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Abstract. We analyze the discretization of the periodic initial value problem

for Kuramoto–Sivashinsky type equations with Burgers nonlinearity by implicit–

explicit backward difference formula (BDF) methods, establish stability and de-

rive optimal order error estimates. We also study discretization in space by

spectral methods.

1. Introduction

We construct and analyze efficient numerical methods for periodic initial value

problems for evolution equations with Burgers nonlinearity uux, of the form

(1.1) ut + uux + Pu = 0, x ∈ R, t > 0,

with P a linear pseudo-differential operator, and a given initial value u(·, 0) = u0.

The solution is required to be L-periodic, u(x+ L, t) = u(x, t).

The linear pseudo-differential operator P is defined by its symbol in Fourier

space,

(1.2) (P̂v)` = λ` v̂`, ` ∈ Z,

whenever v(x) =
∑

`∈Z v̂` eiω`x, where ω := 2π/L. In other words, the functions

ϕ`(x) := eiω`x are the eigenfunctions of the operator P , corresponding to the eigen-

values λ`, ` ∈ Z. We are interested in operators with eigenvalues satisfying

(1.3) Reλ` ≥ c1|`|p, for all |`| ≥ `1,

and

(1.4) |λ`| ≤ c2 + c3|`|p, for all ` ∈ Z,

with c1, c2, c3 and p positive constants, and `1 a positive integer. Condition (1.3)

allows finitely many eigenvalues to have negative real parts.

In Section 2 we illustrate the applicability of assumptions (1.2)–(1.4) to five

concrete examples: the Kuramoto–Sivashinsky (KS) equation and two dispersively

modified variations of it, to an equation introduced by Goodman, and to Otto’s

model.
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For the discretization in time we shall use a combination of the implicit q-step

BDF method (α, β) and the explicit q-step method (α, γ), for q = 1, . . . , 6, described

by the polynomials α, β and γ,

(1.5)


α(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j =

q∑
i=0

αiζ
i, β(ζ) = ζq,

γ(ζ) = ζq − (ζ − 1)q =

q−1∑
i=0

γiζ
i.

The order of the implicit q-step BDF method (α, β) is q. For a given α, the scheme

(α, γ) is the unique explicit q-step scheme of order q; the order of all other explicit

q-step schemes (α, γ̃) is at most q − 1.

Let T be positive, N ∈ N, N ≥ q, and consider a uniform partition tn := nk, n =

0, . . . , N, of the bounded interval [0, T ], with time step k := T/N. Assuming we

are given starting approximations U0, . . . , U q−1, we discretize in time the periodic

initial value problem for equation (1.1) in the time interval [0, T ], with initial value

u0, by the implicit–explicit q-step (α, β, γ)-scheme, i.e., we define approximations

Um to the nodal values um := u(·, tm) of the exact solution as follows

(1.6)

q∑
i=0

αiU
n+i + kPUn+q = k

q−1∑
i=0

γiB(Un+i),

n = 0, . . . , N−q, with B(v) := −vvx. The scheme (1.6) is referred to as the implicit–

explicit q-step BDF method; the linear part Pu of the equation is discretized by the

implicit BDF method and the nonlinear part B(u) by its explicit counterpart. As

a result, the unknown Un+q appears only on the left-hand side of (1.6); therefore,

to advance in time, we only need to solve one linear equation of the form αqU
n+q +

kPUn+q = w, with given w, which reduces to a linear system if we discretize also

in space, at each time level. The computational cost per time step is essentially

independent of q; thus, high-order implicit–explicit BDF methods are very efficient.

Implicit–explicit multistep methods, and in particular implicit–explicit BDF

schemes, were introduced and analyzed for non-autonomous linear parabolic equa-

tions in [13]. The analysis was subsequently extended to nonlinear parabolic equa-

tions; see, e.g., [3, 6, 2, 5].

It follows easily from (1.3) that, for a sufficiently large, nonnegative constant c̃,

the eigenvalues λ̃` = c̃+λ` of the shifted operator P̃ := P+ c̃I satisfy the coercivity

assumption

(1.7) Re λ̃` ≥ c0 + c1|`|p, for all ` ∈ Z,

with c1, p as in (1.3) and c0 a positive constant. Now, for a fixed c̃, let

(1.8) λ := sup
`∈Z

|λ̃`|
Re λ̃`
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and

(1.9) η̂1 = η̂2 = 0, η̂3 =
1

13
, η̂4 = 0.287806557, η̂5 = 0.8097337459.

Assuming p > 1 and η̂qλ < 1, and following the approach of [6, 2, 5], we establish

stability of the q-step scheme (1.6), for q = 1, . . . , 5, by energy techniques and, for

sufficiently smooth solution u and sufficiently accurate starting approximations

U0, . . . , U q−1, derive optimal order error estimates. We also extend the analysis to

the fully discrete case; we use the spectral method for the discretization in space.

The stability analysis in [3] concerns a wider class of implicit–explicit multistep

methods and more general nonlinearities, is restricted to the case of self-adjoint

operators P , is based on spectral and Fourier techniques, and led to sharp sta-

bility conditions. Our analysis here uses the energy technique and is based on

the Nevanlinna–Odeh multipliers for BDF methods of order up to 5; see the aux-

iliary Lemma 4.1; this Lemma was recently used first in [22] for the analysis of

implicit BDF methods for a class of linear parabolic equations on evolving surfaces

and subsequently in [6, 2] both for BDF methods and some computationally less

expensive variants for quasi-linear and nonlinear parabolic equations, respectively.

The more favorable multipliers of [5] for the three- and five-step BDF schemes allow

us to relax the stability condition for the implicit–explicit three- and five-step BDF

methods. Implicit–explicit one- and two-step BDF methods for equations similar

to the ones considered in this paper are analyzed in [10] by energy techniques.

The accuracy and efficiency of the implicit–explicit BDF methods (1.6) was in-

vestigated by extensive numerical experiments in [9, 7, 8, 4] with very satisfactory

results. More precisely, implicit–explicit BDF methods were used for the discretiza-

tion in time of the KS equation in [9], of a nonlinear parabolic system arising in

two-phase flows in [7], of a general class of dispersively modified KS equations

arising in multiphase hydrodynamics in [8], and of two-dimensional active par-

tial differential equations such as the Topper–Kawahara equation, which is a two-

dimensional extension of the dispersively modified KS equation, found in falling

film hydrodynamics in [4].

The paper is organized as follows: In Section 2 we discuss five concrete KS-type

equations to which our analysis applies, and introduce the function spaces as well

as the theoretical preliminaries required for the analysis of the numerical methods

(1.6). In Section 3 we prove consistency of the implicit–explicit BDF schemes.

