable traveling wave
solutions that are strongly attractive in the large dispersion limit, δ3 ≫ 1.

Reverse period doubling cascade caused by dispersion. It is well establi-
shed that as ν decreases the dispersionless Kuramoto–Sivashinsky equation undergoes
a period–doubling route to chaos according to the Feigenbaum scenario. For general
initial conditions chaos sets in at and beyond the Feigenbaum accumulation point
given by ν∞ ≈ 0.12122680, as first shown in [23]. (In the case where the symmetry
u(−x, t) = −u(x, t) is imposed, analogous results are found but at smaller values of ν;
see [22, 24].) In particular, at the value ν = 0.1212 < ν∞, the solutions at large time
are chaotic. In what follows we fix ν = 0.1212 and investigate the effects of dispersion
on the underlying dynamics when δ3 > 0 and δ5 = 0 in (1.5). Note that without
loss of generality we can take δ3 to be positive since given a solution u(x, t; ν, δ3) then
−u(−x, t; ν,−δ3) is also a solution.

Our numerical experiments establish that when δ3 is sufficiently large ( δ3 > 0.073)
the solution enters a traveling wave attractor. Such behavior has been observed by
various authors; see, for example, [13, 17, 18]. Of particular interest to us are the
dynamics as δ3 decreases to zero from values that support traveling waves. Starting
from δ3 = 0.1, we observe numerically that at a value δ3∈ (0.07300091, 0.07300092)
the steady-state traveling wave undergoes its first Hopf bifurcation leading to a trav-
eling time periodic solution, i.e., a solution u satisfying u(x, t + T ) = u(x − c̄t, t),

where T is the time-period and c̄ = 1
T

∫ T

0 c̃(t) dt, with c̃(t) the speed of propagation
defined by (see Section 4.1 and equation (4.2) for the derivation of this formula)

(4.3) c̃(t) =

∫ 2π

0
u(x, t)u2

x(x, t) dx −
∫ 2π

0
ux(x, t)Du(x, t) dx

∫ 2π

0 u2
x(x, t) dx

.

The evolution of c̃(t) allows us to identify traveling-periodic or traveling wave so-
lutions, with spectral accuracy from knowledge of the Fourier coefficients aj(t) and
bj(t).

As δ3 decreases, a series of period doubling bifurcations take place. We followed as
many as seven period doublings and estimated the Feigenbaum accumulation point,
where chaos sets in, to be δ3,∞ ≈ 0.00137991. In Figure 4.2, we depict the phase

plane of the energy (E, Ė), where

Ė(t) =
‖ux(·, t)‖2 − ν‖uxx(·, t)‖2

‖u(·, t)‖ ,(4.4)

and E(t) has been defined earlier in (4.1). The expression for Ė(t) follows by taking
the inner product of (1.1) with u(·, t), and the formula is valid for general dispersion
operators. Note also that (4.1) and (4.4) are computed with spectral accuracy since
they involve sums in Fourier space. We determine period doublings by tracking the
local maxima and minima of E(t) over very long times after transients have died
away. For example, in the panel corresponding to δ3 = 0.001385 (bottom right)
there are 32 maxima and minima and the period is T = 49.182941. Furthermore,
for δ3 = 0.00137992 we computed an additional five period doublings, so that 1024
maxima and as many minima exist, and the period is T = 1574.017110030. In
order to isolate such delicate features of the dynamics it is imperative to calculate
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Fig. 4.2. Phase plane of the L2−norm. Five period doublings as δ3 decreases for a fixed
ν = 0.1212.

accurately local maxima and minima (both their values and times of occurrence)
and we typically work with twelve decimal places. This is achieved by using weighted
polynomial interpolation; in these runs the interpolation fits a sixth degree polynomial
to eleven points, with the local extremum in the middle.

For values of δ3 in the window [0, δ3,∞], the dynamics lives on a chaotic attractor.
A graphical representation of this chaotic attractor at δ = 5 × 10−4 is obtained
by constructing the return map of the local minima (for example), i.e., by plotting
(mj ,mj+1), where {mj} is the sequence of the local minimum values as t increases.
In Figures 4.3(a)–4.3(b) the foliations in the return map are clearly seen (ν = 0.1212
and δ3 = 5 × 10−4); panel (b) is an enlargement of the boxed region in (a). Such
self–similar features can only be constructed by integrating to long times in order to
allow different parts of the attractor to be visited by the flow. In the present case,
the equation was integrated for 105 time units with time step k = 10−4. Foliations
and self–similarity of the attractor are strongly evident in these results, and such
qualitative behavior has also been established by the authors in computations of the
KS equation and systems of KS type ([4, 22, 23, 24]).

