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Abstract. We derive a posteriori error estimates, which exhibit optimal global

order, for a class of time stepping methods of any order that include Runge–Kutta

Collocation (RK-C) methods and the continuous Galerkin (cG) method for linear

and nonlinear stiff ODEs and parabolic PDEs. The key ingredients in deriving

these bounds are appropriate one-degree higher continuous reconstructions of the

approximate solutions and pointwise error representations. The reconstructions

are based on rather general orthogonality properties and lead to upper and lower

bounds for the error regardless of the time-step; they do not hinge on asymptotics.

1. Introduction

We consider Runge–Kutta collocation type time–stepping schemes of any order

q ≥ 1, along with associated Galerkin methods, for parabolic partial differential

equations (PDEs) and stiff ordinary differential equations (ODEs) of the form

(1.1)

{
u′(t) + Au(t) = B

(
t, u(t)

)
, 0 < t < T,

u(0) = u0.

Hereafter A is a positive definite, selfadjoint, linear operator on a Hilbert space

(H, 〈·, ·〉, | · |) with domain D(A) dense in H, that dominates a (possibly) nonlinear

operator B(t, ·) : D(A) → H, t ∈ [0, T ], and u0 ∈ H , V := D(A1/2). We extensively

study the linear case corresponding to B(t, u) = f(t) with a given f : [0, T ] → H .

We present a general framework for a posteriori error analysis based on the novel

idea of time reconstruction of the approximate solution and of appropriate error

representation equations that are derived with its aid. The resulting error estimates,

valid for any q ≥ 1, can be obtained by employing PDE stability techniques.
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Error control for ODEs and evolution PDEs is a fundamental topic in scientific and

engineering computing. The former has been developed since the 60’s whereas the

latter is much more recent. Runge-Kutta-Fehlberg methods are now standard high

order methods for ODEs that estimate local truncation errors. For PDEs, instead,

most of the available results are limited to low order time–stepping methods and

to discontinuous Galerkin–type time discrete schemes. A primary tool to develop a

posteriori error estimates for PDEs has been duality, either by estimating stability

factors analytically [9, 10, 27], or computationally upon solving a backward linear

problem [5, 11, 13, 14, 17]. The latter is mostly heuristic, even for linear equations

of the form (1.1), and difficult to implement efficiently for large problems in several

space dimensions. It provides however a general procedure to deal with possible error

accumulation and long time behavior. Recently, we have developed a completely

rigorous alternative to duality, mainly for general dissipative problems of the form

(1.1). Optimal order error estimates have been derived for (1.1) by means of the

energy method and the variation of constants (Duhamel) formula for both dG [23]

and Crank–Nicolson schemes [2]. These are higher order extensions of the optimal

a posteriori error analysis by Nochetto, Savaré and Verdi for the backward Euler

method for a class of nonlinear gradient flows much more general than (1.1) and for

which duality does not apply in general [24].

A posteriori error analysis for higher order Runge-Kutta methods seems to be

lacking. We are only aware of rather interesting heuristic techniques based on as-

ymptotic expansions and estimation of local truncation errors in the context of

ODEs, see, e.g., [7, 16, 25, 26] and their references. In this paper we fill in this gap

upon developing a posteriori error estimates for Runge-Kutta Collocation methods

(RK-C), the most important class of implicit RK schemes (IRK), as well as related

continuous Galerkin methods (cG). The analysis is in the spirit of, and indeed ex-

tends, our previous work [2] for Crank–Nicolson methods. The main contributions

of this paper are as follows:

• We present a unified approach based on the orthogonality property

(1.2)

∫ 1

0

q∏

i=1

(τ − τi) dτ = 0

for the collocation nodes {τi}
q
i=1, which applies to cG (see §3) and RK-C (see §4).

• We introduce the time reconstruction Û of the discrete solution U , which is one-

degree higher than U , is globally continuous but constructed locally (in one or

two consecutive intervals), and extracts information about the local error without

resorting to asymptotics (and thus to small time-steps); see §2.1, §3.1, and §4.4.

• We derive upper and lower a posteriori error estimates, which exhibit no gaps

and possess explicit stability constants for the linear case; see §2.2. We apply the

energy method, but any technique for error analysis such as the duality method

could be used instead once Û has been constructed.
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We emphasize that the main purpose of this paper is to introduce a new methodology

for performing a posteriori error analysis for Runge-Kutta schemes of any order q.

We insist on linear equations, for which our results are optimal, but not on the

derivation of sharp estimates for nonlinear problems, a very delicate task that is

heavily problem dependent. Similarly, we do not insist on conditional estimates in

the present work; see Remark 3.4 regarding our assumptions.

Our unified approach hinges on suitable projection operators Πq−1 and Π̂q onto

spaces of piecewise polynomials of degree q−1 and q, respectively, determined by the

collocation nodes {τi}
q
i=1 in (2.7). In this vein, both RK-C and cG can be written

in the following form provided B(t, u) = f(t)

U ′(t) +Πq−1AU(t) = Πq−1f(t).

This is our abstract point of departure in §2, where we define the time reconstruction

Û of U with the help of Π̂q. We observe now, but elaborate further in §2, that a

naive use of the linear error-residual equation

e′(t) + Ae(t) = −R,

for the error e = u − U and residual R of the approximate solution U , would be

suboptimal. This is because R = O(kq) while the expected order for e is O(kq+1),

where k denotes the time step. It is thus desirable to have an error equation with

optimal order residual. To achieve this crucial goal, we choose to compare u with

the reconstruction Û of U rather than with U itself. The proper choice of Û is

highly nontrivial and is the main contribution of this paper. In fact we require that

Û satisfies the following crucial but competing properties:

• Û should be easily computable from U , and the operators and data in (1.1), within

one or two consecutive time intervals and so locally for any time steps;

• Û should be globally continuous and one-degree higher than U ;

• Û should extract relevant information from U that dictates the local error;

• The residual R̂ associated with Û should be easy to evaluate in terms of Û − U .

The concept of reconstruction might appear, at first sight, to be related to the

technique of Zadunaisky [28] for error control of ODEs. The idea in [28] is to

consider a perturbed ODE satisfied by a polynomial constructed by interpolating the

approximate values on several time intervals in order to derive a heuristic estimate

of the error. On the other hand, Runge-Kutta-Fehlberg methods also increase the

order by one and find a computational estimate of the local truncation error. In

both cases, the ensuing estimates are based on asymptotics and thus can only be

rendered rigorous for small time steps. We stress that our reconstruction Û is not

a higher order approximation of u than U , which is another important difference

with these two rather popular techniques. We also mention the related technique

of elliptic reconstruction, introduced for a posteriori error analysis of space discrete

finite element approximations in [22].
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It turns out that the error ê = u− Û satisfies the equation

ê′(t) + Aê(t) = −R̂

involving the residual R̂, which is dominated by the optimal a posteriori quantity

U − Û . We stress that once such an equation for ê is at our disposal, any stability

technique available for the PDE under study can be used to derive estimates of the

error. We derive, for simplicity, energy based upper and lower error estimates, with

emphasis on the norms L∞([0, T ];H) and L2([0, T ];V ) rather than nodal values. We

report these results for linear equations in Theorem 2.1 and for nonlinear equations

in Theorems 3.1 and 4.1. We also give explicit expressions for U−Û in Corollary 2.1.

Under restrictive compatibility conditions it is known that the order of convergence

at the nodes (superorder) might be higher. For a posteriori error estimates related

to superorder we refer to the forthcoming work [3]; see also section 4.2 below.

The paper is organized as follows. In §2 we present an abstract framework for time

discretization and time reconstruction, with emphasis on the simpler linear case. In

§3 we apply these results to cG and extend them to nonlinear equations. In §4 we

deal with RK-C, and discuss the relation between classical order and stage order.

