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Abstract. We establish optimal order a priori error estimates for implicit–
explicit BDF methods for abstract semilinear parabolic equations with time-
dependent operators in a complex Banach space setting, under a sharp condition
on the non-self-adjointness of the linear operator. Our approach relies on the
discrete maximal parabolic regularity of implicit BDF schemes for autonomous
linear parabolic equations, recently established in [19], and on ideas from [6].
We illustrate the applicability of our results to four initial and boundary value
problems, namely two of second order, one of fractional order, and one of fourth
order, that is the Cahn–Hilliard, parabolic equations.

1. Introduction

Let V ↪→ H = H ′ ↪→ V ′ be a Gelfand triple of complex Hilbert spaces such
that the restriction of the antiduality pairing 〈·, ·〉 between V ′ and V to H × V
coincides with the inner product (·, ·) on H. Let T > 0, u0 ∈ H and consider an
abstract initial value problem for a possibly nonlinear parabolic equation,

(1.1)

{
u′(t) + A(t)u(t) = B(t, u(t)), 0 < t < T,

u(0) = u0;

here A(t) : V → V ′ are bounded linear operators, whereas B(t, ·) : V ∩W → V ′ are
nonlinear operators defined in the intersection of V with another Banach space W .
In this article, we study the stability of the implicit–explicit backward difference
formula (BDF) methods for the time discretization of (1.1) and derive optimal
order a priori error estimates.

1.1. Examples of initial and boundary value problems. Examples of the ab-
stract problem (1.1), to which our analysis applies, include (but are not restricted
to) the following four types of nonlinear parabolic partial differential equations.
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Example 1.1. Consider the following initial and boundary value problem in a
bounded domain Ω ⊂ Rd, with smooth boundary ∂Ω,

(I)



∂u

∂t
−∇ ·

(
(a(x, t) + i b(x, t))∇u

)
= f(u, x, t) +∇ · g(u, x, t) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

where a(x, t) > 0 and b(x, t) are smooth real-valued functions in Ω × [0, T ], and
the functions f and g are smooth with respect to u, not necessarily globally
Lipschitz continuous. For example, f(v, x, t) = −v3 and g(v, x, t) = (ev, 0, . . . , 0)
are allowed. In this case, we have V = H1

0 (Ω), H = L2(Ω) and W = L∞(Ω).
Then, the operators B(t, v) := f(v, x, t)+∇·g(v, x, t) are well defined as nonlinear
maps from V ∩W to V ′.

Example 1.2. Consider the following initial and boundary value problem in a
bounded domain Ω ⊂ Rd, with smooth boundary ∂Ω, this time with stronger
nonlinearity,

(II)



∂u

∂t
−∇ ·

(
(a(x, t) + i b(x, t))∇u

)
= f(u,∇u, x, t) +∇ · g(u,∇u, x, t) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

where a and b are as in (I) while the functions f and g are smooth with respect
to u and ∇u. For instance, f(v,∇v, x, t) = −|∇v|4v and g(v,∇v, x, t) = |∇v|4∇v
are allowed. In this case, we have V = H1

0 (Ω), H = L2(Ω) and W = W 1,∞(Ω).
Then, the operators B(t, v) := f(v,∇v, x, t) +∇ · g(v,∇v, x, t) are well defined as
nonlinear maps from V ∩W to V ′.

Example 1.3. Consider the Cauchy problem for a fractional partial differential
equation in Rd,

(III)


∂u

∂t
+ (−∆)1/2u = f(u) in Rd × (0, T ),

u(·, 0) = u0 in Rd,

with f a given smooth function of u such that f(0) = 0. For example, f(v) = ev−1.

In this case, we have V = H
1
2 (Rd), H = L2(Rd) and W = L2(Rd)∩L∞(Rd). Then,

the operators B(t, v) := f(v) are well defined as nonlinear maps from V ∩W to
V ′.

Example 1.4. Consider the Cauchy problem for the Cahn–Hilliard equation in
Rd,

(IV)


∂u

∂t
+∆2u = ∆f(u) in Rd × (0, T ),

u(·, 0) = u0 in Rd,

with f a given smooth function of u, such as f(v) = v3 − v; see [12]. In this
case, we have V = H2(Rd), H = L2(Rd) and W = H2(Rd)∩W 2,∞(Rd). Then, the
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operators B(t, v) := ∆f(v) = f ′(v)∆v + f ′′(v)|∇v|2 are well defined as nonlinear
maps from V ∩W to V ′.

1.2. Numerical methods. For k = 1, . . . , 6, consider the implicit k-step BDF
method (δ, β) and the explicit k-step method (δ, γ) generated by the polynomials
δ, β and γ,

(1.2)


δ(ζ) =

k∑
`=1

1

`
(1− ζ)` =

k∑
i=0

δiζ
i, β(ζ) = 1,

γ(ζ) =
1

ζ

[
1− (1− ζ)k

]
=

k−1∑
i=0

γiζ
i.

The BDF method (δ, β) is known to have order k and to be A(αk)-stable with
angles α1 = α2 = 90◦, α3 = 86.03◦, α4 = 73.35◦, α5 = 51.84◦ and α6 = 17.84◦;
see [17, Section V.2]. A(α)-stability is equivalent to | arg δ(ζ)| ≤ 180◦ − α for
|ζ| ≤ 1. Note that the first- and second-order BDF methods are A-stable, that is
Re δ(ζ) ≥ 0 for |ζ| ≤ 1. For a given polynomial δ, the scheme (δ, γ) is the unique
explicit k-step scheme of order k; the order of all other explicit k-step schemes
(δ, γ̃) is at most k − 1.

Let N ∈ N, N ≥ k, and consider a uniform partition tn := nτ, n = 0, . . . , N, of
the interval [0, T ], with time step τ := T/N. Since the nonlinear operators B(t, ·)
on the right-hand side of (1.1) are only defined on V ∩W , we shall choose some
Banach spaces D ⊂ V ∩W and X such that

V ⊂ H ⊂ V ′

∪ ∪
D ⊂ W ⊂ X

and
A(t) : D → X,

B(t, ·) : D → X,
(1.3)

and assume that we are given starting approximations u1, . . . , uk−1 ∈ D to the
nodal values u?j := u(tj), j = 1, . . . , k − 1. We discretize (1.1) in time by the
implicit–explicit k-step BDF method (δ, β, γ), i.e., we define approximations um ∈
D to the nodal values u?m := u(tm) of the exact solution as follows

(1.4)
1

τ

k∑
i=0

δiun−i + A(tn)un =
k−1∑
i=0

γiB(tn−i−1, un−i−1), n = k, . . . , N.

In other words, the linear part A(t)u(t) of the equation in (1.1) is discretized by
the implicit BDF scheme (δ, β), whereas the nonlinear part B(t, u(t)) is discretized
by the explicit BDF scheme (δ, γ). As a result, the unknown un appears only on
the left-hand side of the implicit–explicit BDF scheme (1.4); therefore, to advance
in time, one only needs to solve one linear equation, which reduces to a linear
system if one discretizes also in space, at each time level.