Section 4 is devoted to the local stability of the numerical methods. Optimal order

error estimates are established in Section 5. In Section 6 we discuss two extensions

of the analysis, the first to equations of the form (1.1) with time dependent opera-

tors P(t), and the second to fully discrete schemes; spectral methods are used for

the discretization in space. In order to avoid overloading the main text, certain

proofs are given in the Appendix.



4 G. AKRIVIS AND Y.–S. SMYRLIS

2. KS-type equations, function spaces and theoretical setting

In this section we discuss five examples of KS-type equations of the form (1.1),

to which our analysis applies. We also introduce suitable function spaces and show

that the linear operators P are bounded and satisfy a G̊arding inequality, and

that the nonlinear operator B(v) = −vvx satisfies a local Lipschitz condition; see

(2.16) below. These properties will play an essential role in our stability analysis

in section 4.

2.1. KS-type equations. Under assumption (1.3), global existence of solutions

of (1.1) has been established for p > 3/2 (see [26]); when p ≥ 2, it can be deduced

from [14] that equation (1.1) possesses a global attractor, compact in every Sobolev

norm. Analyticity of solutions of (1.1) for p > 2 is established in [17].

Otto’s model, also referred to as generalized Kuramoto–Sivashinsky (gKS) equa-

tion [25],

(2.1) ut + uux − |∂x|au+ |∂x|bu = 0,

where b > a ≥ 0 and |∂x|σ is the pseudo-differential operator defined as

|∂x|σv(x) =
∑
`∈Z

|ω`|σv̂` ei`ωx,

for v(x) =
∑

`∈Z v̂`e
i`ωx, is a special case of (1.1) with Pv = −|∂x|av+ |∂x|bv. Now,

obviously,

Pv =
∑
`∈Z

(
|ω`|b − |ω`|a

)
v̂` ei`ωx,

whence

(2.2) λ` = |ω`|b − |ω`|a, ` ∈ Z;

cf. (1.2). In this case, both (1.3) and (1.4) are satisfied. Indeed, first, according to

Young’s inequality,

|ω`|a ≤ a

b
|ω`|b +

b− a
b

,

whence

(2.3) λ` ≥
b− a
b

(
|ω`|b − 1

)
, ` ∈ Z;

thus, (1.3) is satisfied with p = b. Furthermore,

|λ`| ≤ |ω`|b + |ω`|a ≤
(
1 +

a

b

)
|ω`|b +

b− a
b

;

therefore, (1.4) is also satisfied.

Concerning the ratio λ, cf. (1.8), shifting the eigenvalues λ` ∈ R, ` ∈ Z, see (2.2),

by a suitable positive constant c̃, λ̃` := λ` + c̃, cf. (1.7), we see that (1.8) is satisfied

with λ = 1.
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Special cases of equation (2.1), and, in particular, of equation (1.1), are the

Kuramoto–Sivashinsky (KS) equation

(2.4) ut + uux + uxx + uxxxx = 0,

corresponding to the parameters a = 2 and b = 4, and the Burgers–Sivashinsky

equation

(2.5) ut + uux − u− uxx = 0,

corresponding to the case a = 0 and b = 2; the latter equation was introduced by

Jonathan Goodman [15].

KS is a simple partial differential equation, which exhibits a particularly complex

dynamical behavior as the period L grows. It arises in a variety of applications,

for example, in concentration waves in chemically reacting systems [21], in flame

propagation and reaction combustion [24], in free surface film-flows of viscous liq-

uids, and in the dynamics of interfaces in two-phase flows in cylindrical geometries

[19]. It is one of the simplest PDEs with a convective nonlinearity and a band

of unstable modes, in its linearized version (around zero), and thus it has served

as a typical example on which the general notions of inertial manifold theory are

applied. This means that the long time dynamic behavior of KS is captured well by

a finite dimensional dynamical system, the number of degrees of freedom of which

is at least as large as the number of linearly unstable Fourier frequencies [12].

We shall also consider dispersively modified variations of the KS equation of the

form

(2.6) ut + uux + uxx + uxxxx +Du = 0.

Special cases of (2.6) are

(2.7) ut + uux + uxx + duxxx + uxxxx = 0,

derived in falling flows and known as the Kawahara equation [20], and an equation

derived in the context of interfacial hydrodynamics (see [19, 18]), in which the

dispersive pseudo-differential operator D is defined as

(2.8) (D̂v)` = i d` v̂`, d` =
(ω`)2I21 (ω`)

ω`I21 (ω`)− ω`I20 (ω`) + 2I0(ω`)I1(ω`)
, ` ∈ Z,

with Iν(ξ) the modified Bessel function of the first kind of order ν. As

Iν(x) =
ex√
2πx

(
1 +

1− 4ν2

8x
+O

( 1

x2

))
,

for large x (see [1, p. 377, §9.7]), it follows that d` = (ω`)2 +O(`), for large |`|.
In the cases of dispersively modified KS equations, the operators are not self-

adjoint; however, since the dispersive terms in both (2.7) and (2.6)–(2.8) are of

lower order than the dominating term, we can achieve λ ≤ 1 + ε (see (1.8)) for
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any positive ε, for a suitable positive constants c̃. Indeed, for equations (2.7) and

(2.6)–(2.8), we have

(2.9) λ` = −(ω`)2 − id(ω`)3 + (ω`)4 and λ` = −(ω`)2 + (ω`)4 + id`,

` ∈ Z, respectively. Therefore, for the shifted eigenvalues λ̃` := λ` + c̃, we have

|λ̃`|
Re λ̃`

≤ 1 + d2
|ω`|3

c̃− (ω`)2 + (ω`)4
and

|λ̃`|
Re λ̃`

≤ 1 +
|d`|

c̃− (ω`)2 + (ω`)4
,

respectively. The fractions on the right-hand sides tend to zero as |`| tends to

infinity, and can be made arbitrarily small for |`| ≤ ˜̀, with a fixed ˜̀, by taking c̃

sufficiently large; this is straight-forward for the first fraction, while for the second

fraction it follows from the fact that d` = (ω`)2 +O(`), for large |`|.

2.2. Two essential properties of the linear operator. For s∈R, we denote by

Hs
per the Sobolev space of order s, consisting of the L-periodic elements of Hs

loc(R),

with norm1

‖v‖Hs :=
(∑
`∈Z

(1 + ω2`2)s |v̂`|2
)1/2

.

Clearly, Hs
per is a Hilbert space, for every s∈R. Let H := H0

per = L2
per. Then the

norm on H, which we shall be denoting by | · |, is induced by the inner product

(u, v) =
1

L

∫ L

0

u(x) v(x) dx =
∑
`∈Z

û` v̂`.

Condition (1.7) is equivalent to

(1.7′) Re λ̃` ≥ κ
(
1 + ω2`2

)d
, for all ` ∈ Z,

with d = p/2 and κ a suitable positive constant.