In fact, viewing RK-C methods as collocation or Galerkin–type methods clarifies

the connection between stage order and order of convergence in L∞([0, T ];H). The

latter is O(kq+1) because the approximate solution is a piecewise polynomial of

degree q; note that a similar a priori bound for the error at the intermediate stages

is obtained in [20, 21]. Even though the emphasis is on RK-C methods, we discuss

cG first because it is simpler to describe and study than RK-C.

2. Time–Stepping Schemes and Time Reconstruction

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0, T ], Jn := (tn−1, tn], and

kn := tn − tn−1. Now, let Vq, q ∈ N, be the space of continuous functions that are

piecewise polynomials of degree q in time, i.e., Vq consists of continuous functions

g : [0, T ] → D(A) of the form

g|Jn(t) =

q∑

j=0

tjwj, wj ∈ D(A).

We denote by Vq(Jn) the space of restrictions to Jn of elements of Vq. The spaces

Hq and Hq(Jn) are defined analogously by requiring wj ∈ H. In the sequel we

are mainly interested in the continuous Galerkin (cG) and Runge–Kutta collocation

(RK-C) time–stepping schemes. We cast these methods in a wider class of schemes

formulated in a unified form with the aid of a projection operator

(2.1) Πℓ : C
0([0, T ];H) → ⊕N

n=1Hℓ(Jn),

which does not enforce continuity at {tn}Nn=1. The time discrete approximation U

to the solution u of (1.1) is then defined as follows: We seek U ∈ Vq satisfying the
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initial condition U(0) = u0 as well as

(2.2) U ′(t) +Πq−1AU(t) = Πq−1f(t) ∀t ∈ Jn,

for n = 1, . . . , N. Since all terms in this equation belong to Hq−1(Jn), (2.2) admits

the Galerkin formulation

(2.3)

∫

Jn

[
〈U ′, v〉+ 〈Πq−1AU, v〉

]
dt =

∫

Jn

〈Πq−1f, v〉 dt ∀v ∈ Hq−1(Jn),

for n = 1, . . . , N. We use mainly (2.2), but (2.3) is also of interest because it provides

a connection of this class of methods to the Galerkin schemes. In fact, we show

later that the continuous Galerkin method corresponds to the choice Πq−1 := Pq−1,

with Pℓ denoting the (local) L2 orthogonal projection operator onto Hℓ(Jn) for each

n; in this case Πq−1 in (2.3) can be replaced by the identity. The Runge–Kutta

collocation methods constitute the most important class of time–stepping schemes

described by this formulation. We will see later that all RK-C methods with pairwise

distinct nodes in [0, 1] can be obtained by choosing Πq−1 := Iq−1, with Iq−1 denoting

the interpolation operator by elements of Vq−1(Jn) at the nodes tn−1 + τikn, i =

1, . . . , q, n = 1, . . . , N, with appropriate 0 ≤ τ1 < · · · < τq ≤ 1. It is well known that

RK Gauss–Legendre schemes are related to continuous Galerkin methods. A first

conclusion, perhaps not observed before, is that all RK-C methods with pairwise

distinct nodes in [0, 1] can be obtained by applying appropriate numerical quadrature

to continuous Galerkin methods. This will be instrumental throughout. It is well

known that some RK-C schemes, for instance the RK–Radau IIA methods, exhibit

more advantageous stability properties, such as dissipativity, for parabolic equations

than the cG methods. Our association of RK-C methods to cG methods is for

convenience and does not affect the stability properties of RK-C (see Example 4.2).

2.1. Reconstruction. Let R be the residual of the approximate solution U,

(2.4) R(t) := U ′(t) + AU(t)− f(t),

i.e., the amount by which U misses being an exact solution of the differential equation

in (1.1) in the linear case, with B
(
t, u(t)

)
= f(t). Then, the error e := u−U satisfies

the equation

(2.5) e′(t) + Ae(t) = −R(t).

Energy methods applied to (2.5) yield bounds for the error in L∞([0, T ];H) in terms

of norms of R(t). However, R(t) is of suboptimal order. In fact, in view of (2.2), the

residual can also be written in the form

(2.6) R(t) = A
[
U(t)−Πq−1U(t)

]
−

[
f(t)−Πq−1f(t)

]
, t ∈ Jn.

This residual is not appropriate for our purposes, since even in the case of a scalar

ODE u′(t) = f(t) we have R(t) = −[f(t)−Πq−1f(t)], and thus R(t) can only be of

order O(kq
n), although our approximations are piecewise polynomials of degree q. In

both cases, cG as well as RK-C methods (with nodes satisfying (1.2)), the optimal
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order of approximation in L∞([0, T ];H) isO(kq+1). It would thus be desirable to have

an error equation with optimal right-hand side. To this end, we introduce a suitable

higher order reconstruction Û ∈ Hq+1 of the approximation U. The function Û ,

however, does not provide a better approximation to u than U and its construction

and analysis does not require small time steps. We further assume the regularity

condition (2.11) on Û throughout, and discuss its validity in Section 5.

The definition of Û ∈ Hq+1 is based on appropriate projection operators Π̂q onto

Hq(Jn), n = 1, . . . , N. To be more precise, we assume that Πq−1 in (2.2) is associated

to q pairwise distinct points τ1, . . . , τq ∈ [0, 1] with the orthogonality property

(2.7)

∫ 1

0

q∏

i=1

(τ − τi) dτ = 0.

These points are transformed to the interval Jn as tn,i := tn−1 + τikn, i = 1, . . . , q.

Specifically, they are the collocation points for RK-C or the Gauss points for cG. A

fundamental property we require for Π̂q is that it agrees with Πq−1 at tn,i:

(2.8) (Π̂q −Πq−1)w(t
n,i) = 0, i = 1, . . . , q, ∀w ∈ C(Jn;H).

If (2.7) is satisfied, then interpolatory quadrature with abscissae tn,i, i = 1, . . . , q,

integrates polynomials of degree at most q exactly. Therefore, (2.8) leads to the key

property of Π̂q that (Π̂q −Πq−1)w is orthogonal to constants in Jn,

(2.9)

∫

Jn

(Π̂q −Πq−1)w(s) ds = 0 ∀w ∈ C(Jn;H),

for n = 1, . . . , N, which will play a central role in the analysis. For each n = 1, . . . , N ,

we define the reconstruction Û ∈ Hq+1(Jn) of U by

(2.10) Û(t) := U(tn−1)−

∫ t

tn−1

Π̂q

[
AU(s)− f(s)

]
ds ∀t ∈ Jn.

Obviously, Û(tn−1) = U(tn−1). Furthermore, in view of (2.9),

Û(tn) = U(tn−1)−

∫ tn

tn−1

Π̂q

[
AU(s)− f(s)

]
ds

= U(tn−1)−

∫ tn

tn−1

Πq−1

[
AU(s)− f(s)

]
ds;

taking here relation (2.2) into account, we obtain

Û(tn) = U(tn−1) +

∫ tn

tn−1

U ′(s) ds = U(tn),

and conclude that Û is continuous in [0, T ] and coincides with U at the nodes tn.

Moreover, we assume throughout that Û satisfies the following regularity condition:

(2.11) Û(t) ∈ V ∀t ∈ [0, T ].
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This property is crucial for the error analysis and entails some minimal regularity of

U0 and compatibility with f(0), depending on the time-discrete method; see §4.4.

However, (2.11) is always satisfied by fully discrete schemes for evolution PDEs

which constitute the most important application of the present framework.

It easily follows from (2.10) that Û satisfies the following pointwise equation

(2.12) Û ′(t) + AU(t) = Π̂qf(t) ∀t ∈ Jn;

compare with (2.2). In view of (2.12), the residual R̂,

(2.13) R̂(t) := Û ′(t) + AÛ(t)− f(t),

of Û can also be written as

(2.14) R̂(t) = A
[
Û(t)− U(t)

]
−
[
f(t)− Π̂qf(t)

]
.