Motivated by Examples 1.1–1.4, we only require that the nonlinear operators
B(t, ·) are Lipschitz continuous in a tube TDu,r,

(1.5) TDu,r := {v ∈ D : min
0≤t≤T

‖v − u(t)‖W ≤ r},

around the solution u, uniformly in t, where W may be a suitably chosen L∞-based
Sobolev space in practical applications, such as L∞(Ω) or W 1,∞(Ω), depending
on the type of the nonlinearity. The main difficulty in numerical analysis of such
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problems is that one has to prove uniform boundedness of the numerical solutions
un, n = k, . . . , N , with respect to the norm of W . To overcome this difficulty,
we study the stability of the implicit–explicit BDF methods for (1.1) in a Banach
space setting, by using the mathematical tool of discrete maximal Lp-regularity.
In contrast to the present approach, in [4, 2, 7, 5] the local Lipschitz condition
was imposed in tubes T Vu,r,

(1.6) T Vu,r := {v ∈ V : min
0≤t≤T

‖v − u(t)‖V ≤ r},

defined in terms of the norm ‖ · ‖V ; as a consequence, the analysis of [4, 2, 7, 5] is
not directly applicable to Examples 1.1–1.4, if we only consider the discretization
in time, since it cannot ensure that the approximations are sufficiently close to the
exact solution in the norm ‖ · ‖W ; it is, however, applicable, usually under mild
mesh-conditions, in the fully discrete case, i.e., if we combine the time stepping
schemes with discretization in space; cf., e.g., [4]. This analysis allows us to avoid
growth conditions on the nonlinearities.

1.3. Continuous and discrete maximal parabolic regularity. Our approach
is based on the discrete maximal parabolic regularity property of the implicit
BDF methods. Let us briefly recall the relevant definitions: An elliptic differential
operator −A on a Banach space

(
X, ‖·‖X

)
has maximal Lp-regularity, 1 < p <∞,

if the solution u of the initial value problem

(1.7) u′(t) + Au(t) = f(t), 0 < t < T, u(0) = 0,

with forcing term f ∈ Lp(0, T ;X), satisfies the a priori estimate

(1.8)

∫ T

0

‖u′(t)‖pXdt+

∫ T

0

‖Au(t)‖pXdt ≤ C

∫ T

0

‖f(t)‖pXdt

with some constant C. In other words, if both terms u′ and Au on the left-hand
side of the autonomous parabolic equation are well defined and have the same (i.e.,
maximal) regularity as the forcing term f. It is well known that if an operator has
maximal Lp-regularity for some 1 < p < ∞, then it has maximal Lp-regularity
for all 1 < p < ∞. Replacing A by A(t) both in (1.7) and (1.8), the definition
extends to nonautonomous parabolic equations with a family of elliptic differential
operators −A(t), t ∈ [0, T ], on X with the same domain, D = D(A(t)), t ∈ [0, T ].
Maximal regularity is an important tool in the theory of nonlinear parabolic equa-
tions. For an excellent account of the maximal regularity theory, in particular,
for the important Weis’ characterization on unconditional martingale difference
(UMD) spaces (which include Lq(Ω), 1 < q <∞), and for relevant references, we
refer to the lecture notes by Kunstmann and Weis [20]. Space-discrete analogues
of the maximal parabolic regularity, uniform in the spatial mesh size, can be found
in [14, 15, 21, 22].

For the time-discrete maximal parabolic regularity property of autonomous par-
abolic equations, uniformly in the time step, we refer to [19] and the references
therein. The main result of [19] is that A-stable Runge–Kutta methods, satisfying
minor additional conditions, such as Gauss–Legendre and Radau IIA methods,
as well as one- and two-step BDF methods preserve maximal regularity; it is
also shown in [19] that higher-order k-step BDF methods, k = 3, . . . , 6, preserve
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maximal regularity under some natural additional conditions on the operator ac-
counting for the lack of A-stability of these methods.

Here we establish local stability of the implicit–explicit BDF methods (1.4) for
(1.1) under smallness conditions on the stability constants λ, which is equal to 1
in the case of self-adjoint operators while λ − 1 may be viewed as a measure of
the non-self-adjointness of the linear operators A(t) (see (2.5) in the sequel), for

k = 3, . . . , 6, and λ̃, the constant in the local Lipschitz condition on the nonlinear
operators B(t, ·), t ∈ [0, T ], (see (2.6) in the sequel). While we can quantify the
condition on the stability constant λ, actually in a sharp way, unfortunately we
cannot quantify the condition on λ̃, since we have no control on the constant
C in the discrete maximal regularity of the implicit BDF schemes (see (2.3) in

the sequel); therefore, we shall assume that λ̃ is sufficiently small, in the case
k = 3, . . . , 6 depending also on the value of λ. In the applications, in case the
differential operators B(t, ·), t ∈ [0, T ], are of order lower than the order of the

linear differential operators A(t), the Lipschitz constant λ̃ in the local Lipschitz
condition (2.6) can typically be chosen arbitrarily small; as we will see, this is, in
particular, the case for Examples 1.1, 1.3, and 1.4.

More precisely, we shall assume that λ does not exceed 1/ cosαk,

(1.9) λ <
1

cosαk
.

This is actually a sharp condition on the non-self-adjointness of the linear operators
A(t), in the sense that if λ exceeds the right-hand side in (1.9), then the (implicit)
k-step BDF method is in general unstable for the linear equation u′(t)+A(t)u(t) =
0. Indeed, for k = 1 and k = 2 condition (1.9) is void, and, for k = 3, . . . , 6,
letting Ã be a positive definite self-adjoint operator and considering the “rotated”
operator A := eiϕÃ, we see that condition (2.5) is satisfied as an equality with
λ = 1/ cosϕ. According to the von Neumann stability criterion, the k-step BDF
method is not unconditionally stable for the equation u′(t) + Au(t) = 0, if αk <
ϕ < 90◦. Indeed, the spectrum of A is unbounded and its eigenvalues lie on the
ray `ϕ := {ρeiϕ, ρ > 0}, which is outside of the stability sector Σαk := {z = reiϑ :
r ≥ 0, |ϑ| ≤ αk} of the k-step BDF scheme. By definition, for αk < ϕ < 90◦

and ϕ sufficiently close to αk, the ray `ϕ is not entirely contained in the stability

region S of the method; if λ is an eigenvalue of Ã, then the method is unstable
for u′(t) +Au(t) = 0 for all time steps τ such that τeiϕλ /∈ S; since there exists an
unbounded sequence of positive eigenvalues of Ã, it is impossible to find a positive
τ0 such that the k-step BDF method be stable for this equation for all time steps
0 < τ < τ0.

Let us note that in the case of the linear operators of the differential equations
in the initial and boundary value problems of Examples 1.1 and 1.2, condition
(1.9) takes the form

(1.10) λ = max
x∈Ω̄
t∈[0,T ]

|a(x, t) + i b(x, t)|
a(x, t)

<
1

cosαk
,
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which can also be equivalently written as

(1.11) max
x∈Ω̄
t∈[0,T ]

|b(x, t)|
a(x, t)

< tanαk.