Now, with d := p/2, we introduce in V := Hd
per and V ′ = H−dper the operator

dependent norms ‖ · ‖ and ‖ · ‖?, respectively, by

(2.10) ‖v‖ :=
(∑
`∈Z

Re λ̃` |v̂`|2
)1/2

, ‖v‖? :=
(∑
`∈Z

(Re λ̃`)
−1|v̂`|2

)1/2
.

Notice that the norm ‖ · ‖ is induced by the inner product

〈u, v〉 = (Su, v),

with S := 1
2
(P̃ + P̃?), the self-adjoint part of the operator P̃ , and in view of (1.7)

(see also (1.7′)) and (1.4), the norms ‖ · ‖ and ‖ · ‖Hd are equivalent.

1Note that, if s is a nonnegative integer, then ‖ · ‖Hs is equivalent to the norm defined by

‖u‖s =
( s∑

j=0

∫ L

0

|u(j)(x)|2 dx
)1/2

.
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Denoting by (·, ·) also the duality pairing between H−dper and Hd
per, which reduces

to the inner product (·, ·) in H × V, for v ∈ Hd
per we obviously have

Re (P̃v, v) = Re
∑
`∈Z

λ` |v̂`|2;

in particular, the operator P̃ is coercive; more precisely,

(2.11) Re (P̃v, v) = ‖v‖2, for all v ∈ V = Hd
per.

Therefore, since (P̃v, v) = (Pv, v) + c̃(v, v), the operator P satisfies the G̊arding

inequality

(2.12) Re (Pv, v) ≥ ‖v‖2 − c̃|v|2, for all v ∈ V = Hd
per.

Moreover, P : V → V ′ is bounded ; more precisely,

(2.13) ‖Pv‖? ≤ λ‖v‖+ c̃‖v‖?, for all v ∈ V = Hd
per,

with the bound λ given by (1.8). Indeed, for v, w ∈ Hd
per, we have

(P̃v, w) =
∑
`∈Z

λ̃`v̂` ŵ`,

whence, in view of (1.8),

|(P̃v, w)| ≤
∑
`∈Z

|λ̃`| |v̂`| |ŵ`| ≤ λ
∑
`∈Z

Re λ̃`|v̂`| |ŵ`| ≤ λ‖v‖ ‖w‖;

thus,

(2.14) ‖P̃v‖? ≤ λ‖v‖

and (2.13) follows. It is also obvious that λ is the norm of the operator P̃ as a

linear mapping from the space V to the space V ′, endowed with the specific norms

‖ · ‖ and ‖ · ‖?, respectively.

Notice that, in view of (1.7) and (1.4), the constant λ in (1.8) is finite. For

our analysis, the important consequence from (1.7), (1.4), and (1.8) is that all

eigenvalues of the operator P̃ are contained in the sector Sϑ,

Sϑ := {z ∈ C : z = ρ eiϕ, ρ ≥ 0, |ϕ| ≤ ϑ},

with ϑ ∈ [0, π/2) such that cosϑ = 1/λ.

2.2.1. Existence and uniqueness of the approximations. For given Un, . . . , Un+q−1 ∈
V, the scheme (1.6) is of the form

(2.15) αqv + kPv = w,

with given w ∈ V ′ and unknown v. The bilinear form a : V × V → R, a(v, ṽ) :=

αq(v, ṽ) + k(Pv, ṽ), is bounded and, for k ≤ c̃/αq, coercive. Indeed, in view of

(2.13), we have

|a(v, ṽ)| ≤ αq|v| |ṽ|+ k
(
λ‖v‖+ c̃‖v‖?

)
‖ṽ‖,
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and the boundedness of a follows easily from the fact that the norms | · | and ‖ · ‖?
are dominated by ‖ · ‖. Furthermore,

Re a(v, v) = (αq − c̃k)|v|2 + kRe (P̃v, v);

thus, or k ≤ αq/c̃, the coercivity of a is a consequence of the coercivity of P̃ ; see

(2.11). Now, existence and uniqueness of the solution v ∈ V of (2.15) follow easily

from the Lax–Milgram lemma.

We infer that, for k ≤ αq/c̃, the approximations U q, . . . , UN ∈ V are well defined.

2.3. Local Lipschitz continuity of the nonlinear operator. Assume that p >

1, i.e., d > 1/2, and let d′ ∈ (1/2, d), d′ ≤ 1. Then, for any positive µ, there exists

a constant ν, depending on µ, such that the operator

B : V → V ′, B(v) := −vvx,

satisfies the local Lipschitz condition

(2.16) ‖B(v)−B(ṽ)‖? ≤ µ‖v − ṽ‖+ ν|v − ṽ| for all v, ṽ ∈ Tu,

in the tube Tu,

(2.17) Tu :=
{
v ∈ V : min

t
‖v − u(t)‖Hd′ ≤ 1

}
,

around the solution u, defined in terms of the norm of Hd′ .

Indeed, first, obviously, for v, ṽ, w ∈ V, we have

(2.18)
(
B(v)−B(ṽ), w

)
= −1

2

(
(v2 − ṽ2)x, w

)
.

Furthermore,

|(zx, w)| ≤
∑
`∈Z

|ω`| |ẑ`| |ŵ`| =
∑
`∈Z
` 6=0

|ω`|1−d|ẑ`| |ω`|d|ŵ`|

≤
(∑
`∈Z
6̀=0

|ω`|2(1−d)|ẑ`|2
)1/2(∑

`∈Z
`6=0

|ω`|2d|ŵ`|2
)1/2

,

whence

(2.19) |(zx, w)| ≤ ‖z‖H1−d ‖w‖Hd .

From (2.18) and (2.19), and the equivalence of the norms ‖ · ‖ and ‖ · ‖Hd , we infer

that

(2.20) ‖B(v)−B(ṽ)‖? ≤ c‖v2 − ṽ2‖H1−d .

Now, according to Corollary A.2 (see Appendix), with u = v + ṽ, we have

‖(v + ṽ)(v − ṽ)‖H1−d ≤ ‖v + ṽ‖Hd′
(
cε̃|v − ṽ|+ ε̃ ‖v − ṽ‖Hd

)
,

whence, since v, ṽ ∈ Tu,

(2.21) ‖v2 − ṽ2‖H1−d ≤ C
(
cε̃|v − ṽ|+ ε̃ ‖v − ṽ‖

)
.
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The desired local Lipschitz condition (2.16) is now an immediate consequence of

(2.20) and (2.21).

Remark 2.1 (Alternative forms of the local Lipschitz condition (2.16)). The local

Lipschitz condition (2.16) is perfectly suitable for the stability analysis as well as

for the error analysis of the time stepping methods. However, the appearance of

the strong norm ‖·‖ on its right-hand side results in a reduction by one of the order

in the space discretization parameter in the analysis of fully discrete methods.