We show in the sequel that R̂(t) is an a posteriori quantity of the desired order for

appropriate choices of Π̂q, provided (2.11) is valid.

2.2. Energy Estimates and Representation of Û − U . We let V := D(A1/2)

and denote the norms in H and in V by |·| and ‖·‖, with ‖v‖ := |A1/2v| = 〈Av, v〉1/2,

respectively. We identify H with its dual, and let V ⋆ be the topological dual of V

( V ⊂ H ⊂ V ⋆ ). We still denote by 〈·, ·〉 the duality pairing between V ⋆ and V, and

by ‖ · ‖⋆ the dual norm on V ⋆, namely ‖v‖⋆ := |A−1/2v| = 〈v, A−1v〉1/2.

We consider, as in [2, 23, 24], the error functions

(2.15) e := u− U and ê := u− Û .

Once a suitable reconstruction Û of U is in place, the rest of the analysis is rather

elementary as the following simple results illustrate; see also [2] for further details.

When working with energy estimates the starting point of the analysis is the error

equation,

(2.16) ê′(t) + Aê(t) = −R̂,

(R̂ is defined in (2.13), (2.14)) written in its equivalent form

(2.17) ê′(t) + Ae(t) = f − Π̂qf.

The main reason is that working with (2.17) allows the derivation of lower bounds

of the error in addition to upper bounds.

Theorem 2.1 (Error estimates). Let the assumptions (2.7) on {τi}
q
i=1, (2.8) on Π̂q,

and (2.11) on Û be satisfied. Then the following global upper estimate is valid

max
0≤τ≤t

[
|ê(τ)|2 +

∫ τ

0

(
‖e(s)‖2 +

1

2
‖ê(s)‖2

)
ds
]

≤

∫ t

0

‖(Û − U)(s)‖2ds+ 2

∫ t

0

‖(f − Π̂qf)(s)‖
2
⋆ds ∀t ∈ [0, T ].
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The following local lower estimate is also valid

1

3
‖Û(t)− U(t)‖2 ≤ ‖e(t)‖2 +

1

2
‖ê(t)‖2 ∀t ∈ [0, T ].

Proof. Multiplying the error equation (2.17) by ê(t) and using the identity 2〈Ae, ê〉 =

‖e‖2 + ‖ê‖2 − ‖Û − U‖2, we arrive at

d

dt
|ê(t)|2 + ‖e‖2 + ‖ê‖2 = ‖Û − U‖2 + 2〈f − Π̂qf, ê〉.

This easily leads to the asserted upper bound. Note that we gain control of both ‖e‖

and ‖ê‖, which is crucial for the lower bound. In fact, the latter follows immediately

from the triangle inequality. �

Remark 2.1 (Optimal Error Estimator). Integrating the local lower bound yields

(2.18)

1

3

∫ t

0

‖(Û − U)(s)‖2ds ≤

∫ t

0

(
‖e(s)‖2 +

1

2
‖ê(s)‖2

)
ds

≤

∫ t

0

‖(Û − U)(s)‖2ds+ 2

∫ t

0

‖(f − Π̂qf)(s)‖
2
⋆ds.

The estimator
∫ t

0
‖(Û−U)(s)‖2ds is of optimal order because it is dominated by the

integral error
∫ t

0

(
‖e(s)‖2 + 1

2
‖ê(s)‖2

)
ds, which is of order q +1. Moreover, the max

error max0≤τ≤t |ê(τ)|
2 is dominated by the integral error plus data oscillation. �

Remark 2.2 (Error Estimate Revised). In case Π̂qU 6= U (cf. Section 5 for cases that

this might happen), (2.12) is replaced by

(2.19) Û ′(t) + AΠ̂qU(t) = Π̂qf(t) ∀t ∈ Jn,

and (2.17) by

(2.20) ê′(t) + Ae(t) = f − Π̂qf − A(U − Π̂qU)(t).

In such a case the estimate of Theorem 2.1 remains valid, provided that a term

2
∫ t

0
‖(U − Π̂qU)(s)‖2ds is added on the right-hand side. �

Even though Û − U is computable, we prefer to give a precise characterization.

Theorem 2.2 (Explicit Representation of Û − U). Let

ϕq+1(x) := (q + 1)

∫ x

0

q∏

i=1

(s− τi) ds.

If {τi}
q
i=1 and Π̂q satisfy (2.7) and (2.8), then

(2.21) Û(t)− U(t) =
1

(q + 1)!
kq+1
n Û (q+1)ϕq+1

(t− tn−1

kn

)
.

In addition, if Û satisfies (2.11) and

αq :=
1

[(q + 1)!]2

∫ 1

0

[
ϕq+1(x)

]2
dx and βq :=

1

(q + 1)!
max
0≤x≤1

|ϕq+1(x)|,
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then ∫

Jn

‖(Û − U)(t)‖2ds = αqk
2q+3
n ‖Û (q+1)‖2,(2.22)

max
i∈Jn

|(Û − U)(t)| = βqk
q+1
n |Û (q+1)|.(2.23)

Proof. Subtracting (2.2) from (2.12), we obtain

(2.24) Û ′ − U ′ = (Π̂q −Πq−1)(f −AU),

whence, in view of (2.8),

(Û ′ − U ′)(tn,i) = 0, i = 1, . . . , q.

Therefore, we deduce

(2.25) (Û ′ − U ′)(t) =
1

q!
Û (q+1)kq

n

q∏

i=1

(t− tn−1

kn
− τi

)
.

Relation (2.21) follows immediately upon integration of (2.25). The asserted esti-

mates follow from the change of variables x = (t− tn−1)/kn to [0, 1]. �

Remark 2.3 (Computable Error Estimator). Regardless of the norm, the (properly

scaled) quantity Û (q+1) = AU (q) + (Π̂qf)
(q) is what dictates the local size of the

estimator. Note that Û (q+1) is easily computable. �

Corollary 2.1 (Explicit Error Estimates). If (2.7), (2.8), and (2.11) are valid, then

the following lower and upper bounds hold

(2.26)

αq

3

m∑

n=1

k2q+3
n ‖Û (q+1)‖2 ≤ max

0≤τ≤tm

[
|ê(τ)|2 +

∫ τ

0

(
‖e(s)‖2 +

1

2
‖ê(s)‖2

)
ds
]

≤ αq

m∑

n=1

k2q+3
n ‖Û (q+1)‖2 + 2

∫ tm

0

‖(f − Π̂qf)(s)‖
2
⋆ds.

Proof. Combine Theorems 2.1 and 2.2 with (2.18). �

Remark 2.4 (A Priori Estimates). We stress that if f is a piecewise polynomial

of degree at most q, then the data oscillation term above vanishes. Otherwise, we

observe that all terms above appear to be of the same order, namely O(k2q+3
n ) locally,

which is consistent with the global order q + 1 of the methods considered in this

paper, as we will see later. If f = 0, and Û (q+1) converges to u(q+1), then we could

formally write

m∑

n=1

k2q+3
n ‖Û (q+1)‖2 ≈

∫ tm

0

k(t)2q+2‖u(q+1)(t)‖2dt,

where k(t) stands for the piecewise constant time-step function. This is consistent

with the a priori error representation formula. �
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3. The Continuous Galerkin Method

In this section we first recall the continuous Galerkin method (cG). In §3.1 we

cast cG within the abstract framework of §1, and so that both Theorems 2.1 and

2.2 apply to cG. We then extend the theory to nonlinear equations of the form (1.1)

in §3.2. A posteriori estimates for cG for ODEs are established in [12].