Implicit–explicit multistep methods, and in particular implicit–explicit BDF
schemes, were introduced and analyzed for nonautonomous linear parabolic equa-
tions in [13]. In a Hilbert space setting, implicit–explicit BDF methods can be
analyzed by various techniques, such as spectral and Fourier techniques (see, e.g.,
[4, 3]), and energy methods (see, e.g., [2, 7, 5]); both techniques have advan-
tages and drawbacks. In a Banach space setting, the analysis of implicit BDF
methods for autonomous linear parabolic equations in [19] is based on maximal
regularity, whereas the analysis of implicit as well as of linearly implicit BDF
methods for quasilinear parabolic equations with real symmetric coefficients in
[6] combines maximal regularity and energy techniques. To our best knowledge,
implicit–explicit BDF schemes for nonlinear parabolic equations, in particular with
complex coefficients, have not been previously analyzed in a Banach space setting.

Error estimates under sharp stability conditions of the form (1.9) were estab-
lished in the Hilbert space setting by spectral and Fourier techniques in [25] for
implicit multistep methods, including BDF schemes, for linear parabolic equations,
and in [3] for implicit–explicit multistep methods, including implicit–explicit BDF
schemes, for a class of nonlinear parabolic equations with linear operators of a
special form; more precisely, for linear operators of the form considered in (I)
and (II), the assumption in [3] is that a is independent of t and b is of the form

b(x, t) = b̃(t)a(x).
For further stability analyses of implicit multistep methods for autonomous lin-

ear parabolic equations in a Banach space setting, we refer to [24] and references
therein; in particular, in [24] stability under the optimal condition (1.9) is estab-
lished.

An outline of the paper is as follows: In Section 2 we present our abstract
framework and discuss its applicability to the cases of the initial and boundary
value problems of Examples 1.1–1.4. In Section 3 we establish discrete maximal
regularity of BDF methods for nonautonomous linear parabolic equations, thus
extending recent results of [19] concerning autonomous parabolic equations. Sec-
tion 4 is devoted to the angle of analyticity of nonautonomous linear operators
under assumptions (A1) and (A3); a lower bound for this angle is given. Our main
results are presented in Sections 5 and 6: We first establish local stability of the
implicit–explicit BDF schemes (1.4) in Section 5, which is then combined with the
consistency of the methods and leads to optimal order a priori error estimates in
Section 6. In Section 7 we verify the applicability of our abstract framework to the
initial and boundary value problems (I)–(IV) of Examples 1.1–1.4, respectively, in
the concrete spaces given in Propositions 2.1–2.3.

2. Abstract framework and applications to Examples 1.1–1.4

In this section we present our abstract framework, which is, in particular, ap-
plicable to Examples 1.1–1.4.
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For a sequence (vn)Nn=1 and a given stepsize τ , we shall use the notation

∥∥(vn)Nn=1

∥∥
Lp(X)

=

(
τ

N∑
n=1

‖vn‖pX
)1/p

,

which is the Lp(0, Nτ ;X) norm of the piecewise constant function taking the
value vn in the subinterval (tn−1, tn], n = 1, . . . , N.

For any two Banach spaces X and Y which are imbedded into a common Haus-
dorff topological space, we denote byX∩Y the Banach space consisting of elements
in both X and Y , equipped with the norm

‖v‖X∩Y := ‖v‖X + ‖v‖Y .

We will work with the Banach space setting under the following assumptions:

(A1) (Generation of bounded analytic semigroups by the linear operators)
If v0 ∈ H, then, for all s ∈ [0, T ], there exists a unique solution v ∈
H1(R+;V ′) ∩ L2(R+;V ) ↪→ C([0,∞);H) of the initial value problem

(2.1)

{
v′(t) + A(s)v(t) = 0, t > 0,

v(0) = v0.

The solution map EH
s (t) : H → H, which maps v0 to v(t), extends to a

bounded analytic semigroup {EH
s (z)}z∈Σθs on H, where θs ∈ (0, π/2] is

the maximal angle of analyticity (i.e., the supremum of all such angles).
Moreover, the domain D(AH(s)) = DH ↪→ V of the generator −AH(s) of
the semigroup {EH

s (z)}z∈Σθs is supposed to be independent of s ∈ [0, T ]
and compactly imbedded into H, with

θ := inf
s∈[0,T ]

θs > 0.

(A2) (Discrete maximal regularity of the implicit BDF schemes)
There exist Banach spaces D and X satisfying (1.3). Moreover, if θ >
π/2− αk, then, for all s ∈ [0, T ], the k-step BDF solution determined by

(2.2)
1

τ

k∑
j=0

δjvn−j + A(s)vn = fn, n = k, . . . , N,

with given fn ∈ X and given starting values v0, . . . , vk−1 ∈ D, is bounded
by

(2.3)

1

τ

∥∥(vn − vn−1)Nn=k

∥∥
Lp(X)

+
∥∥(vn)Nn=k

∥∥
Lp(D)

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(X)

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(X)

+
∥∥(vi)

k−1
i=0

∥∥
Lp(D)

)
,

where the constant C is independent of τ and s ∈ [0, T ].

(A3) (Boundedness and bounded variation of A(t) : D → X, and coercivity of
A(t) : V → V ′)
There exist two positive constantsM1 andM2 such that the operator norms
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‖A(t)‖L(D,X) are uniformly bounded by M1, for all t ∈ [0, T ], and

(2.4)
m∑
i=1

‖A(τi)− A(τi−1)‖L(D,X) ≤M2

for any partition 0 = τ0 < τ1 < · · · < τm = T of [0, T ]. There exists a
constant λ ≥ 1 such that

(2.5) |〈A(t)v, v〉| ≤ λ Re〈A(t)v, v〉 ∀v ∈ V.
(A4) (Local Lipschitz continuity of the nonlinear operators B(t, ·))

There exists a constant r0 > 0 such that the operators B(t, ·) : D → X
satisfy a local Lipschitz condition in a tube TDu,r0 ; see (1.5); more precisely,

there exist nonnegative constants λ̃ and CB, independent of t ∈ [0, T ], such
that, for all v, w ∈ TDu,r0 ,

(2.6) ‖B(t, v)−B(t, w)‖X ≤ λ̃‖v − w‖D + CB(‖v‖D + ‖w‖D)‖v − w‖W .
(A5) (Control of the W -norm by the maximal Lp-regularity)

For any ε > 0, there exists Cε > 0 such that

(2.7) ‖v‖W ≤ ε‖v‖D + Cε‖v‖X ∀v ∈ D.

For some 1 < p <∞, we have a time-space continuous imbeddingW 1,p(0, T ;
X)∩Lp(0, T ;D) ↪→ L∞(0, T ;W ): there exists a positive constant CW such
that, for all v ∈ W 1,p(0, T ;X) ∩ Lp(0, T ;D) with v(0) = 0,

(2.8) ‖v‖L∞(0,T ;W ) ≤ CW
(
‖v′‖Lp(0,T ;X) + ‖v‖Lp(0,T ;D)

)
.

Remark 2.1. Similar assumptions in the Banach space setting (1.3) were recently
used in [6]. Assumptions (A1) and (A2) are now connected through θ, the angle
of analyticity, since we study parabolic equations with complex coefficients. As-
sumption (A3) is now relaxed to operators of bounded variation in time, possibly
discontinuous.