In the case p ≥ 2, we can recover the full order in the space discretization

parameter, while, in the case 1 < p < 2, we can partly restore the order reduction,

to an extend depending on the value of p. To this end, we shall modify the local

Lipschitz condition (2.16). First, for p ≥ 2, i.e., d ≥ 1, the norm ‖·‖H1−d is weaker

than the L2-norm; thus (2.20) yields

‖B(v)−B(ṽ)‖? ≤ C|v2 − ṽ2|

and we easily infer that

(2.22) ‖B(v)−B(ṽ)‖? ≤ c‖v + ṽ‖L∞|v − ṽ|, p ≥ 2,

a local Lipschitz condition that will allow us to recover the full order in this case;

see (6.10) in the sequel.

In the case 1 < p < 2, i.e., 1/2 < d < 1, we shall use the interpolation inequality

(2.23) ‖w‖H1−d ≤ ‖w‖dL2‖w‖1−dH1 .

In general, for r < s < t, Hölder’s inequality yields

‖w‖t−rHs ≤ ‖w‖t−sHr ‖w‖s−rHt ,

and (2.23) is a special case of this inequality for r = 0, s = 1− d and t = 1. Now,

from (2.20) and (2.23), we easily infer that

(2.24) ‖B(v)−B(ṽ)‖? ≤ c‖v + ṽ‖W 1,∞|v − ṽ|d ‖v − ṽ‖1−d, 1 < p < 2,

with d = p/2, a local Lipschitz condition that will allow us to partly restore the

order reduction in this case; see (6.11) in the sequel. �

3. Consistency

In this section we prove consistency of the implicit–explicit BDF scheme (1.6)

for the solution u of the periodic initial value problem for equation (1.1).

The order of the q-step methods (α, β) and (α, γ) is q, i.e.,

(3.1)

q∑
i=0

i`αi = `q`−1 = `

q−1∑
i=0

i`−1γi, ` = 0, 1, . . . , q.

The consistency errors En of the scheme (1.6) for the solution u of the periodic

initial value problem for equation (1.1), i.e., the amount by which the exact solution
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misses satisfying (1.6), is given by

(3.2) kEn =

q∑
i=0

αiu
n+i + kPun+q − k

q−1∑
i=0

γiB(un+i),

n = 0, . . . , N − q. Here, un+i := u(·, tn+i) denote the nodal values of the exact

solution u(·, t).

Lemma 3.1 (Consistency of implicit–explicit BDF schemes). The consistency error

(3.2) of the scheme (1.6) is bounded by

(3.3) max
0≤n≤N−q

‖En‖? ≤ C̃kq,

provided that the solution u is sufficiently regular.

Proof. This short and elementary proof proceeds along the lines of analogous proofs

in, e.g., [3, 6, 2, 5]; it is included here for the convenience of the reader. Letting

En
1 :=

q∑
i=0

αiu
n+i − ku′(tn+q), En

2 := kB(un+q)− k
q−1∑
i=0

γiB(un+i),

and using the differential equation in (1.1), we infer that

(3.4) kEn = En
1 + En

2 .

Furthermore, by Taylor expanding about tn and using the order conditions of the

implicit (α, β)-scheme, i.e., the first equality in (3.1), and the second equality in

(3.1), respectively, leading terms of order up to q − 1 cancel, and we obtain

En
1 =

1

q!

[ q∑
i=0

αi

∫ tn+i

tn
(tn+i − s)q∂q+1

t u(·, s)ds− qk
∫ tn+q

tn
(tn+q − s)q−1∂q+1

t u(·, s)ds
]

and

En
2 =

k

(q − 1)!

[ ∫ tn+q

tn
(tn+q−s)q−1∂qt B̃(·, s)ds−

q∑
i=0

γi

∫ tn+i

tn
(tn+i−s)q−1∂qt B̃(·, s)ds

]
,

with B̃(·, t) := B(u(·, t)), t ∈ [0, T ], respectively. Thus, under the pertinent regu-

larity requirements, we obtain the desired consistency estimate (3.3). �

4. Stability

In this section, following the approach of [6, 2, 5], we establish local stability of

the implicit–explicit BDF scheme (1.6), under a suitable sufficient stability condi-

tion, by the energy technique.

The (implicit) BDF methods are A-stable for q = 1 and q = 2, i.e., A(ϑq)-

stable with ϑ1 = ϑ2 = 90◦, and A(ϑq)-stable for q = 3, . . . , 6 with ϑ3 = 86.03◦,

ϑ4 = 73.35◦, ϑ5 = 51.84◦ and ϑ6 = 17.84◦; see [16, Section V.2].
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4.1. The Nevanlinna–Odeh multipliers for BDF methods. Based on Dahl-

quist’s G-stability theory, Nevanlinna and Odeh [23] proved the following result for

BDF methods of order up to five; this result allows us to establish stability by the

energy method.

Lemma 4.1 (Multipliers for BDF methods, [23]). Let α ∈ Pq, q ≤ 5, be the gener-

ating polynomial of the q-step BDF method; see (1.5). Let (·, ·) be an inner product

with associated norm | · |. Then, there exist a multiplier ηq, 0 ≤ ηq < 1, a posi-

tive definite symmetric matrix G = (gij) ∈ Rq,q and reals δ0, . . . , δq such that for

v0, . . . , vq in the inner product space,

Re
( q∑
i=0

αiv
i, vq − ηqvq−1

)
=

q∑
i,j=1

gij(v
i, vj)−

q∑
i,j=1

gij(v
i−1, vj−1) +

∣∣∣ q∑
i=0

δiv
i
∣∣∣2.

The smallest possible values of the multipliers ηq are

η1 = η2 = 0, η3 = 0.0836, η4 = 0.2878, η5 = 0.8160. �

4.2. Stability. Since the differential equation (1.1) is nonlinear, besides the ap-

proximations Un ∈ Tu satisfying (1.6), we consider implicit–explicit BDF approxi-

mations V n ∈ Tu such that

(4.1)

q∑
i=0

αiV
n+i + kPV n+q = k

q−1∑
i=0

γiB(V n+i),

n = 0, . . . , N − q.

Theorem 4.1 (Local stability of implicit–explicit BDF schemes). Assume that the

stability constant λ in (1.8) is small enough, such that

(4.2) ηqλ < 1.

Then the implicit–explicit BDF method (1.6) is locally stable, in the sense that,

with ϑm := Um − V m, for k sufficiently small,

(4.3) |ϑn|2 + k

n∑
`=q

‖ϑ`‖2 ≤ C

q−1∑
j=0

(
|ϑj|2 + k‖ϑj‖2

)
,

for n = q, . . . , N, with a constant C independent of k, n and the approximations.