The cG approximation U to the solution u of (1.1) is defined as follows: We seek

U ∈ Vq such that U(0) = u0 and

(3.1)

∫

Jn

[
〈U ′, v〉+ 〈AU, v〉

]
dt =

∫

Jn

〈f, v〉 dt ∀v ∈ Vq−1(Jn),

for n = 1, . . . , N. For local uniqueness and existence results for cG as well as for a

priori error estimates, including nonlinear parabolic equations, we refer to [1, 4]. It

follows from (3.1) that U ∈ Vq satisfies also the following pointwise equation

(3.2) U ′(t) + Pq−1AU(t) = Pq−1f(t) ∀t ∈ Jn,

with Pℓ denoting the (local) L2 orthogonal projection operator onto Hℓ(Jn):
∫

Jn

〈Pℓw, v〉 ds =

∫

Jn

〈w, v〉 ds ∀v ∈ Hℓ(Jn).

We thus conclude that cG is indeed a particular case, with Πq−1 = Pq−1, of the

general class of methods described by (2.2).

3.1. Continuous Galerkin Reconstruction. We let Π̂q := Pq and define the cG

reconstruction Û ∈ Hq+1(Jn) via (2.10). This expression reads pointwise

(3.3) Û ′(t) + AU(t) = Pqf(t) ∀t ∈ Jn.

We need now to identify the nodes {τi}
q
i=1 in (2.7). Let p0, p1, . . . be the Legendre

polynomials shifted to Jn and normalized. Since

(Pq − Pq−1)w =

∫

Jn

w(s)pq(s) ds · pq ∀w ∈ L2(Jn),

we infer from (2.8) that {tn,i}qi=1 are the zeros of pq and thus {τi}
q
i=1 are the Gauss

points in (0, 1).

A consequence of (2.24) is that (Û ′ − U ′)(tn,i) = 0 for tn,i = tn−1 + τikn. In this

case we can also identify the zeros of Û − U. In fact, since

(Û ′ − U ′)(t) =
1

q!
kq
nÛ

(q+1)

q∏

i=1

(t− tn−1

kn
− τi

)

by virtue of (2.25), and Û − U vanishes at tn−1 and tn, the zeros of Û − U are the

q + 1 Lobatto points in Jn, namely the roots of ϕq+1 in (2.21); see [8, p. 104].
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Remark 3.1 (Variational Conditions for Û). Upon subtracting (3.2) from (3.3) we

get the following characterization of the cG reconstruction Û ∈ Hq+1:

(3.4) (Û−U)(tn−1) = (Û−U)(tn) = 0,

∫

Jn

〈Û ′−U ′, v〉dt = 0 ∀v ∈ Vq−1(Jn). �

Remark 3.2 (A Priori Projection and Elliptic Reconstruction). In the derivation of

optimal order a priori error estimates the function W ∈ Vq(Jn) defined by

(3.5) (W − u)(tn−1) = (W − u)(tn) = 0,

∫

Jn

(u′ −W ′, v)dt = 0 ∀v ∈ Vq−1(Jn)

plays a fundamental role [1, 4, 27], analogous to the role of the elliptic projection

of the exact solution in the derivation of optimal order a priori error estimates for

space discrete finite element methods for parabolic equations [27]. The continuous

Galerkin reconstruction Û ∈ Hq+1 ‘solves’ problem (3.4) that is in a sense ‘dual’

to (3.5). Note the similarity to the relation between the elliptic projection and the

elliptic reconstruction of [22] in the a posteriori error analysis of space discrete finite

element methods for parabolic equations. �

We recall that Theorem 2.2 provides a simple representation for Û − U for cG.

We may wonder about the lower order case q = 1 and consistency with [2]; this is

discussed next.

Remark 3.3 (Case q = 1: The Crank–Nicolson–Galerkin Method). Since τ1 =
1
2
and

the Lobatto points in Jn are just tn−1 and tn, (2.24) and (2.25) yield for all t ∈ Jn

Û(t)− U(t) =

∫ t

tn−1

(P1 − P0)(f − AU)(s) ds =
1

2
Û ′′(t− tn−1)(t− tn).

We now derive a different, but equivalent, representation of Û ′′. We note that U

being linear implies

(P1 − P0)AU(t) = p1(t)

∫

Jn

AU(s)p1(s)ds,

where p1(t) =
√

12
k3
n

(t− tn−
1

2 ) is the second orthonormal Legendre polynomial in Jn.

Since p1 is orthogonal to constants, we see that
∫

Jn

AU(s)p1(s) ds = AU ′

∫

Jn

sp1(s) ds =

√
k3
n

12
AU ′.

On the other hand, we have

(P1 − P0)f(t) = p1(t)

∫

Jn

f(s)p1(s) ds.

Integrating in time from tn−1 to t, we end up with the expression

Û(t)− U(t) = (t− tn−1)(t− tn)
(
−

1

2
AU ′ +

6

k3
n

∫

Jn

f(s)(s− tn−
1

2 ) ds
)
,
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which turns out to be the relation (3.4) in [2]. This shows that Theorem 2.2 extends

[2] for any q > 1. �

3.2. Continuous Galerkin Method for Nonlinear Equations. In this subsec-

tion we consider the discretization of (1.1). We assume that B(t, ·) can be extended

to an operator from V into V ⋆. A natural condition for (1.1) to be locally of parabolic

type is the following local one-sided Lipschitz condition

(3.6)
〈
B(t, v)− B(t, w), v − w

〉
≤ λ‖v − w‖2 + µ|v − w|2 ∀v, w ∈ Tu

in a tube Tu := {v ∈ V : mint ‖u(t)− v‖ ≤ 1}, around the solution u, uniformly in

t, with constants λ < 1 and µ ≥ 0. If F (t, v) := Av−B(t, v), then it turns out that

(3.6) can be written in the form of a G̊arding–type inequality,

(3.7)
〈
F (t, v)− F (t, w), v − w

〉
≥ (1− λ)‖v − w‖2 − µ|v − w|2 ∀v, w ∈ Tu.

Furthermore, in order to ensure that an appropriate residual is of the correct order,

we make use of the following local Lipschitz condition for B(t, ·)

(3.8) ‖B(t, v)− B(t, w)‖⋆ ≤ L‖v − w‖ ∀v, w ∈ Tu

with a constant L, not necessarily less than one.

The tube Tu is here defined in terms of the norm of V for concreteness. The analy-

sis may be modified to yield a posteriori error estimates under conditions analogous

to (3.6) and (3.8) for v and w belonging to tubes defined in terms of other norms,

not necessarily the same for both arguments.

We recall that cG for (1.1) consists of seeking a function U : [0, T ] → V, continuous

and piecewise polynomial of degree at most q, such that U(0) = u(0) and

(3.9)

∫

Jn

[〈U ′, v〉+ 〈AU, v〉] dt =

∫

Jn

〈B(t, U), v〉 dt ∀v ∈ Vq−1(Jn)

for n = 1, . . . , N. The cG approximation U satisfies the pointwise equation

(3.10) U ′(t) + Pq−1AU(t) = Pq−1B
(
t, U(t)

)
∀t ∈ Jn.

For existence and local uniqueness results for the continuous Galerkin approxima-

tions as well as for a priori error estimates we refer to [1].

The continuous Galerkin reconstruction Û ∈ Hq+1(Jn) is now defined by

(3.11) Û(t) := U(tn−1)−

∫ t

tn−1

[
AU(s)− PqB

(
s, U(s)

)]
ds ∀t ∈ Jn;

this extends (2.10) with Π̂q = Pq. Obviously, Û satisfies the pointwise equation

(3.12) Û ′(t) + AU(t) = PqB
(
t, U(t)

)
∀t ∈ Jn.