Remark 2.2. Assumption (A1) guarantees that AH(s)v = A(s)v for v ∈ DH ↪→
V. In other words, A(s) is an extension of the operator AH(s).

(A1)–(A5) are natural assumptions for studying many PDE problems, as can
be seen in the following three Propositions.

Proposition 2.1 (The abstract framework is applicable to Examples 1.1–1.2). Let
q ∈ (d,∞)∩ [2,∞) and p ∈ (1,∞) be such that 2/p+ d/q < 1. Then, assumptions
(A1)–(A5) are satisfied for the initial and boundary value problem (I) in Example
1.1 with DH = H2(Ω) ∩H1

0 (Ω), D = W 1,q
0 (Ω),W = L∞(Ω) and X = W−1,q(Ω),

with λ as on the left-hand side of (1.10) and λ̃ = 0.
Let q ∈ (d,∞) and p ∈ (2,∞) be such that 2/p + d/q < 1. Then, assumptions

(A1)–(A5) are satisfied for the initial and boundary value problem (II) in Example
1.2 with DH = H2(Ω) ∩ H1

0 (Ω), D = W 2,q(Ω) ∩ W 1,q
0 (Ω),W = W 1,∞(Ω) and

X = Lq(Ω), with λ as on the left-hand side of (1.10) and

(2.9) λ̃ = sup
t∈[0,T ]

d∑
i,j=1

sup
x∈Ω

sup
|ξ−u(x,t)|≤r
|~η−∇u(x,t)|≤r

∣∣∣∣∂gi(ξ, ~η, x, t)∂ηj

∣∣∣∣ .
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Proposition 2.2 (The abstract framework is applicable to Example 1.3). Let
q ∈ (d,∞)∩ [2,∞) and p ∈ (1,∞) be such that 1/p+ d/q < 1. Then, assumptions
(A1)–(A5) are satisfied for the Cauchy problem (III) in Example 1.3 with DH =
H1(Rd), D = H1(Rd) ∩ W 1,q(Rd), X = L2(Rd) ∩ Lq(Rd) and W = L2(Rd) ∩
L∞(Rd) ↪→ X, with the stability constants λ = 1 and λ̃ = 0.

Proposition 2.3 (The abstract framework is applicable to Example 1.4). Let
q ∈ (d/2,∞)∩[2,∞) and p ∈ (2,∞) be such that 4/p+d/q < 2. Then, assumptions
(A1)–(A5) are satisfied for the Cauchy problem (IV) in Example 1.4 with DH =
H4(Rd), D = H4(Rd) ∩ W 4,q(Rd), X = L2(Rd) ∩ Lq(Rd) and W = H2(Rd) ∩
W 2,∞(Rd) ↪→ X, with the stability constants λ = 1 and λ̃ = 0.

The proofs of Propositions 2.1–2.3 will be given in Section 7; the proofs of
Propositions 2.2 and 2.3 are based on [11, Corollary 2.7 and Proposition 2.9] and
[18, Example 3.2 (A)], respectively.

Remark 2.3 (Condition (2.5) expressed in terms of time-dependent norms). Fol-
lowing [2, 7], we introduce time-dependent norms and rewrite (2.5) in an equivalent
way. The time-dependent norms are based on the decomposition of the coercive
operators A(t) in their self-adjoint and anti-self-adjoint parts As(t) and Aa(t),
respectively,

As(t) :=
1

2

[
A(t) + A(t)?

]
, Aa(t) :=

1

2

[
A(t)− A(t)?

]
.

Now, we endow V with the time-dependent norms ‖ · ‖t,

‖v‖t := 〈As(t)v, v〉1/2 ∀v ∈ V,

which are uniformly equivalent to the norm ‖ · ‖V , and denote by ‖ · ‖?,t the
corresponding dual norm on V ′,

∀v ∈ V ′ ‖v‖?,t := sup
w∈V \{0}

|〈v, w〉|
‖w‖t

= sup
w∈V
‖w‖t=1

|〈v, w〉|.

Then, condition (2.5) simply says that the operators A(t) : V → V ′ are uniformly
bounded and their norms do not exceed λ,

(2.10) ‖A(t)v‖?,t ≤ λ‖v‖t ∀v ∈ V.

In the case of self-adjoint operators A(t), (2.5) and (2.10) are satisfied with λ = 1;
otherwise λ > 1.

Remark 2.4 (Equivalent form of (2.3) in the case v0 = 0). If v0 = 0, then (2.3)
in (A2) can be equivalently written in a more symmetric form as

(2.11)

1

τ

∥∥(vn − vn−1)Nn=k

∥∥
Lp(X)

+
∥∥(vn)Nn=k

∥∥
Lp(D)

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(X)

+
1

τ

∥∥(vi − vi−1)k−1
i=1

∥∥
Lp(X)

+
∥∥(vi)

k−1
i=1

∥∥
Lp(D)

)
.
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3. Discrete maximal Lp-regularity of BDF methods

We will work with the abstract assumptions (A1)–(A3) of the previous section
and will show that the (implicit) BDF methods satisfy the discrete maximal para-
bolic regularity property, when applied to initial value problems of the form (1.1)
for linear parabolic equations, i.e., with right-hand side B(t, u(t)) = f(t); this
property is of independent interest and will also play a crucial role in our stability
analysis of the implicit–explicit BDF methods in section 5. We thus extend the
corresponding discrete maximal parabolic regularity result (A2) for autonomous
parabolic equations of [19, Theorems 4.1–4.2] to the case of nonautonomous equa-
tions, with operators of bounded variation with respect to time.

Proposition 3.1 (Discrete maximal parabolic regularity). Under assumptions
(A1)–(A3), there exist positive constants τ0 and C (independent of τ , but possibly
depending on T ) such that, for every stepsize τ ≤ τ0, the k-step BDF method,

(3.1)
1

τ

k∑
j=0

δjvn−j + A(tn)vn = fn, n = k, . . . , N,

with given starting values v0, . . . , vk−1 ∈ D, satisfies the following stability property

(3.2)

1

τ

∥∥(vn − vn−1)Nn=k

∥∥
Lp(X)

+
∥∥(vn)Nn=k

∥∥
Lp(D)

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(X)

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(X)

+
∥∥(vi)

k−1
i=0

∥∥
Lp(D)

)
,

i.e., discrete maximal parabolic regularity.

Proof. For k ≤ n ≤ m ≤ N , we rewrite the numerical method (3.1) in the form

(3.3)
1

τ

k∑
j=0

δjvn−j + Amvn = fn + (Am − An)vn,

with Aj := A(tj), and shall use a discrete perturbation argument. First, applying
the discrete maximal regularity of the implicit k-step BDF method for autonomous
equations, namely (2.3), to (3.3), we obtain the estimate

(3.4)

1

τ

∥∥(vn − vn−1)mn=k

∥∥
Lp(X)

+
∥∥(vn)mn=k

∥∥
Lp(D)

≤ C
∥∥(fn)mn=k

∥∥
Lp(X)

+ C
∥∥((Am − An)vn

)m
n=k

∥∥
Lp(X)

+ C
(1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(X)

+
∥∥(vi)

k−1
i=0

∥∥
Lp(D)

)
.