The high dispersion limit: Stable traveling wave attractors. As the value
of δ3 is increased the solutions are attracted to nonlinear traveling waves. Depending
on the initial conditions, the traveling waves can have different fundamental periods
(or different modal behavior in our description) 2π/M , where M is a positive integer.
In the results that follow we have opted to describe attractors with M = 1, that is
unimodal waves. Three notable generic features emerge from the computations as
illustrated in Table 4.4, which provides the effect of δ3 on the L2−norm, speed c and

asymmetry parameter χ defined by χ = ‖u−ũ‖
‖u‖ , where ũ(x) = u(−x) and ‖u‖ is the

L2−norm. Both the L2−norm and the speed increase linearly (asymptotically) with
δ3, whereas the asymmetry parameter χ tends to zero asymptotically indicating that
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Fig. 4.3. Return map showing foliations in the chaotic regime when ν = 0.1212 and δ3 =
5× 10−4. Panel (b) is an enlargement of the boxed region in (a).

the solutions become increasingly symmetric. These features are easily confirmed
by considering a balance of terms in equation 1.4) for δ3 ≫ 1, with the nonlinear-
ity retained in order to provide the required saturation mechanism characteristic of
Kuramoto–Sivashinsky type equations. Thus we write

(4.5) u(x, t) = δ3U(x, τ), t =
τ

δ3
,

where τ is the new scaled time, and substitute into (1.4) to find

(4.6) Uτ + UUx + Uxxx = − 1

δ3
(Uxx + νUxxxx).

Equation (4.6) is a perturbed KdV equation when δ3 is large and its solutions (trav-
eling wave solutions emerge by writing U ≡ U(x − sτ) in the usual way) are KdV
cnoidal waves perturbed by the Kuramoto–Sivashinsky term on the right of (4.6).
A detailed analysis of such limiting traveling waves has been carried out in [13] and
additional results will be reported by the authors in future work. The scalings (4.5)
clearly show the asymptotic results ‖u(·, t)‖ = O(δ3) and c = O(δ3) (note that the
scaled speed s is given by s = c/δ3).

δ3 0.1 0.4 1.6 6.4 25.6 102.4

‖u‖/δ3 75.0485 28.1913 18.2486 16.9548 16.8543 16.8531

c/δ3 11.8228 3.9593 2.2071 1.9659 1.9478 1.9466

χ 0.4721 0.3606 0.1646 0.04662 0.01178 0.002946

Table 4.4
Variation with the dispersion coefficient δ3 of the L2−norm, the speed and the asymmetry pa-

rameter χ indicating linear asymptotic behavior for the former two quantities and an asymptotically
symmetric solution since χ decreases to zero. Here, ν = 0.2.

Finally, we present some computed traveling wave solutions at different values
of δ3 with fixed ν = 0.2. We note that all solutions are stable to perturbations
with wavelengths at most as big as the computational domain (of length 2π here),
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in the sense that they are computed by solving initial value problems (the possibility
of modulational instabilities, i.e., perturbations of larger wavelength than the basic
period of the waves, needs to be investigated further). Results are shown in Figure
4.4 with the scaled solutions u/δ3 collectively depicted in the right panel. The profiles
are shifted horizontally (admissible due to Galilean invariance) so that the first term
of the solution’s Fourier series contains cos(x) alone (this is done efficiently in Fourier
space). It is seen that the solution is converging to a unimodal traveling wave with
the self-similar properties outlined earlier, and the symmetry in the asymptotic state
also manifests itself.
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Fig. 4.4. Traveling waves as δ3 increases for fixed ν = 0.2. The right panel shows the scaled
solution divided by δ3. Integration was carried out to t = 15 to ensure the solution reaches its final
state.