Remark 3.4 (Conditional Estimates). The following estimates are valid under the

assumption that U(t), Û(t) ∈ Tu, for all t ∈ [0, T ]. This restrictive assumption can

sometimes be verified a posteriori. In such cases, the final estimate holds subject

to a condition that U or Û may or may not satisfy but can be computationally
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verified. The derivation of these bounds requires the use of fine properties of the

specific underlying PDE, as was done in [18, 23], and therefore goes beyond the

scope of the present paper. �

Theorem 3.1 (Error Estimates for Nonlinear Equations). Assume that U(t), Û(t) ∈

Tu, for all t ∈ [0, T ]. Then, the following upper bound is valid, for any ε ∈ (0, 1
2
(1−

λ)),

max
0≤τ≤t

[
|ê(τ)|2 + (1− λ− 2ε)

∫ τ

0

e3µ(τ−s)
(
‖ê(s)‖2 + ‖e(s)‖2

)
ds
]

≤

∫ t

0

e3µ(t−s)
[
2µ|(Û − U)(s)|2 +

(L2

2ε
+ 1

)
‖(Û − U)(s)‖2 +

1

ε
‖RU(s)‖

2
⋆

]
ds .

Proof. Subtracting (3.12) from the differential equation in (1.1), we obtain

(3.13) ê′(t) + Ae(t) = B
(
t, u(t)

)
−B

(
t, U(t)

)
+RU(t)

with

(3.14) RU (t) = B
(
t, U(t)

)
− PqB

(
t, U(t)

)
;

compare with (6.19) and (6.20) in [2]. Proceeding as in [2], namely taking the inner

product with ê(t), from (3.13) we can establish the desired upper bound. �

Let us note that the lower bound in Theorem 2.1 is obviously also valid in the

nonlinear case.

4. Runge–Kutta Collocation Methods

Let q ∈ N and τ1, . . . , τq ∈ [0, 1] be pairwise different, 0 ≤ τ1 < · · · < τq ≤ 1.

We recall that 0 = t0 < t1 < · · · < tN = T is a partition of [0, T ], Jn = (tn−1, tn]

and kn = tn − tn−1, and set tn,i := tn−1 + τikn. The collocation method with nodes

τ1, . . . , τq, applied to (1.1), reads: We seek U ∈ Vq such that

(4.1) U ′(tn,i) + F
(
tn,i, U(tn,i)

)
= 0, i = 1, . . . , q,

for n = 1, . . . , N ; here U(0) = u(0). We do not consider linear equations separately.

4.1. Runge–Kutta and Collocation Methods. For q ∈ N, a q−stage Runge–

Kutta (RK) method is described by the constants aij , bi, τi, i, j = 1, . . . , q, arranged

in a Butcher tableau,

a11 . . . a1q τ1
...

...
...

aq1 . . . aqq τq
b1 . . . bq

.
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Given an approximation Un−1 to u(tn−1), the n-th step of the Runge–Kutta

method applied to (1.1) that yields the approximation Un to u(tn) is

(4.2)





Un,i = Un−1 − kn

q∑

j=1

aijF (tn,j, Un,j), i = 1, . . . , q,

Un = Un−1 − kn

q∑

i=1

biF (tn,i, Un,i) ;

here Un,i are the intermediate stages, which are approximations to u(tn,i).

Let r and s be the largest integers such that

q∑

i=1

biτ
ℓ
i =

1

ℓ+ 1
, ℓ = 0, . . . , s− 1,

q∑

j=1

aijτ
ℓ
j =

τ ℓ+1
i

ℓ+ 1
, ℓ = 0, . . . , r − 1, i = 1, . . . , q.

The stage order of the Runge–Kutta method is p′ := min(s, r).The classical (nonstiff)

order of the method is the largest integer p such that after one step of the RK

method, with yn−1 := y(tn−1), there holds y(tn) − yn = O(kp+1
n ) for smooth solu-

tions y of ODEs with bounded derivatives; p is the superorder of RK.

The collocation method (4.1) is equivalent to the Runge–Kutta method with

aij :=

∫ τi

0

Lj(τ)dτ, bi :=

∫ 1

0

Li(τ)dτ, i, j = 1, . . . , q,

with L1, . . . , Lq the Lagrange polynomials of degree q− 1 associated with the nodes

τ1, . . . , τq, in the sense that U(tn,i) = Un,i, i = 1, . . . , q, and U(tn) = Un; see [15, The-

orem 7.6]. This is the Runge–Kutta Collocation (RK-C) class and satisfies (2.2) with

Πq−1 = Iq−1. Conversely, a q−stage Runge–Kutta method with pairwise different

τ1, . . . , τq is equivalent to the collocation method with the same nodes, if and only if

its stage order is at least q; see [15, Theorem 7.7]. Given the stages Un,i, i = 1, . . . , q,

of the Runge–Kutta method, the collocation approximation U ∈ Vq(Jn) is recovered

by interpolating (tn,i, Un,i), i = 1, . . . , q, and either (tn−1, Un−1), if τ1 > 0, or (tn, Un),

if τq < 1. In case τ1 = 0 and τq = 1, the collocation approximation is continuously

differentiable; therefore, for instance, if τ1 = 0, U can be recovered by interpolating

(tn−1, Un−1) and (tn,i, Un,i), i = 1, . . . , q, and requiring U ′(tn−1) = −F (tn−1, Un−1).

Most of the important RK methods belong to the RK-C class.

4.2. Order in L∞([0, T ];H) and Superorder. In this work we focus on estimators

for the L∞([0, T ];H) norm of the error. If U is piecewise polynomial of degree q,

then the highest possible order of convergence in L∞([0, T ];H) is q + 1, namely

(4.3) max
0≤t≤T

|u(t)− U(t)| = O(kq+1)
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with k := maxn kn. This fact follows from basic approximation theory results and

is valid even in the case of initial value problems for ODEs with smooth solutions.

For the optimal order of convergence q + 1 in (4.3) to be attained, a condition on

the RK-C method is required, as the case q = 1, τ1 = 1 shows, which reduces to

the backward Euler method, a scheme yielding first order approximations even at

the nodes t1, . . . , tN . This is related to the convergence order at the nodes {tn}Nn=1.

Indeed, it is well known that the classical order of the RK-C method is p > q, if and

only if the nodes τ1, . . . , τq satisfy the orthogonality condition

(4.4)

∫ 1

0

q∏

i=1

(τ − τi)v(τ) dτ = 0 ∀v ∈ Pr

for r ≥ 1, where r = p− q − 1, [15, Theorem 7.8]. We recall that condition (4.4) is

obviously satisfied if and only if every element of Pq+r and its Lagrange interpolant

at τ1, . . . , τq have the same integral in [0, 1], i.e., if the interpolatory quadrature

formula with abscissae τ1, . . . , τq integrates the elements of Pq+r = Pp−1 exactly.

A necessary and sufficient condition for (4.3) to hold for problems with smooth

solutions is that p ≥ q+1, that is (2.7) is satisfied. In the sequel we assume therefore

that (2.7) (and hence (4.3)) holds and we will establish a posteriori estimates of this

order in L∞([0, T ];H).

It is worth noting though, that there exist interesting methods where (2.7) fails to

be valid, and thus the order in L∞([0, T ];H) is q. For such methods, in general, the

residual (2.6) is not suboptimal any longer and thus estimates based on the original

formulation of the method and its error equation (2.5) are possible. Examples of such

methods are the Backward Euler Method (see Example 4.2), and the Trapezoidal

Method (see Example 4.3). For these methods however it might be preferable to

consider alternative formulations involving lower polynomial degrees for U than

those corresponding to their RK-C formulation. Such approaches are discussed in

[24] for the Backward Euler Method and in Example 4.7 for the Trapezoidal Method.