Proof. This proof proceeds along the lines of analogous proofs in, e.g., [6, 2, 5]; it

is included here for the convenience of the reader. Letting bm := B(Um)−B(V m)

and subtracting (4.1) from (1.6), we obtain

(4.4)

q∑
i=0

αiϑ
n+i + kPϑn+q = k

q−1∑
i=0

γib
n+i,
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n = 0, . . . , N − q. We take in (4.4) the inner product with ϑn+q − ηqϑn+q−1, and

then real parts and get

(4.5) Re
( q∑
i=0

αiϑ
n+i, ϑn+q − ηqϑn+q−1

)
+ kIn+q = kJn+q

with In+q := Re
(
Pϑn+q, ϑn+q − ηqϑn+q−1

)
, whence

(4.6) In+q = Re
(
P̃ϑn+q, ϑn+q − ηqϑn+q−1

)
− c̃
(
ϑn+q, ϑn+q − ηqϑn+q−1

)
,

and

(4.7) Jn+q := Re
( q−1∑
i=0

γib
n+i, ϑn+q − ηqϑn+q−1

)
.

With the notation Θn := (ϑn−q+1, . . . , ϑn)T and the norm |Θn|G given by

|Θn|2G =

q∑
i,j=1

gij(ϑ
n−q+i, ϑn−q+j),

in view of Lemma 4.1, relation (4.5) yields the estimate

(4.8) |Θn+q|2G − |Θn+q−1|2G + kIn+q ≤ kJn+q.

Furthermore, in view of the coercivity condition (2.11) and the boundedness con-

dition (2.14), for the operator P̃ , we have

In+q ≥ ‖ϑn+q‖2 − ηqλ‖ϑn+q‖ ‖ϑn+q−1‖ − c̃
(
|ϑn+q|2 + ηq|ϑn+q| |ϑn+q−1|

)
,

and hence

(4.9)
In+q ≥

(
1− λ

2
ηq

)
‖ϑn+q‖2 − λ

2
ηq‖ϑn+q−1‖2

− c̃
(

1 +
1

2
ηq

)
|ϑn+q|2 − c̃

2
ηq|ϑn+q−1|2.

We shall now estimate Jn+q. First, we have

Jn+q ≤
q−1∑
i=0

|γi| ‖bn+i‖?
(
‖ϑn+q‖+ ηq‖ϑn+q−1‖

)
,
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whence, in view of the local Lipschitz condition (2.16), for any positive ε,

Jn+q ≤
q−1∑
i=0

|γi|
(
µ‖ϑn+i‖+ ν|ϑn+i|

)(
‖ϑn+q‖+ ηq‖ϑn+q−1‖

)
≤ 1

2

q−1∑
i=0

|γi|
[
(µ+ ε)

(
‖ϑn+q‖2 + ηq‖ϑn+q−1‖2

)
+ (1 + ηq)

(
µ‖ϑn+i‖2 +

ν

ε
|ϑn+i|2

)]
=
µ+ ε

2

( q−1∑
i=0

|γi|
)(
‖ϑn+q‖2 + ηq‖ϑn+q−1‖2

)
+

1 + ηq
2

q−1∑
i=0

|γi|
(
µ‖ϑn+i‖2 +

ν

ε
|ϑn+i|2

)
.

Therefore,

(4.10)

Jn+q ≤
µ+ ε

2
(2q − 1)

(
‖ϑn+q‖2 + ηq‖ϑn+q−1‖2

)
+

1 + ηq
2

q−1∑
i=0

|γi|
(
µ‖ϑn+i‖2 +

ν

ε
|ϑn+i|2

)
.

From (4.8), (4.9) and (4.10), we obtain

(4.11)

|Θn+q|2G − |Θn+q−1|2G + k
(
1− λ

2
ηq)‖ϑn+q‖2 − k

λ

2
ηq‖ϑn+q−1‖2

− kc̃
(

1 +
1

2
ηq

)
|ϑn+q|2 − k c̃

2
ηq|ϑn+q−1|2

≤ µ+ ε

2
(2q − 1)k

(
‖ϑn+q‖2 + ηq‖ϑn+q−1‖2

)
+

1 + ηq
2

k

q−1∑
i=0

|γi|
(
µ‖ϑn+i‖2 +

ν

ε
|ϑn+i|2

)
.

Now, in view of the stability condition (4.2), we can choose µ and ε small enough,

such that

1− ληq − (2q − 1)(1 + ηq)(µ+ ε) ≥ ρ > 0.

Then, from (4.11) we get

(4.12)

|Θn+q|2G − |Θn+q−1|2G + ρk‖ϑn+q‖2 +
1 + ηq

2
(2q − 1)(µ+ ε)k‖ϑn+q‖2

+
ηq
2

[λ+ (2q − 1)(µ+ ε)]k
(
‖ϑn+q‖2 − ‖ϑn+q−1‖2

)
≤ c̃(1+ηq)k

(
|ϑn+q|2 + |ϑn+q−1|2

)
+

1+ηq
2

k

q−1∑
i=0

|γi|
(
µ‖ϑn+i‖2 +

ν

ε
|ϑn+i|2

)
.
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Summing here from n = 0 to n = m−q, and using the fact that |γ0|+ · · ·+ |γq−1| =
2q − 1, we obtain

|Θm|2G − |Θq−1|2G + ρk
m∑
`=q

‖ϑ`‖2 +
1 + ηq

2
(2q − 1)(µ+ ε)k

m∑
`=q

‖ϑ`‖2

+
ηq
2

[λ+ (2q − 1)(µ+ ε)]k
(
‖ϑm‖2 − ‖ϑq−1‖2

)
≤ 2c̃(1 + ηq)k

m∑
`=q−1

|ϑ`|2

+
1 + ηq

2
(2q − 1)µk

m−1∑
`=q

‖ϑ`‖2 + ck

q−1∑
j=0

‖ϑj‖2 +
ν

ε

1 + ηq
2

(2q − 1)µk
m−1∑
`=0

|ϑ`|2.

Now, the first term on the right-hand side is absorbed by the fourth term on the

left-hand side, and we easily get

(4.13)

|Θm|2G + ρk
m∑
`=q

‖ϑ`‖2 ≤ |Θq−1|2G + ck

q−1∑
j=0

‖ϑj‖2

+ 2c̃(1 + ηq)k
m∑

`=q−1

|ϑ`|2 +
ν

ε

1 + ηq
2

(2q − 1)µk
m−1∑
`=0

|ϑ`|2.