4.3. Numerical integration of Benney–Lin equation. In this section we
illustrate our numerical methods for the Benney–Lin equation (1.5) by taking δ3 = 0
and computing solutions as δ5 varies. As shown in Section 2, the linearly implicit
schemes of order p = 1, 2 are appropriate due to the high order dispersion and all
results that follow use p = 2. As for the Kawahara equation, a sufficient amount of
dispersion produces stable traveling wave attractors. The profiles become asymptot-
ically symmetric as δ5 increases and the L2−norms and traveling wave speeds grow
linearly with δ5. This is also the case for any dispersive operator D ≡ δDD1 in (1.1)
and follows by balancing terms after writing u = δDU , taking δD ≫ 1 and proceeding
as in Section 4.2. For brevity we do not include quantitative details of these linear
variations of the L2−norm and speed with δ5, but in Figure 4.5 provide a sequence
of stable traveling wave solutions as δ5 increases for the case ν = 0.4. Twelve val-
ues δ5 = 2m are used with m = −4, −3, . . . , 6, 7, and the initial value problem is
solved until the emergence of steady-state traveling waves (typically the computation
is stopped after the L2−norm of the solution has converged to at least eight deci-
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Fig. 4.5. Traveling waves for ν = 0.4: (a) Unscaled solutions for δ5 = 1/16, 1/8, 1/4, 1/2, 1, 2;
(b) scaled solutions u/δ5 for δ5 = 4, 8, 16, 32, 64, 128. Integration was carried out to t = 20 for the
results in panel (a) and t = 35 for those in panel (b).

mals). Panel (a) shows the solutions for δ5 = 1/16, 1/8, 1/4, 1/2, 1, 2 while panel
(b) depicts the profiles at the larger values of δ5 ≥ 4. The solutions in panel (b) are
plotted after applying the rescaling Uδ5 = u/δ5 for each value of δ5 computed, and
the superimposed curves are almost indistinguishable (there are six solutions in the
figure which have amplitudes that vary by two orders of magnitude). In addition,
the solutions become asymptotically symmetric about x = π as mentioned earlier,
and this fact is useful in the analysis of the equations, which will be reported by the
authors elsewhere.

Finally we take ν = 0.1, which supports chaotic solutions in the dispersionless KS
equation and compute the attractors as δ5 decreases. We have established that if δ5
is larger than or equal to δ5c = 0.00366 the solutions of (1.5) are attracted to a stable
bimodal traveling wave attractor. As δ5 is decreased below δ5c the solution undergoes
a sequence of bifurcations leading to chaotic dynamics. Our numerical schemes and
numerical diagnostic tools are capable of describing the dynamics qualitatively and
quantitatively. In the results that follow we use 40 modes and a step-size k = 10−4

with the final time of integration varied appropriately as the parameter δ5 changes to
ensure that no transients are present and the numerical solutions reproduce faithfully
the inertial manifold. The route to chaos does not follow a Feigenbaum scenario in this
case as opposed to the Kawahara equation computed in Section 4.2. We believe that
this is due to the smaller value of ν = 0.1 that was chosen to illustrate the intricate na-
ture of the underlying attractor. As δ5 decreases chaos emerges through quasi-periodic
dynamics in time as described next. A Hopf bifurcation leading to a time periodic
solution of period T = 0.859168 (correct to six decimals) takes place at δ5 = 0.00365.
This time-periodic attractor persists until approximately δ5 = 0.0030265 where the
period is T = 0.838348, with T decreasing monotonically but weakly with δ5. A fur-
ther decrease of δ5 to the value 0.0030264 produces quasi-periodic dynamics in time;
another Hopf bifurcation takes place with a small second frequency (approximately
0.00159), inducing modulated dynamics that vary on a second long period, T2 say,
given by T2 ≈ 3951. We quantify quasi-periodic dynamics by considering the evolu-
tion of the energy minima (or maxima); if the solution is periodic of period T the
resulting plot is a series of points lying on a horizontal line (if the energy has one
maximum and one minimum as is the case here), and spaced T units apart. When a



20 G. Akrivis, D. T. Papageorgiou, Y.–S. Smyrlis

8

Time
0

0

0

0

5

5

5

10

10

10

10

12

15

15

15

1000

1000

1000

1000

2000

2000

2000

2000

3000

3000

3000

3000

4000

4000

4000

4000

5000

5000

5000

5000

6000

6000

6000

6000

7000

7000

7000

7000

8000

8000

8000

8000

9000

9000

9000

9000

10000

10000

10000

10000

δ5 = 0.0030264

δ5 = 0.0030263

δ5 = 0.0030261

δ5 = 0.003025

Fig. 4.6. Quasi-periodic dynamics prior to transition to chaos when ν = 0.1. The evolution of
the local minima of E(t) are plotted as dots as δ5 decreases from .0030264 to .003025 - values shown
in the figure. The average times between “bursts” corresponding to the second period of oscillation,
are tabulated in Table 4.5 and decrease monotonically with δ5.