Next, we briefly examine the case p > q + 1. Although the order of the method

in L∞([0, T ];H) is provided by (4.3), the classical order p of the RK-C method

corresponds to the superconvergence order at the nodes {tn}Nn=1 (superorder for

short) of the discrete solution U of initial value problems for ODEs with smooth

solutions; this is the standard terminology of RK methods [15, 16]. Since the seminal

work of Crouzeix [6] it is known that the superorder is limited for linear problems

unless nontrivial compatibility conditions of the form

(4.5) f ∈ D(Aρ), U0 ∈ D(Aρ+1)

are valid for 1 ≤ ρ ≤ q − 1. A requirement such as (4.5) may fail to be fulfilled

in practice [20, 21, 27]. This lack of nodal superconvergence is usually called order

reduction [27]. In [3] we derive a posteriori error bounds that account for nodal

superconvergence by implicitly assuming compatibility conditions of the type (4.5).
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We now recall three important classes of collocation methods.

Example 4.1 (RK Gauss–Legendre) Let τ1, . . . , τq be the zeros of the Legendre poly-

nomial of degree q, shifted to (0, 1). Then the superorder p of the collocation method

is p = 2q. The collocation method is equivalent to the q−stage RK Gauss–Legendre

method; the latter has stage order q and is B−stable. The first member of the family

of RK Gauss–Legendre methods, i.e., q = 1, is the Crank–Nicolson scheme. �

Example 4.2 (RK Radau IIA) Let τ1, . . . , τq ∈ (0, 1] be the abscissae of the Radau

quadrature formula, with τq = 1. Then the superorder p of the collocation method

is p = 2q − 1. The collocation method is equivalent to the q−stage RK Radau IIA

method; the latter has stage order q and is B−stable and strongly A−stable. The

first member of the family of RK Radau IIA methods is the backward Euler scheme

(q = 1) which, however, does not satisfy (1.2) but is examined in [24]. �

Example 4.3 (RK Lobatto IIIA) Let 0 = τ1 < τ2 < · · · < τq = 1 be the abscissae of

the Lobatto quadrature formula. The collocation method has a superorder p = 2q−2

and is equivalent to the q−stage Runge–Kutta–Lobatto IIIA method; the latter has

stage order q, is A−stable but it is not B−stable. The first member of the family of

RK Lobatto IIIA methods is the trapezoidal scheme (q = 2) which, however, does

not satisfy (1.2) (see Example 4.7). �

4.3. Pointwise Equation and Residual. To establish a posteriori error estimates

we first derive a pointwise equation for the RK-C approximation U. To this end we

introduce an interpolation operator Iq−1, for continuous functions v defined on Jn,

(4.6) Iq−1v ∈ Hq−1(Jn) : (Iq−1v)(t
n,i) = v(tn,i), i = 1, . . . , q.

It turns out that (4.1) can be equivalently written in the form

(4.7) U ′(t) = −Iq−1F
(
t, U(t)

)
= −AIq−1U(t) + Iq−1B(t, U(t)) ∀t ∈ Jn.

Note that, in the linear case, (4.7) is a particular case of (2.2) with Πq−1 = Iq−1.

Let now R denote the residual of the RK-C approximation, R(t) := U ′(t) +

F
(
t, U(t)

)
. In view of (4.7), R(t) can be rewritten in the form

(4.8) R(t) = F
(
t, U(t)

)
− Iq−1F

(
t, U(t)

)
∀t ∈ Jn.

This residual is in general of order O(kq), since it is the error of the interpolation by

piecewise polynomials of degree at most q − 1. This order suffices only if the order

of the method is also q, i.e., if (2.7) is not satisfied. This is the case of the backward

Euler method (see [24]) and the trapezoidal method (see Example 4.7).

Since we assume that (2.7) is satisfied, and so U(t) is an approximation of order

q +1 to u(t), for all t, then R(t) is of suboptimal order; this is consistent with (2.6).

To recover the optimal order q+1, we will next introduce a RK-C reconstruction Û

of the approximation U.
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4.4. RK-C Reconstruction. Let tn,0 6= tn,i, for i = 1, . . . , q, be an extra point,

which may or may not belong to Jn. We define the extended interpolation operator

Îq by

(4.9) Îqv ∈ Hq(Jn) : (Îqv)(t
n,i) = v(tn,i), i = 0, 1, . . . , q,

for all continuous functions v on [0, T ]. Since Îq satisfies (2.8) by definition, it also

satisfies the orthogonality property (2.9).

We now define a RK-C reconstruction Û ∈ Hq+1(Jn) of the approximation U by

(4.10) Û(t) := U(tn−1)−

∫ t

tn−1

ÎqF
(
s, U(s)

)
ds ∀t ∈ Jn .

As a consequence of (2.9), and the discussion following (2.10), Û is continuous on

[0, T ]. Moreover, by differentiation of Û(t) and definition of F (t, U), we deduce

(4.11) Û ′(t) = −ÎqF (t, U(t)) = −ÎqAU(t) + ÎqB
(
t, U(t)

)
∀t ∈ Jn.

If tn,0 ∈ Jn, then ÎqU = U and (4.11) becomes the following counterpart of (3.12)

(4.12) Û ′(t) + AU(t) = ÎqB
(
t, U(t)

)
∀t ∈ Jn.

Example 4.4 (RK Radau IIA) According to Example 4.2, let q > 1, τq = 1 and

τ1 > 0 A natural choice for τ0 is τ0 = 0, i.e., tn,0 = tn−1, for which the resulting

reconstruction Û is continuously differentiable. Indeed, (4.12) yields

Û ′(tn−) = −AUn +B(tn, Un).

Using again (4.12), this time in the interval Jn+1, and choosing tn+1,0 = tn, we get

Û ′(tn+) = −AUn +B(tn, Un);

consequently, Û is differentiable at the node tn. On the other hand, the time recon-

struction introduced by Makridakis and Nochetto for RK Radau IIA methods in

the context of dG is just continuous [23, Lemma 2.1]. This is due to the fact that

the present time reconstruction is one-degree higher than that in [23] for the same

q. In [3] we further investigate the relation between dG and cG formulations and

their corresponding reconstructions and present a unified formulation that covers all

schemes, namely, cG, dG, RK-C and perturbed collocation methods. �

Example 4.5 (The Crank–Nicolson Method: Two-Point Estimator.) Let q = 1, τ =

1/2 and set tn−
1

2 := (tn−1 + tn)/2 = tn−1 + kn/2. The RK-C method (4.1) reads:

seek U ∈ V1 such that

(4.13) U ′(tn−
1

2 ) + AU(tn−
1

2 ) = B
(
tn−

1

2 , U(tn−
1

2 )
)
, n = 1, . . . , N,

with U(0) = u(0). Now, since

U ′(tn−
1

2 ) = ∂̄Un := (Un − Un−1)/kn, U(tn−
1

2 ) = Un− 1

2 := (Un−1 + Un)/2,
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the scheme (4.13) can also be written in the standard Crank–Nicolson form

(4.14) ∂̄Un + AUn− 1

2 = B(tn−
1

2 , Un− 1

2 ) , n = 1, . . . , N,

with U0 = u(0). Conversely, if the Crank–Nicolson approximations {Un}Nn=1 are

given by (4.14), then the RK-C approximation U ∈ V1 is recovered by linearly

interpolating between these nodal values. Now let τ0 ∈ [0, 1], τ0 6= 1/2, and tn,0 :=

tn−1+ τ0kn. Then, the interpolation operator Î1 is given on Jn by Î1v ∈ H1(Jn) such

that (Î1v)(t
n− 1

2 ) = v(tn−
1

2 ) and (Î1v)(t
n,0) = v(tn,0). In particular, for τ0 = 0,

(
Î1B(·, U)

)
(t) = B(tn−

1

2 , Un− 1

2 ) +
2(t− tn−

1

2 )

kn

[
B(tn−

1

2 , Un− 1

2 )−B(tn−1, Un−1)
]
.