If we now use the lower bound |Θm|2G ≥ cq|ϑm|2, with cq the smallest eigenvalue of

the matrix G, as well as the fact that

|Θq−1|2G ≤ Ĉ
(
|ϑ0|2 + · · ·+ |ϑq−1|2

)
,

with Ĉ he largest eigenvalue of G, and apply the discrete Gronwall inequality, we

obtain the desired stability estimate (4.3), provided k is sufficiently small. �

Remark 4.1 (Relaxation of the stability condition (4.2) for the three- and five-step

methods). For the implicit–explicit three- and five-step BDF methods the sufficient

stability condition (4.2) can be directly relaxed to

(4.14) η̂qλ < 1,

with η̂3 and η̂5 as in (1.9), using the multipliers of [5, Lemma 2.3] and [5, (4.8)–

(4.9)], respectively. �

4.3. Sufficient and necessary stability conditions. The sufficient stability

condition (4.2) for the local stability of the implicit–explicit BDF method (1.6)

is void, and, in particular, optimal in the case of the implicit–explicit one- and

two-step BDF methods, since η1 = η2 = 0. This is due to the fact that the cor-

responding implicit methods are A-stable. In other words, in these two cases,

condition (1.4) on the behavior of the absolute values of the eigenvalues of the

operator P is not needed. It is noteworthy that, without a condition of the form

(1.4) the domain V of the operator P is a subspace of Hd
per, and the norm ‖ · ‖ is

stronger that the norm ‖ · ‖Hd , d = p/2. The norms ‖ · ‖ and ‖ · ‖Hd , d = p/2, are
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equivalent, if we replace (1.4) by a corresponding assumption on the behavior of

the real parts of the eigenvalues of P , namely

(4.15) Reλ` ≤ c2 + c3|`|p, for all ` ∈ Z.

Sufficient stability conditions. The implicit–explicit three-, four-, and five-step

BDF methods (1.6) are, according to (4.2) and (4.14), locally stable, provided

(4.16) λ <
1

η̂3
= 13, λ <

1

η4
= 3.47463516, λ <

1

η̂5
= 1.23497392,

respectively.

Necessary stability conditions. According to the von Neumann criterion, nec-

essary stability conditions even for the stability of the implicit three-, four-, and

five-step BDF methods for the linear parabolic equation ut + Pu = 0 are λ ≤
1/cosϑq, q = 3, 4, 5, respectively, that is

(4.17) λ ≤ 14.45087, λ ≤ 3.4904014, λ ≤ 1.62892979,

respectively. Indeed, otherwise, the eigenvalues of the “rotated” operator P = eiϕA,

with A a positive definite self-adjoint operator and ϑq < |ϕ| ≤ π/2, lie on the ray

z = ρeiϕ, ρ > 0, which is outside the stability sector Sϑq of the implicit q-step BDF

method, and the method cannot be unconditionally stable; cf. also [2, 5].

5. Error estimates

Combining local stability and consistency of the implicit–explicit BDF scheme

(1.6), we derive here optimal order error estimates.

Theorem 5.1 (Optimal order error estimates). Let the solution u of the periodic ini-

tial value problem for equation (1.1) be sufficiently smooth, such that the consistency

estimate (3.3) holds true, the constant λ in (1.8) be such that the sufficient stability

condition (4.2) be satisfied, and the starting approximations U0, . . . , U q−1 ∈ V be

such that

(5.1) |uj − U j|2 + k‖uj − U j‖2 ≤ c1k
2q, j = 0, . . . , q − 1.

Let U q, . . . , UN ∈ V be recursively defined by (1.6), and en := un−Un, n = 0, . . . , N.

Then, there exists a constant C, independent of k and m, such that, for k sufficiently

small,

(5.2) |em|2 + k

m∑
`=0

‖e`‖2 ≤ C
{ q−1∑

j=0

(
|ej|2 + k‖ej‖2

)
+ k

m−q∑
`=0

‖E`‖2?
}
,

m = q − 1, . . . , N, and

(5.3) max
0≤n≤N

|u(tn)− Un| ≤ Ckq.
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Proof. This proof proceeds along the lines of analogous proofs in, e.g., [6, 2, 5]; it

is included here for the convenience of the reader. According to the consistency

estimate (3.3) and our assumption (5.1) on the starting approximations, there exists

a constant C? such that the right-hand side of (5.2) can be estimated by C2
?k

2q,

(5.4) C
{ q−1∑

j=0

(
|ej|2 + k‖ej‖2

)
+ k

m−q∑
`=0

‖E`‖2?
}
≤ C2

?k
2q.

Now, since (5.3) is a consequence of (5.2) and (5.4), it remains to prove (5.2).

Subtracting (1.6) from (3.2), we obtain

(5.5)

q∑
i=0

αie
n+i + kPen+q = k

q−1∑
i=0

γi
[
B(un+i)−B(Un+i)

]
+ kEn.

If we take here the inner product with en+q − ηqen+q−1, proceed exactly as in the

proof of Theorem 4.1, and assume for the time being that U j ∈ Tu, j = 0, . . . , n+

q − 1, we easily arrive at

cq|en+q|2 +
1

2
ρk

n+q∑
`=q

‖e`‖2 ≤ C

q−1∑
j=0

(
|ej|2 + k‖ej‖2

)
+ k

n∑
`=0

Re(E`, e`+q − ηqe`+q−1);

cf. (4.3). Now, bounding

Re(E`, e`+q − ηqe`+q−1) ≤
ρ

4(1 + ηq)
‖e`+q‖2 +

ρηq
4(1 + ηq)

‖e`+q−1‖2 + 2
1 + ηq
ρ
‖E`‖2?

and summing up, we obtain

cq|en+q|2 +
ρk

4

n+q∑
`=q

‖e`‖2 ≤ C

q−1∑
j=0

(
|ej|2 + k‖ej‖2

)
+ 2

1 + ηq
ρ

k
n∑
`=0

‖E`‖2?,

and infer that (5.2) holds true for m = n+ q.

Clearly, the estimate (5.2) is valid for m = q − 1. Assume that it holds for

m = q−1, . . . , n+q−1, 0 ≤ n ≤ N−q. Then, according to (5.4) and the induction

hypothesis, we have, for k small enough,

(5.6) max
0≤j≤n+q−1

‖ej‖ ≤ C?k
q−1/2 ≤ 1,

and thus U j ∈ Tu, j = 0, . . . , n+ q − 1. Therefore, as we proved above, (5.2) holds

indeed for m = n+ q as well, and the proof is complete. �

6. Extensions: Fully discrete methods, time-dependent operators

In this section we extend our analysis to fully discrete schemes, with spectral

methods used for the discretization in space, and comment on the extension to the

case of time dependent operators P .
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6.1. Time-dependent operators and norms. Our analysis can be easily ex-

tended to the more general case of time-dependent operators P . In that case, it is

advantageous to let the quantity λ in (1.8) depend on t as well.