We now let Ek−1 := 0 and

(3.5) E` :=
∥∥(vn)`n=k

∥∥p
Lp(D)

= τ
∑̀
n=k

‖vn‖pD, ` = k, . . . , N,

and focus on the second term on the right-hand side of (3.4). Denoting for nota-
tional simplicity the operator norm ‖ · ‖L(D,X) by ‖ · ‖, we first note that∥∥((Am − An)vn

)m
n=k

∥∥p
Lp(X)

= τ

m∑
n=k

‖(Am − An)vn‖pX
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≤ τ
m∑
n=k

‖Am − An‖p‖vn‖pD =
m∑
n=k

‖Am − An‖p(En − En−1),

whence

(3.6)
∥∥((Am − An)vn

)m
n=k

∥∥p
Lp(X)

≤
m−1∑
n=k

(
‖Am − An‖p − ‖Am − An+1‖p

)
En.

Now, since ‖Aj‖ ≤M1, it is easily seen that∣∣‖Am − An‖p − ‖Am − An+1‖p
∣∣ ≤ c?

∣∣‖Am − An‖ − ‖Am − An+1‖
∣∣

with c? := p(2M1)p−1; therefore,

(3.7)
∣∣‖Am − An‖p − ‖Am − An+1‖p

∣∣ ≤ c?‖An+1 − An‖,
and (3.6) yields

(3.8)
∥∥((Am − An)vn

)m
n=k

∥∥p
Lp(X)

≤ c?

m−1∑
n=k

‖An+1 − An‖En.

Now, letting

Fm :=
∥∥(fn)mn=k

∥∥p
Lp(X)

+
(1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(X)

+
∥∥(vi)

k−1
i=0

∥∥
Lp(D)

)p
,

considering the pth power of the second term on the left-hand side of (3.4), and
using (3.8), we have

Em ≤ Cc?

m−1∑
n=k

‖An+1 − An‖En + CFm,

i.e.,

(3.9) Em ≤ C
m−1∑
n=k

anEn + CFm, m = k, . . . , N,

with an := c?‖An+1 − An‖. In view of the bounded variation condition (2.4), the

sum
∑N

n=k an is uniformly bounded by a constant independent of the time step τ ;
therefore, a discrete Gronwall-type argument applied to (3.9) yields

(3.10) Em ≤ CFm, m = k, . . . , N.

Now, in view of (3.10), estimate (3.8) yields∥∥((Am − An)vn
)m
n=k

∥∥p
Lp(X)

≤ c?

(m−1∑
n=k

‖An+1 − An‖
)
CFm,

whence ∥∥((Am − An)vn
)m
n=k

∥∥p
Lp(X)

≤ cFm.

Using here the definition of Fm, we obtain the desired estimate of the second term
on the right-hand side of (3.4), namely

(3.11)

∥∥((Am − An)vn
)m
n=k

∥∥
Lp(X)

≤ C
∥∥(fn)mn=k

∥∥
Lp(X)

+ C
(1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(X)

+
∥∥(vi)

k−1
i=0

∥∥
Lp(D)

)
.
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Combining (3.11) with (3.4), and letting m = N, we get the stability estimate
(3.2). �

4. Angle of analyticity

Assuming (A1) and (A3), we show here that the angle θ of analyticity of the
semigroups generated by −AH(s), s ∈ [0, T ], exceeds arcsin(1/λ).

Lemma 4.1. Under assumptions (A1) and (A3), we have θ ≥ arcsin(1/λ).

Proof. It is known that −AH(s) generates an analytic semigroup in the sector Σϑ,
if and only if the following two conditions hold (see, e.g., [8, Theorem 3.7.11]):

(i) z + AH(s) is invertible for z ∈ Σϕ+π/2, for ϕ ∈ (0, ϑ);

(ii) z(z+AH(s))−1 is uniformly bounded on H for z ∈ Σϕ+π/2, for ϕ ∈ (0, ϑ).

The analyticity of the semigroup implies that z+AH(s) is invertible for Re(z) ≥
0, and the compact imbedding DH ↪→↪→ H implies that z +AH(s) is a Fredholm
operator of index zero. Hence, to verify (i), we need to prove only the injectivity
of the operator z + AH(s). In fact, if z ∈ Σϕ+π/2 with ϕ = arcsin(1/λ), then
w ∈ DH ↪→ V and (z + AH(s))w = 0 imply

z‖w‖2
H + (A(s)w,w) = (zw,w) + (AH(s)w,w) = 0;

thus, taking real parts, we have

Re(z)‖w‖2
H + Re(A(s)w,w) = 0.

By using (2.5) of assumption (A3), from the last two relations we see that

|z|‖w‖2
H = |(A(s)w,w)| ≤ λRe(A(s)w,w) = −λRe(z)‖w‖2

H ,

whence

(λRe(z) + |z|)‖w‖2
H ≤ 0.

Hence, since λRe(z) + |z| > 0 for z ∈ Σϕ+π/2, it follows that w = 0. This shows
the injectivity of the map z+AH(s) : DH → H, which implies invertibility of this
Fredholm operator. This proves (i) for ϑ = arcsin(1/λ).

To verify (ii), we assume that z ∈ Σϕ+π/2 with ϕ < arcsin(1/λ), and z(z +
AH(s))−1v = w. Then (z + AH(s))w = zv. Taking in this relation the inner
product with w, we get

z‖w‖2
H + (A(s)w,w) = (zw,w) + (AH(s)w,w) = (zv, w),

whence, taking real parts,

Re(z)‖w‖2
H + Re(A(s)w,w) = Re(zv, w).

In view of the last two relations, we have

|z|‖w‖2
H ≤ |(zv, w)|+ |(A(s)w,w)|
≤ |z|‖v‖H‖w‖H + λRe(A(s)w,w) (in view of (A3))

= |z|‖v‖H‖w‖H + λRe(zv, w)− λRe(z)‖w‖2
H

≤ (1 + λ)|z|‖v‖H‖w‖H − λRe(z)‖w‖2
H ,

which yields

(Re(z)/|z|+ 1/λ)‖w‖H ≤ (1/λ+ 1)‖v‖H .
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Since Re(z)/|z| + 1/λ ≥ − sinϕ + 1/λ > 0 for z ∈ Σϕ+π/2 with ϕ < arcsin(1/λ),
it follows that

‖z(z + AH(s))−1v‖H = ‖w‖H ≤
1/λ+ 1

1/λ− sinϕ
‖v‖H ∀ z ∈ Σϕ.

Since this estimate is valid for arbitrary ϕ < arcsin(1/λ), it follows that (ii) is
valid for ϑ = arcsin(1/λ). The proof is complete. �

5. Stability

In this section, we prove local stability of the implicit–explicit BDF schemes
(1.4). We shall combine this stability result with the easily established consistency
of the schemes to derive optimal order error estimates in Section 6.

Besides the approximations un ∈ D,n = 0, . . . , N, satisfying (1.4), we consider
the nodal values u?m := u(tm) of the solution u of the initial value problem (1.1),
which satisfy the perturbed equation

(5.1)
1

τ

k∑
i=0

δiu
?
n−i + A(tn)u?n =

k−1∑
i=0

γiB(tn−i−1, u
?
n−i−1) + dn, n = k, . . . , N.