Therefore

Û(t) = Un−1 −

∫ t

tn−1

AU(s) ds+

∫ t

tn−1

(
Î1B(·, U)

)
(s) ds;

this coincides with (6.14) in [2]. Moreover, the estimator Û − U is controlled by

(4.15) Û ′′ = −A
Un − Un−1

kn
+

2

kn

[
B(tn−

1

2 , Un− 1

2 )− B(tn−1, Un−1)
]
,

according to Theorem 2.2. �

Example 4.6 (The Crank–Nicolson Method: Three-Point Estimator.) Consider the

Crank–Nicolson method, but now choose tn,0 to be the collocation point in the

previous interval for n > 1, i.e., tn,0 = tn−1,1 = tn−
3

2 , and in the next interval

for n = 1. Then key properties (??) and (4.9) of the reconstruction remain valid.

Furthermore, according to Theorem 2.2, the estimator hinges on Û ′′, namely

Û ′′ = −
2

kn + kn−1

(
F (tn−

1

2 , Un− 1

2 )− F (tn−
3

2 , Un− 3

2 )
)
.

Invoking (4.2), namely Un − Un−1 = −knF (tn−
1

2 , Un− 1

2 ), yields the estimator

(4.16) Û ′′ =
2

kn + kn−1

(Un − Un−1

kn
−

Un−1 − Un−2

kn−1

)
,

regardless of whether F (t, U) is linear in U or not. �

Example 4.7 (The Trapezoidal Method.) This is a variant of Crank–Nicolson

Method where middle point function evaluations F (tn−
1

2 , Un− 1

2 ) are replaced by

averages 1
2

[
F (tn, Un) + F (tn−1, Un−1)

]
. The standard form of the method is

(4.17) ∂̄Un = −
1

2

[
F (tn, Un) + F (tn−1, Un−1)

]
, n = 1, . . . , N,

with U0 = u(0). This is a very popular second order method which can be seen as a

two-point RK-C method, namely the lowest order Lobatto IIIA method. However,

as a collocation method, q = 2 and (1.2) is not satisfied, as expected since the order

of the method is two. We can still cast the method within the framework of Section 2

provided we regard it as a piecewise linear approximation (q = 1), in agreement with
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the Crank-Nicolson method, instead of quadratic (q = 2); this is choice made in [19].

To this end, let U ∈ V1 be the continuous piecewise linear function that coincides

with Un at the nodes. Then (4.17) can be written as

(4.18) U ′(t) = −
1

2

[
F (tn, U(tn)) + F (tn−1, U(tn−1))

]
, n = 1, . . . , N.

It is a simple matter now to verify, by using the properties of the trapezoidal quad-

rature rule, that (4.18) is equivalent to

(4.19)

∫

Jn

〈U ′, v〉dt = −

∫

Jn

〈Π0F (t, U), v〉 dt ∀v ∈ H0(Jn) ,

where Π0 := P0 I1, I1 is the interpolation operator at tn, tn−1 by piecewise linear

functions and P0 is the L2 projection onto H0(Jn). This is of the form (2.2).

According to Section 2.1 the definition of Û ∈ H1 should be based on appropriate

projection operators Π̂1 which satisfy the key property (2.9). The obvious choice

Π̂1 = I1 satisfies (2.9), the reconstruction Û defined by (4.10) coincides with U at

tn−1 and tn, Theorem 2.2 is applicable and thus the estimator Û − U is given by

Û ′′ = −
1

kn

[
F (tn, Un)− F (tn−1, Un−1)

]
.

This is similar to the two-point estimator (4.15). We also observe that the recon-

struction Û coincides with the RK-C interpretation of Trapezoidal method. Indeed,

Û ′(t) = −I1F (·, U)(t) = −I1F (·, Û)(t)

because U − Û vanishes at tn−1 and tn. We explore this connection further in [3].

An alternative reconstruction Û leading to a three-point estimator consists of

taking Π̂1 the linear interpolant joining the values Π̂0F (·, U)(t) at the midpoints

tn−
3

2 and tn−
1

2 . This operator also satisfies (2.9), Û coincides with U at tn−1 and tn,

and Û ′′ reads

Û ′′ =
1

kn + kn−1

((
F (tn, Un) + F (tn−1, Un−1)

)
−

(
F (tn−1, Un−1) + F (tn−2, Un−2)

)

whence

Û ′′ =
2

kn + kn−1

(Un − Un−1

kn
−

Un−1 − Un−2

kn−1

)
.

This is similar to the three-point estimator (4.16), and is the time estimator proposed

recently by Lozinski et al [19] for the heat equation. �

4.5. A Posteriori Error Estimates. Subtracting (4.12) from the differential equa-

tion in (1.1), we obtain

(4.20) ê′(t) + Ae(t) = B
(
t, u(t)

)
−B

(
t, U(t)

)
+RU(t)

with

(4.21) RU(t) = B
(
t, U(t)

)
− ÎqB

(
t, U(t)

)
;
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compare with (3.13) and (3.14). This leads to the following optimal result, the proof

of which is similar to that of Theorem 3.1 and thus omitted.

Theorem 4.1 (Error Estimates for Nonlinear Equations). Let the assumptions of §3

about A,B, f and u0 be valid. In addition, if (2.7) holds, then so does the global

upper bound of Theorem 3.1 for q-stage RK-C methods. The local lower bound in

Theorem 2.1 as well as the expressions in Theorem 2.2 for Û − U are also valid.

5. Explicit Conditions for U, Û ∈ V

In this section we discuss whether Û satisfies the regularity condition (2.11) as-

sumed throughout the paper. We provide conditions on the data and the recon-

struction which guarantee its validity for the time discrete case, although, (2.11)

is always satisfied by fully discrete schemes for evolution PDEs. To be precise, we

examine sufficient conditions on U0 and F (0, U0) for

U(t) ∈ V ∀t ∈ [0, T ],(5.1)

Π̂qF (·, U)(t) ∈ V ∀t ∈ [0, T ],(5.2)

for the class of methods of Section 2 for which the reconstruction reads

Û ′(t) = Un−1 −

∫ t

tn−1

Π̂qF (·, U)(s)ds

for an interpolation operator satisfying (2.8). This implies Û(t) ∈ V and thereby

gives (2.11). We first study (5.2), and next we establish sufficient conditions for

(5.1) depending on the class and nodes {tn,i}qi=0. To avoid confusion, note that

tn,0 is not necessarily assumed to belong to the interval [tn−1, tn], to which {tn,i}qi=1

belong. Correspondingly, we set Un,0 = U(tn,0) where U by its definition is a function

defined on [0, T ] which is polynomial of degree q in each interval Jn.

Lemma 5.1 (Regularity). If (5.1) holds and

(5.3) F (tn,0, Un,0) ∈ V

for all n ≥ 1, then

Π̂qF (t, U(t)) ∈ V ∀t ∈ [0, T ].

Proof. Let t ∈ Jn. From the assumption U(t) ∈ V it immediatelly follows that U(t)

can be expressed in terms of the Lagrange polynomials with coefficients belonging

to V. Thus, by differentiation, it follows that U ′(t) ∈ V , for all t ∈ Jn. Consequently,

F (tn,i, Un,i) = −U ′(tn,i) ∈ V, i = 1, . . . , q.

Since F (tn,0, Un,0) ∈ V by hypothesis, with tn,0 6= tn,i for i > 0, we conclude that

the interpolant Π̂qF (t, U(t)) belongs to V , for all t ∈ Jn, as asserted, because it is a

linear combination of Lagrange polynomials with coefficients {F (tn,i, Un,i)}qi=0. �
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We now turn our attention to (5.1), (5.2) and split the analysis according to the

method. It is an interesting open question whether the following conditions can be

weakened, thereby extending the applicability of our results herein.