More precisely, with λ`(t) the eigenvalues of P(t) and λ̃`(t) = λ`(t) + c̃ the

eigenvalues of the shifted operators P̃(t) := P(t)+c̃I, we can introduce in V := Hd
per

and V ′ = H−dper the time-dependent norms ‖ · ‖t and ‖ · ‖?,t, respectively, by

(6.1) ‖v‖t :=
(∑
`∈Z

Re λ̃`(t) |v̂`|2
)1/2

, ‖v‖?,t :=
(∑
`∈Z

(
Re λ̃`(t)

)−1|v̂`|2)1/2.
Then, we have

(6.2) Re (P̃(t)v, v) = ‖v‖2t , for all v ∈ V = Hd
per,

and

(6.3) ‖P̃(t)v‖?,t ≤ λ(t)‖v‖t, for all v ∈ V = Hd
per,

with the bound λ(t) given by

(6.4) λ(t) := sup
`∈Z

|λ̃`(t)|
Re λ̃`(t)

;

cf. (1.8).

Besides the conditions η̂qλ(t) < 1, t ∈ [0, T ], on λ(t), cf. (4.2) and (4.14), in this

case we need also to relate the time-dependent norms ‖ · ‖t, for different values

of t. To this end, it suffices to impose a mild Lipschitz condition on the operators

P(t) with respect to t, namely

(6.5)
∥∥(P(t)− P(t̃)

)
v
∥∥
H−d
≤ L|t− t̃| ‖v‖Hd ,

for t, t̃ ∈ [0, T ] and v ∈ V = Hd
per; we refer to [2] for details.

6.2. Fully discrete methods. Let M ∈ N and SM := span{ϕ−M , . . . , ϕM} with

ϕ`(x) := eiω`x. Let PM : V ′ → SM denote the orthogonal L2-projection operator

onto SM , i.e., (v − PMv, χ) = 0, χ ∈ SM . If we expand v∈L2
per in a Fourier series,

v =
∑
`∈Z

v̂` ϕ`,

then PMv corresponds to the partial sum

PMv =
M∑

`=−M

v̂` ϕ`.

This projection has the following approximation property: There exists a constant

c, independent of v and M, such that, for v ∈ Hm
per,

(6.6) ‖v − PMv‖H` ≤ cM `−m‖v(m)‖L2 , ` = 0, . . . ,m;

(cf. [11, (9.1.10)]). Clearly, PM commutes with differentiation in time as well as

with P , PMP = PPM ; see (1.2). Furthermore, we define the discrete operator

BM : H2
per → SM , BM := PMB.
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In the semidiscrete problem corresponding to the periodic initial value problem

for (1.1), we seek a function uM , uM(·, t) ∈ SM , satisfying

(6.7)

{
∂tuM(·, t) + PuM(·, t) = BM(uM(·, t)), 0 < t < T,

uM(·, 0) = u0M ,

with u0M ∈SM a given approximation to the initial value u0.

We recursively define a sequence of approximations U `∈SM to u(·, t`) by

(6.8)

q∑
i=0

αiU
n+i + kPUn+q = k

q−1∑
i=0

γiBM(Un+i),

n = 0, . . . , N − q; cf. (1.6). Let W (·, t) ∈ SM denote the L2-projection of u(·, t) in

SM ,W (·, t) = PMu(·, t), t ∈ [0, T ].

Let EM(t) ∈ SM denote the consistency error of the semidiscrete equation (6.7)

for W,

(6.9) EM(t) := Wt(·, t) + PW (·, t)−BM(W (·, t)), t ∈ [0, T ].

Obviously

EM(t) = Wt(·, t) + PMPu(·, t)− PMB(W (·, t)),

whence, in view of (1.1),

EM(t) = PM
[
B(u(·, t))−B(W (·, t))

]
.

In the case p ≥ 2, the Lipschitz condition (2.22) and the approximation prop-

erty (6.6) yield, under obvious regularity assumptions, the following optimal order

estimate for the consistency error EM ,

(6.10) max
0≤t≤T

‖EM(t)‖? ≤ C(u)M−m.

In the case 1 < p < 2, we use instead the Lipschitz condition (2.24) and the

approximation property (6.6), and obtain, under obvious regularity assumptions,

the following estimate for the consistency error EM ,

(6.11) max
0≤t≤T

‖EM(t)‖? ≤ C(u)M−m+1− p
2 .

We can now derive an error estimate for the fully discrete approximations:

Theorem 6.1 (Error estimates for fully discrete methods). Assume that we are given

starting approximations U0, U1, . . . , U q−1∈SM to u(·, t0), . . . , u(·, tq−1) such that

(6.12) |u(·, tj)−U j|2 + k‖u(·, tj)−U j‖2 ≤

{
c1(k

q +M−m) for p ≥ 2,

c1(k
q +M−m+1− p

2 ) for 1 < p < 2,

j = 0, . . . , q−1. Let Un ∈ SM , n = q, . . . , N, be recursively defined by (6.8). Then, if

the solution u of the periodic initial value problem for (1.1) is sufficiently smooth,
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there exists a constant C, independent of k and M, such that, for k sufficiently

small and M sufficiently large,

(6.13) max
0≤n≤N

|u(·, tn)− Un| ≤

{
C(kq +M−m) for p ≥ 2,

C(kq +M−m+1− p
2 ) for 1 < p < 2.

Proof. Let W̃ j := W (·, tj), j = 0, . . . , q − 1, and define W̃ n∈SM , n = q, . . . , N, by

applying the time stepping scheme to equation (6.9), i.e., by

(6.14)

q∑
i=0

αiW̃
n+i + kPW̃ n+q = k

q−1∑
i=0

γi
[
BM(W̃ n+i) + EM(tn+i)

]
.

Then, it follows easily from Theorem 5.1 that

(6.15) max
0≤n≤N

|W (·, tn)− W̃ n| ≤ Ckq.

In view of (6.6) and (6.15), it remains to estimate ϑn := W̃ n − Un. Subtracting

(6.8) from (6.14), we obtain

q∑
i=0

αiϑ
n+i + kPϑn+q = k

q−1∑
i=0

γi
[
BM(W̃ n+i)−BM(Un+i)

]
+ k

q−1∑
i=0

γiEM(tn+i);

compare with (5.5). Therefore, in analogy to (5.2), there exists a constant C,

independent of k and m, such that, for k sufficiently small,

(6.16) |ϑm|2 + k
m∑
`=0

‖ϑ`‖2 ≤ C
{ q−1∑

j=0

(
|ϑj|2 + k‖ϑj‖2

)
+ k

m−q∑
`=0

‖EM(t`)‖2?
}
,

m = q − 1, . . . , N,

From this estimate, (6.12) and (6.10), for p ≥ 2, or (6.11), for 1 < p < 2, we

easily infer, for k sufficiently small and M sufficiently large, that

(6.17) max
0≤n≤N

|W̃ n − Un| ≤

{
C(kq +M−m) for p ≥ 2,

C(kq +M−m+1− p
2 ) for 1 < p < 2,

respectively. From (6.17), (6.15) and (6.6) the desired estimate (6.13) follows and

the proof is complete. �

Appendix

Lemma A.1. If s ≥ 0, then there exists a positive constant c, such that

‖uv‖Hs ≤ c
(
‖u‖Hs‖v‖L∞ + ‖u‖L∞‖v‖Hs

)
,

for every u, v ∈ Hs
per ∩ L∞.