We assume for the time being, and shall verify in the next section, that the con-
sistency error (dn) is bounded by

(5.2)
∥∥(dn)Nn=k

∥∥
Lp(X)

≤ δ

and also that the errors of the starting approximations are bounded by

(5.3)
1

τ

∥∥(ui − u?i )k−1
i=0

∥∥
Lp(X)

+
∥∥(ui − u?i )k−1

i=0

∥∥
Lp(D)

≤ δ,

with δ a sufficiently small constant. We then have the following stability results
for the BDF solutions.

Proposition 5.1 (Stability of the implicit–explicit BDF schemes (1.4)). Con-
sider time discretization of the initial value problem (1.1) by the implicit–explicit
k-step BDF method (1.4)–(1.2), with 1 ≤ k ≤ 6 and starting approximations
u0, . . . , uk−1 ∈ D, and assume that the stability condition (1.9) is satisfied. Under

the assumptions (A1)–(A5) and (5.2)–(5.3), there exist positive constants λ̃0 and

δ0 such that, for λ̃ ≤ λ̃0 and δ ≤ δ0, the errors en = un− u?n between the solutions
of (1.4) and (5.1) are bounded by

1

τ

∥∥(en − en−1)Nn=k

∥∥
Lp(X)

+
∥∥(en)Nn=k

∥∥
Lp(D)

≤ Cδ,(5.4) ∥∥(en)Nn=k

∥∥
L∞(W )

≤ Cδ,(5.5)

with a constant C depending on ‖(u?n)Nn=0‖L∞(W ), ‖(u?n)Nn=0‖Lp(D), and T , but in-
dependent of δ and τ .

Proof. Subtracting (5.1) from (1.4), we obtain the following error equation, for
the errors en := un − u?n,

(5.6)
1

τ

k∑
i=0

δien−i + A(tn)en =
k−1∑
i=0

γibn−i−1 − dn, n = k, . . . , N,

with the abbreviation b` := B(t`, u`)−B(t`, u
?
`), ` = 0, . . . , N − 1.
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We let r ∈ (0, r0] be a small number to be determined later, and let M ≤ N be
maximal such that

(5.7) ‖(en)M−1
n=0 ‖L∞(W ) ≤ r.

Then un ∈ TDu,r, n = 0, . . . ,M − 1, and assumption (A4) implies

‖b`‖X ≤ λ̃‖e`‖D + CB(‖u`‖D + ‖u?`‖D)‖e`‖W
≤ λ̃‖e`‖D + CB(‖e`‖D + 2‖u?`‖D)‖e`‖W
= (λ̃+ CB‖e`‖W )‖e`‖D + 2CB‖u?`‖D‖e`‖W

and thus

(5.8) ‖b`‖X ≤ (λ̃+ CBr)‖e`‖D + 2CB‖u?`‖D‖e`‖W , ` = 0, . . . ,M − 1.

Let us denote by Jm the quantity

(5.9) Jm :=
1

τ

∥∥(en − en−1)mn=k

∥∥
Lp(X)

+
∥∥(en)mn=k

∥∥
Lp(D)

,

which we want to estimate; cf. the left-hand side of (5.4). First, applying Propo-
sition 3.1 to (5.6), we obtain, for all m ≤M ,

Jm ≤ C

∥∥∥∥( k−1∑
i=0

γibn−i−1 − dn
)m
n=k

∥∥∥∥
Lp(X)

+
C

τ

∥∥(ei)
k−1
i=0

∥∥
Lp(X)

+ C
∥∥(ei)

k−1
i=0

∥∥
Lp(D)

≤ C
∥∥(bn)m−1

n=0

∥∥
Lp(X)

+ C
∥∥(dn)mn=k

∥∥
Lp(X)

+
C

τ

∥∥(ei)
k−1
i=0

∥∥
Lp(X)

+ C
∥∥(ei)

k−1
i=0

∥∥
Lp(D)

≤ C
∥∥(bn)m−1

n=0

∥∥
Lp(X)

+ Cδ,

where we used (5.2) and (5.3); therefore, in view of (5.8),

Jm ≤ C(λ̃+ r)‖(en)m−1
n=0 ‖Lp(D) + C‖(en)m−1

n=0 ‖Lp(W ) + Cδ.

Since (A5) implies

‖(en)m−1
n=0 ‖Lp(W ) ≤ ε‖(en)m−1

n=0 ‖Lp(D) + Cε‖(en)m−1
n=0 ‖Lp(X),

the last two estimates yield

(5.10) Jm ≤ C(λ̃+ r)‖(en)m−1
n=0 ‖Lp(D) + ε‖(en)m−1

n=0 ‖Lp(D) +Cε‖(en)m−1
n=0 ‖Lp(X) +Cδ.

Now, with a sufficiently small positive constant λ̃0, for λ̃ ≤ λ̃0 and suitably small
r and ε, we have C(λ̃ + r) + ε ≤ 1/2 (r is a fixed constant from now on). As a
consequence, (5.10) yields

(5.11) Jm ≤ C‖(en)m−1
n=0 ‖Lp(X) + Cδ.

Combining this estimate with the upper bound (5.3) of the starting errors, and
setting e−1 = 0, we obtain

(5.12)
1

τ

∥∥(en − en−1)mn=0

∥∥
Lp(X)

+
∥∥(en)mn=0

∥∥
Lp(D)

≤ C‖(en)m−1
n=0 ‖Lp(X) + Cδ.
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Now, with p′ such that 1
p

+ 1
p′

= 1, we have

‖(en)mn=0‖L∞(X) ≤ ‖e0‖X +
m∑
n=1

∥∥en − en−1

∥∥
X

= ‖e0‖X +
1

τ

∥∥(en − en−1)mn=1

∥∥
L1(X)

≤ τ 1/p′δ +
T

1
p′

τ

∥∥(en − en−1)mn=1

∥∥
Lp(X)

≤ τ 1/p′δ + C‖(en)m−1
n=0 ‖Lp(X) + Cδ

≤ ε‖(en)m−1
n=0 ‖L∞(X) + Cε‖(en)m−1

n=0 ‖L1(X) + Cδ;

in the last step of this estimate we used the following inequality of [1, Theorem
2.11]:

‖(en)m−1
n=0 ‖Lp(X) ≤ ‖(en)m−1

n=0 ‖
1− 1

p

L∞(X)‖(en)m−1
n=0 ‖

1
p

L1(X)

≤ ε‖(en)m−1
n=0 ‖L∞(X) + Cε‖(en)m−1

n=0 ‖L1(X).

Therefore,

(5.13) ‖(en)mn=0‖L∞(X) ≤ C‖(en)m−1
n=0 ‖L1(X) + Cδ,

which holds for all 0 ≤ m ≤M . Then Gronwall’s inequality implies ‖(en)Mn=0‖L∞(X)

≤ Cδ. Substituting this estimate into (5.12), we obtain

(5.14)
1

τ

∥∥(en − en−1)Mn=0

∥∥
Lp(X)

+
∥∥(en)Mn=0

∥∥
Lp(D)

≤ Cδ.