second frequency enters, the discrete set of points no longer lie on a straight line but
instead the locus of the points is a curve with periodic features as shown in Figure 4.6.
The four panels depict solutions for δ5 = 0.0030264, 0.0030263, 0.0030261, 0.003025
over 104 time units and show clearly the dramatic decrease in the second period T2.
The second period is estimated directly from the data and values for a range of δ5
are given in Table 4.5. (We note that additional evidence of quasi-periodic dynamics
is gained by considering return maps of the minima which produce curves in R

2 that
fill out as time increases, in analogy with quasi-periodic flow on a torus, for exam-
ple - for brevity we do not include such plots here.) At lower values of δ5 a third
frequency enters (seen in preliminary runs), which then leads the dynamics into the
chaotic regime - the return maps now contain foldings and self-similar features. A
complete identification of the third frequency would involve the spectral analysis of
long time-series data (of the L2−norm for instance) and is beyond our purposes here
but will be addressed in future work.

δ5 0.0030264 0.0030263 0.0030262 0.0030261 0.003026 0.003025

T2 3951 956 688 561 483 260

Table 4.5
Quasi-periodic solutions just before the chaotic attractor, ν = 0.1. Estimates of the values of

the second period T2 as δ5 decreases. At δ5 = 0.0030265 the flow is periodic of period T = 0.838348.
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5. Conclusions. In this paper we have analyzed and implemented numerical
schemes to solve dispersively modified Kuramoto–Sivashinsky equations. Time step-
ping is achieved using a class of implicit-explicit multistep schemes and spatial dis-
cretizations are done spectrally. Optimal order error estimates are derived for general
dispersive modifications of the KS equation. Schemes of arbitrary order p can be
applied when the number of spatial derivatives of the dispersive term is less than
four (this also holds for pseudo-differential operators whose Fourier symbol satisfies
analogous sub-dominance conditions), and as a test case we implement these for the
Kawahara equation (1.4) for p = 1, . . . , 6. For dispersive operators whose order is
higher than four (e.g., the Benney–Lin equation (1.5)), we prove optimal error esti-
mates for the p = 1, 2 schemes. These schemes are also implemented and used to
illustrate the dynamics of this equation by constructing parts of the underlying at-
tractors. The schemes are found to be an appropriate numerical tool that can be used
to faithfully reproduce the dissipative dynamics and attractors.

Extensive runs have been performed that show that dispersion (even in moderate
amounts) modifies the inertial manifold in the sense that solutions are attracted to
nonlinear traveling waves. In all cases computed limiting traveling wave attractors
are found which are independent of the dispersion coefficient and depend on ν alone.
We have also implemented several numerical diagnostic tools such as the highly ac-
curate construction of return maps (i.e., the projection of the infinite–dimensional
dynamics to a discrete map) that are essential in the discovery and characterization
of the attractors. Using these tools we have explored the effect of dispersion on the
dispersionless Feigenbaum routes to chaos familiar for the KS. Starting with a value
of ν in the chaotic regime just beyond the Feigenbaum accumulation point ν∞ (see
definitions in the main text), we show that if the dispersion is sufficiently large then
the solution is attracted to a traveling wave. Our computations show that a reduc-
tion in the dispersion leads to chaos through a Feigenbaum period–doubling cascade
- see Section 4.2. The dispersion acts in a stabilizing manner in the sense that the
Feigenbaum period–doubling cascade is delayed to lower values of ν and takes place
with respect to the second parameter in the problem, the dispersion coefficient δ3 in
the case of the Kawahara equation. In the case of the Benney–Lin equation (1.5)
that contains a fifth order dispersive term, our computations using the p = 2 scheme
again indicate the existence of high dispersion limiting stable traveling wave attrac-
tors. We have also illustrated the dynamics as the dispersion decreases for the value
ν = 0.1, and find a quasi–periodic route to chaos: two Hopf bifurcations produce
quasi–periodic dynamics before chaos ensues most probably due to a third frequency
that enters. Additional work is under way to clarify this scenario using the numerical
methods described and analyzed here.
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