Proof. We first establish the auxiliary inequality

(A.1)
(
1 + (x+ y)2

)s/2 ≤ cs
(
(1 + x2)s/2 + (1 + y2)s/2

)
, x, y ∈ R, s ≥ 0,
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where cs = max{2s−1, 1}. For s ≥ 1, the convexity of f(x) = (1 +x2)s/2 yields that(
1 +

(x+ y

2

)2)s/2
= f

(
x+ y

2

)
≤ 1

2

(
f(x) + f(y)

)
=

1

2

(
(1 + x2)s/2 + (1 + y2)s/2

)
and hence(

1 + (x+ y)2
)s/2 ≤ (4 + (x+ y)2

)s/2 ≤ 2s−1
(
(1 + x2)s/2 + (1 + y2)s/2

)
.

For s ∈ [0, 1], and nonnegative x and y, we first note that

(x+ y)s ≤ xs + ys;

this is trivial for s = 0 and s = 1, and, for s ∈ (0, 1), follows immediately from the

fact that the function ϕ(t) := 1 + ts − (1 + t)s vanishes at t = 0 and is increasing

for positive t. Thus

1 + (x+ y)2 ≤ 22/s + (xs + ys)2/s = ‖X + Y ‖2/s2/s

with X := (1, xs)T and Y := (1, ys)T . Now, ‖X‖2/s = (1 + x2)s/2, and from the

estimate above we obtain

1 + (x+ y)2 ≤
(
‖X‖2/s + ‖Y ‖2/s

)2/s
=
(
(1 + x2)s/2 + (1 + y2)s/2

)2/s
,

which immediately yields (A.1). Next

(1 + ω2k2)s/2
∣∣(ûv)k

∣∣ = (1 + ω2k2)s/2
∣∣∣∑
`∈Z

ûk−`v̂`

∣∣∣
≤ cs

∑
`∈Z

(
(1 + ω2(k − `)2)s/2 + (1 + ω2`2)s/2

)
|ûk−`||v̂`|

= cs
∑
`∈Z

(1 + ω2(k − `)2)s/2|ûk−`||v̂`|+ cs
∑
`∈Z

(1 + ω2`2)s/2|ûk−`||v̂`|.

Therefore

(A.2)

(1+ω2k2)s
∣∣(ûv)k

∣∣2 ≤ 2c2s

((∑
`∈Z

(1+ω2(k−`)2)s/2|ûk−̀ ||v̂`|
)2

+
(∑
`∈Z

(1+ω2`2)s/2|ûk−̀ ||v̂`|
)2)

.

If we set
f(x) =

∑
k∈Z

|ûk|eikx, F (x) =
∑
k∈Z

(1+ω2k2)s/2|ûk|eikx,

g(x) =
∑
k∈Z

|v̂k|eikx, G(x) =
∑
k∈Z

(1+ω2k2)s/2|ûk|eikx,

then

‖f‖L2 = ‖u‖L2 , ‖g‖L2 = ‖v‖L2 , ‖F‖L2 = ‖u‖Hs , and ‖G‖L2 = ‖v‖Hs ,

and (A.2) provides that

(1 + ω2k2)s
∣∣(ûv)k

∣∣2 ≤ 2c2s

(∣∣(f̂G)k
∣∣2 +

∣∣(F̂ g)k
∣∣2),
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and hence

‖uv‖2Hs =
∑
k∈Z

(1 + ω2k2)s
∣∣(ûv)k

∣∣2 ≤ 2c2s
∑
k∈Z

(∣∣(f̂G)k
∣∣2 +

∣∣(F̂ g)k
∣∣2)

= 2c2s

(
‖fG‖2L2 + ‖Fg‖2L2

)
≤ 2c2s

(
‖f‖2L∞‖G‖2L2 + ‖F‖2L2‖g‖2L∞

)
= 2c2s

(
‖u‖2L∞‖v‖2Hs + ‖u‖2Hs‖v‖2L∞

)
;

thus,

‖uv‖Hs ≤
√

2 cs
(
‖u‖L∞‖v‖Hs + ‖u‖Hs‖v‖L∞

)
,

which concludes the proof. �

Corollary A.1. If s > 1/2, then there exists a positive constant Cs such that, for

every u, v ∈ Hs
per,

(A.3) ‖uv‖Hs ≤ Cs ‖u‖Hs‖v‖Hs .

Proof. If s > 1/2, then Hs
per ⊂ L∞ and for every u ∈ Hs

per,

‖u‖L∞ ≤ c ‖u‖Hs ,

with a positive c depending on s but independent of u. Inequality (A.3) is now a

consequence of Lemma A.1. �

We are now ready to prove the following result, which we used in subsection 2.3:

Corollary A.2. For every β > β′ > 1, and ε > 0, there exists a positive constant

ĉε, such that

(A.4) ‖uv‖H1−β/2 ≤ ‖u‖Hβ′/2

(
ĉε‖v‖L2 + ε ‖v‖Hβ/2

)
,

for all u, v ∈ Hβ/2
per .

Proof. As 1− β
2
< 1

2
< β′

2
< β

2
, then due to (A.3)

(A.5) ‖uv‖H1−β/2 ≤ ‖uv‖Hβ′/2 ≤ Cβ′/2 ‖u‖Hβ′/2‖v‖Hβ′/2 .

Let ĉε > 0 be such that

ĉ2ε = max
{
xβ
′ − ε2xβ : x ≥ 1

}
i.e., xβ

′ ≤ ĉ2ε + ε2xβ, for all x ≥ 1. Then

‖v‖2
Hβ′/2 =

∑
k∈Z

(1 + ω2k2)β
′ |v̂k|2 ≤

∑
k∈Z

(
ĉ2ε + ε2(1 + ω2k2)β

)
|v̂k|2

= ĉ2ε‖v‖2L2 + ε2‖v‖2Hβ ≤
(
ĉε‖v‖L2 + ε‖v‖Hβ

)2
,

and thus

(A.6) ‖v‖Hβ′/2 ≤ ĉε‖v‖L2 + ε‖v‖Hβ .

Now (A.4) is a consequence of (A.5) and (A.6). �
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