Let ẽ ∈ W 1,p(−τ,Mτ ;X)∩Lp(−τ,Mτ ;D) denote the piecewise linear interpolant
of en, n = −1, 0, 1, . . . ,M , at the nodes tn. Then we have

‖ẽ ′‖Lp(−τ,Mτ ;X) + ‖ẽ‖Lp(−τ,Mτ ;D) ≤ C

(
1

τ

∥∥(en − en−1)Mn=0

∥∥
Lp(X)

+
∥∥(en)Mn=0

∥∥
Lp(D)

)
,

whence, in view of (5.14),

(5.15) ‖ẽ ′‖Lp(−τ,Mτ ;X) + ‖ẽ‖Lp(−τ,Mτ ;D) ≤ Cδ.

Now, according to assumption (A5), we have∥∥(en)Mn=0

∥∥
L∞(W )

= ‖ẽ‖L∞(−τ,Mτ ;W ) ≤ C(‖ẽ ′‖Lp(−τ,Mτ ;X) + ‖ẽ‖Lp(−τ,Mτ ;D)),

and, using (5.15), we obtain

(5.16)
∥∥(en)Mn=0

∥∥
L∞(W )

≤ Cδ.

Estimates (5.14) and (5.16) imply the existence of a positive constant δ0 such that
‖(en)Mn=0‖L∞(W ) ≤ r for δ ≤ δ0, contradicting the maximality of M unless M = N .
Hence, (5.7), (5.14) and (5.16) are valid for M = N . The proof is complete. �

Remark 5.1 (On the stability condition (1.9)). The stability condition (1.9) is
void for k = 1, 2, and takes for the implicit–explicit k-step BDF method (1.4),
k = 3, . . . , 6, the form λ < λk with

(5.17) λ3 = 14.45087, λ4 = 3.49040, λ5 = 1.62892979, λ6 = 1.050513.
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6. Error estimates

In this section we present our main result, maximum norm optimal order error
estimates for the implicit–explicit BDF schemes (1.4).

Proposition 6.1 (Optimal order error estimates). Assume (A1)–(A5), with sta-
bility constant satisfying (1.9), and that the starting approximations are such that

(6.1)
1

τ

∥∥(ui − u?i )k−1
i=0

∥∥
Lp(X)

+
∥∥(ui − u?i )k−1

i=0

∥∥
Lp(D)

≤ Cτ k.

If the solution u of (1.1) is sufficiently regular, u ∈ Ck+1([0, T ];X) and B̃(t) :=

B(t, u(t)) ∈ Ck([0, T ];X), then there exist positive constants λ̃0 and τ0 such that,

for λ̃ ≤ λ̃0 and τ ≤ τ0, the errors en = un − u?n between the approximate solutions
un of (1.4) and the nodal values u?n of the solution u of (1.1) are bounded by

1

τ

∥∥(en − en−1)Nn=k

∥∥
Lp(X)

+
∥∥(en)Nn=k

∥∥
Lp(D)

≤ Cτ k,(6.2) ∥∥(en)Nn=k

∥∥
L∞(W )

≤ Cτ k,(6.3)

with a constant C independent of τ .

Proof. With Proposition 5.1 on the stability of the BDF solutions, we need to
establish estimates for the consistency errors dn only.

The order of the k-step methods (δ, β) and (δ, γ) is k, i.e.,

(6.4)
k∑
i=0

(k − i)`δi = `k`−1 = `
k−1∑
i=0

(k − i− 1)`−1γi, ` = 0, 1, . . . , k.

The consistency error dn of the scheme (1.4) for the solution u of (1.1), i.e., the
amount by which the exact solution misses satisfying the implicit–explicit BDF
scheme (1.4), is given by

(6.5) τdn =
k∑
i=0

δiu(tn−i) + τA(tn)u(tn)− τ
k−1∑
i=0

γiB
(
tn−i−1, u(tn−i−1)

)
,

n = k, . . . , N ; cf. (5.1). Letting
dn,1 :=

k∑
i=0

δiu(tn−i)− τu′(tn),

dn,2 := τB
(
tn, u(tn)

)
− τ

k−1∑
i=0

γiB
(
tn−i−1, u(tn−i−1)

)
,

and using the differential equation in (1.1), we infer that τdn = dn,1 + dn,2. Now,
by Taylor expanding about tn−k and using the order conditions of the implicit
(δ, β)-scheme, i.e., the first equality in (6.4), and the second equality in (6.4),
respectively, we obtain

dn,1 =
1

k!

[
k∑
i=0

δi

∫ tn−i

tn−k

(tn−i − s)ku(k+1)(s)ds− kτ
∫ tn

tn−k

(tn − s)k−1u(k+1)(s)ds

]
,

dn,2 =
τ

(k − 1)!

[∫ tn

tn−k

(tn − s)k−1B̃(k)(s)ds−
k∑
i=0

γi

∫ tn−i−1

tn−k

(tn−i−1 − s)k−1B̃(k)(s)ds

]
,
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with B̃(t) := B(t, u(t)), t ∈ [0, T ]. Thus, under the regularity condition

u ∈ Ck+1([0, T ];X) and B̃ ∈ Ck([0, T ];X),

we obtain the desired optimal order consistency estimate

(6.6) max
k≤n≤N

‖dn‖X ≤ Cτ k.

Now, in view of the consistency estimate (6.6) and our assumption (6.1) on
the starting approximations, conditions (5.2) and (5.3) are valid with δ = Cτ k.
Therefore, for sufficiently small time step τ, the desired error estimates (6.2) and
(6.3) follow immediately from the corresponding estimates (5.4) and (5.5), respec-
tively. �

Remark 6.1 (On the accuracy requirement for the starting approximations).
The accuracy requirement (6.1) for the starting approximations u0, . . . , uk−1 can
be equivalently written in the form

(6.7) max
0≤i≤k−1

‖ui − u?i ‖X ≤ Cτ k+(1− 1
p

), max
0≤i≤k−1

‖ui − u?i ‖D ≤ Cτ k−
1
p .

The larger p is, the stronger is the accuracy requirement (6.7) on the starting
approximations. Suitable choices of p depend on the concrete application; for
instance, for the problems in Examples 1.1–1.2, 1.3, and 1.4, respectively, the
conditions 2/p + d/q < 1, 1/p + d/q < 1, and 4/p + d/q < 2, respectively, are
required; see Propositions 2.1–2.3 and Section 7.