5.1. Runge-Kutta Collocation Method (Revisited). We examine two cases in

accordance with the location of node τ1.

Case 1: τ1 > 0. We prove (5.1) provided

(5.4) U0 ∈ V.

We argue that Un−1 ∈ V implies U(t) ∈ V for all t ∈ Jn by induction on n. For

n = 0 the statement is void. Let n ≥ 1 and observe that Iq−1U(t) ∈ D(A) for

t ∈ Jn, in view of (4.7), whence Un,i ∈ D(A) ⊂ V for i = 1, . . . , q. Obviously, U(t)

is a linear combination of the nodal values {Un,i}qi=1 and Un−1; since by induction

Un−1 ∈ V, we deduce that U(t) ∈ V for all t ∈ Jn.

To apply Lemma 5.1 it remains to choose tn,0 judiciously and to verify (5.3). We

consider two cases, depending on whether τq < 1 or τq = 1.

If τq < 1, then we choose tn,0 to be a collocation point in a consecutive internal to

Jn. If n = 1 we take t1,0 = t2,1 to be the first collocation point of the next interval. If

n > 1, instead, we select tn,0 = tn−1,q to be the last collocation point of the previous

interval. In both cases, the choice tn,0 is acceptable for a posteriori error estimation

because F (tn,0, Un,0) ∈ V is at our disposal. The RK Gauss-Legendre family is a key

example (Example 4.1). An explicit formula of a reconstruction Û provided by the

above procedure is given in the case of the Crank-Nicolson method with three-point

estimator (Example 4.6).

If τq = 1, then Un ∈ D(A) ⊂ V whence, invoking (4.7) again, F (tn, Un) ∈ V for

all n ≥ 1. Therefore, we can now choose tn,0 = tn−1 for n ≥ 2 and obtain (5.2) for

t ≥ t1. For the first interval we could take t1,0 = 0 provided F (0, U0) ∈ V or the

first collocation point of the second interval, t1,0 = t2,1, otherwise. The RK Radau

IIA is a key example for q > 1 and U0 ∈ V (Example 4.2).

Case 2: τ1 = 0. We prove (5.1) provided

(5.5) F (0, U0) ∈ V

and F is continuous. Condition (5.5) is necessary for Û(t) ∈ V for 0 ≤ t ≤ t1

according to (4.10), but implies (5.1) only when τq = 1. In fact, in this case U(t) is

continuously differentiable because

U ′(tn+) = −F
(
tn+, U(tn+)

)
= −F

(
tn−, U(tn−)

)
= U ′(tn−)

due to the continuity of U and F . We can argue by induction on n ≥ 0 that

U ′(tn) ∈ V . For n = 0 the statement is (5.5). For n > 0 we see that Un,i ∈ V

for i = 1, . . . , q and U ′(tn−1) ∈ V by induction. This implies that U(t) ∈ V for all

t ∈ Jn because it is a polynomial of degree ≤ q, whence U ′(tn) ∈ V . RK Lobatto

IIIA methods are a key example for q > 2 (Example 4.3).
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On the other hand, if τq < 1, there is no smoothing property and neither U(t) nor

Û(t) are well defined for t ≥ t1. A relevant example is the explicit Euler method

Un = Un−1 + knAU
n−1 + knf(t

n−1), for which U0 ∈ D(A) gives U1 ∈ H .

As a final remark note that in the case of Trapezoidal Method (Example 4.7) with

U considered as piecewise linear function, the method is not a pure RK-C method.

Thus it is not covered by the previous cases. On the other hand it is a simple matter

to check that U and Π̂q do satisfy (5.1), (5.2), provided F (0, U0) ∈ V.

5.2. Continuous Galerkin Method (Revisited). We finally modify the L2-

projection operator Pq of cG and so construct an interpolation operator Π̂q satisfying

the key property (2.8) as well as the requisite properties for (5.1) and (5.2).

Let v be a smooth function and ṽ = Pq−1v. We define Π̂qv ∈ Vq(Jn) to be the

interpolant of ṽ at the q Gauss points of Jn plus the last Gauss point of Jn−1 if n > 1

or the first Gauss point of J2 if n = 1; hence the fundamental property (2.8) holds.

In view of Remark 2.2 we need to show that the terms appearing on the right-hand

side of (2.20) are of optimal order. This property is trivially verified when Π̂q is a

simple interpolation operator as in the case of RK-C methods above. In our case,

however, we will show in the sequel that

v(t)− Π̂qv(t) = O(kq+1) ∀t ∈ Jn,

with k = max(kn−1, kn, kn+1).

Let Ĩqv be the interpolant of v at the q Gauss points of Jn plus the last Gauss point

of Jn−1. Since v− Ĩqv = O(kq+1) on Jn, it remains to show that Ĩqv−Π̂qv = O(kq+1)

on Jn. This will follow upon showing the nodal superconvergence

(5.6) ṽ(tn,i)− v(tn,i) = O(kq+1),

where tn,i, i = 1, . . . , q, are the Gauss points of Jn. This result being local applies

as well to the two consecutive intervals to Jn, and so the additional Gauss point

employed in defining both Π̂q and Ĩq. Since (5.6) is valid at q + 1 distinct points,

the asserted estimate Ĩqv − Π̂qv = O(kq+1) follows.

Let ℓn,i be the Lagrange polynomial of degree q − 1 so that ℓn,i(t
n,j) = δij . Then

∫

Jn

ℓn,i v dt =

∫

Jn

ℓn,i Pq−1v dt =

q∑

j=1

wn,j

(
ℓn,iPq−1v

)
(tn,j) = wn,iPq−1v(t

n,i),

whence

Pq−1v(t
n,i) =

1

wn,i

∫

Jn

ℓn,i v dt .

Note also that ∫

Jn

ℓn,i dt = wn,i ⇒
1

wn,i

∫

Jn

ℓn,i dt = 1.

By Taylor expansion we have

v(t)− v(tn,i) = Q(t− tn,i) +
(t− tn,i)q+1

(q + 1)!
v(q+1)(ξ(t)) ,
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where Q(t− tn,i) is a polynomial of degree at most q which contains only factors of

(t− tn,i). Combining the aforementioned ingredients, and using the fact that Gauss

quadrature integrates polynomials of degree 2q − 1 exactly, we obtain

ṽ(tn,i)− v(tn,i) =Pq−1v(t
n,i)− v(tn,i) =

1

wn,i

∫

Jn

ℓn,i
(
v(t)− v(tn,i)

)
dt

=
1

wn,i

∫

Jn

ℓn,i

(
Q(t− tn,i) +

(t− tn,i)q+1

(q + 1)!
v(q+1)(ξ(t))

)
dt

Since Q(t− tn,i) vanishes at tn,i, we deduce

∫

Jn

ℓn,i (Q(t− tn,i) dt =

q∑

j=1

wn,jℓn,i(t
n,j)Q(t− tn,i)(tn,j) = 0,

whence (5.6) follows easily

ṽ(tn,i)− v(tn,i) =
1

wn,i

∫

Jn

ℓn,i
(t− tn,i)q+1

(q + 1)!
v(q+1)(ξ(t))dt = O(kq+1).

We finally recall that the interpolation operator Π̂q verifies (2.8), and observe that

U satisfies (5.1) provided U0 ∈ V . To prove this, note that Pq−1AU(t) = AU(t) at

q distinct points in Jn because Pq−1 is the L
2-projection onto polynomials of degree

at most q− 1. Even though these points are not a priori known, we can argue as in

Case 1 (0 < τ1 < τq < 1) above to infer that U(t), Û(t) ∈ V for all t ∈ [0, T ].
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