Proposition 6.1 applies directly to Examples 1.1–1.4; for instance, in the cases
of Examples 1.1 and 1.2, we have:

Corollary 6.2 (Application to Examples 1.1 and 1.2). In the case of Example
1.1, if the solution u of (I) is sufficiently regular,

u ∈ Ck+1
(
[0, T ];W−1,q(Ω)

)
∩ Ck

(
[0, T ];W 1,q

0 (Ω)
)

(and thus B̃ = f(u, x, t) + ∇ · g(u, x, t) ∈ Ck([0, T ];W−1,q(Ω))), the starting ap-
proximations are such that

(6.8)
1

τ

∥∥(ui − u?i )k−1
i=0

∥∥
Lp(W−1,q(Ω))

+
∥∥(ui − u?i )k−1

i=0

∥∥
Lp(W 1,q(Ω))

≤ Cτ k,

with q ∈ (d,∞)∩ [2,∞) and p such that 2/p+ d/q < 1, and the coefficients a and
b satisfy (1.11), then for sufficiently small time step τ , the errors en = un − u?n
between the approximate solutions un of (1.4) and the nodal values u?n of the
solution u of (I) are bounded by

1

τ

∥∥(en − en−1)Nn=k

∥∥
Lp(W−1,q(Ω))

+
∥∥(en)Nn=k

∥∥
Lp(W 1,q(Ω))

≤ Cτ k,(6.9)

max
k≤n≤N

‖en‖L∞(Ω) ≤ Cτ k,(6.10)

with a constant C independent of τ .
Analogously, in the case of Example 1.2, if the solution u of (II) is sufficiently

regular,

u ∈ Ck+1
(
[0, T ];Lq(Ω)

)
∩ Ck

(
[0, T ];W 2,q(Ω) ∩W 1,q

0 (Ω)
)
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(and thus B̃ = f(u,∇u, x, t) +∇ · g(u,∇u, x, t) ∈ Ck([0, T ];Lq(Ω))), the starting
approximations are such that

(6.11)
1

τ

∥∥(ui − u?i )k−1
i=0

∥∥
Lp(Lq(Ω))

+
∥∥(ui − u?i )k−1

i=0

∥∥
Lp(W 2,q(Ω))

≤ Cτ k,

with q > d and p such that 2/p + d/q < 1, and the coefficients a and b satisfy

(1.11), then for a sufficiently small constant λ̃ in (2.9) and for sufficiently small
time step τ , the errors en = un−u?n between the approximate solutions un of (1.4)
and the nodal values u?n of the solution u of (II) are bounded by

1

τ

∥∥(en − en−1)Nn=k

∥∥
Lp(Lq(Ω))

+
∥∥(en)Nn=k

∥∥
Lp(W 2,q(Ω))

≤ Cτ k,(6.12)

max
k≤n≤N

‖en‖W 1,∞(Ω) ≤ Cτ k,(6.13)

with a constant C independent of τ .

7. Proofs of Propositions 2.1, 2.2, and 2.3

In this section we show that our abstract framework is applicable in the cases
of Examples 1.1–1.4.

7.1. Proof of Proposition 2.1. In this subsection we show that our abstract
framework is applicable in the cases of Examples 1.1 and 1.2; more precisely,
we verify our abstract conditions (A1)–(A5) for the initial and boundary value
problems (I) and (II) in the spaces given in Proposition 2.1.

It follows easily from the smoothness of the diffusion coefficients and the positiv-
ity of the coefficient a(x, t) that assumption (A3) is satisfied; the smallest possible
value of the stability constant λ in (2.5) is as on the left-hand side of (1.10). As-
sumption (A4) is satisfied, if the functions f and g are locally Lipschitz continuous
with respect to the arguments u and ∇u. The proof of (A5), under the condition
2/p + d/q < 1, is given in [6, Section 9]. Thus, it remains to verify assumptions
(A1) and (A2).

Existence and uniqueness of a solution v ∈ H1(R+;V ′)∩L2(R+;V ) ↪→ C([0,∞);
H) for (2.1) are simple consequences of the positivity of a(x, t) and the bounded-
ness of a(x, t) and b(x, t). It is easy to see that the operator −AH(s) : DH → H,

−AH(s)v = −∇ ·
(
(a(x, s) + i b(x, s))∇v

)
,

is densely defined, closed and invertible. Following Section 4, one can prove that
the operator −AH(s) generates a bounded analytic semigroup in the sector Σθs ,
with

θs ≥ inf
x∈Ω

arctan
a(x, s)

|b(x, s)|
≥ inf

(x,t)∈Ω×(0,T )
arctan

a(x, t)

|b(x, t)|
= arcsin

1

λ
.

In fact, we have the sharper result

(7.1) θs = inf
x∈Ω

arctan
a(x, s)

|b(x, s)|
,

which immediately implies θ := infs∈[0,T ] θs = arcsin 1
λ
. To prove (7.1), simply note

that otherwise we could choose ϕ satisfying

(7.2) θs > ϕ > arctan
a(x0, s)

|b(x0, s)|
for some x0 ∈ Ω such that b(x0, s) 6= 0.
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Without loss of generality, we can assume that b(x0, s) > 0. Then the operator

−eiϕAH(s) = ∇ ·
((
a(x, s) cosϕ− b(x, s) sinϕ+ i

[
a(x, s) sinϕ+ b(x, s) cosϕ

])
∇
)

would generate a bounded analytic semigroup. But this is impossible, because
(7.2) implies that a(x, s) cosϕ−b(x, s) sinϕ < 0 at some point x ∈ Ω, which means
that the operator −eiϕAH(s) would have eigenvalues with positive real parts, thus
the resolvent operator z+eiϕAH(s) would not be invertible for some z on the right
half-plane, which contradicts the bounded analyticity of the semigroup generated
by −eiϕAH(s) (see, e.g., [8, Theorem 3.7.11]). This proves (A1) for both Problems
(I) and (II), with (7.1).

Next, we verify (A2) for Problem (II). In this case, X = Lq(Ω). With the posi-
tivity of a(x, t) and the Hölder continuity of a(x, t) and b(x, t), Auscher, McIntosh
and Tchamitchian [9, Theorem 4.19] have proved that the kernel of the semigroup
EH
s (t) has a Gaussian upper bound:

(7.3) |Gs(t, x, y)| ≤ C0

td/2
e
− |x−y|

2

C0t , ∀ t > 0, ∀x, y ∈ Ω,

where the constant C0 depends only on the lower bound of a(x, t), on the upper
bounds of |a(x, t) + i b(x, t)|, and on the Hölder norms of a(·, t) and b(·, t), but is
independent of s ∈ [0, T ]. Similarly, when ϕ ∈ (0, θ) the semigroup generated by
−eiϕAH(s) has also a Gaussian upper bound. Hence, [20, Theorem 8.5] implies
that the semigroup generated by −eiϕAH(s) satisfies the conditions of [20, Theo-
rem 8.6], for all ϕ ∈ (0, θ), which further implies that {EH

s (t)}t>0 extends to an
R-bounded analytic semigroup {EX

s (z)}z∈Σϕ on X (in view of [20, Remark 8.23]
and [26, Theorem 4.2]). If we denote the generator of {EX

s (t)}t>0 by −AX(s), then
[26, Theorem 4.2] implies that the family of operators {z(z +AX(s))−1 : z ∈ Σϕ}
is R-bounded. As a consequence, [19, Theorems 4.1–4.2 and Remark 4.3] implies
that, when θ > π/2− αk, the solution of (2.2) satisfies (with vn = 0 for n < 0)

(7.4)

1

τ

∥∥∥( k∑
j=0

δjvn−j

)N
n=0

∥∥∥
Lp(Lq(Ω))

+
∥∥(vn)Nn=k

∥∥
Lp(W 2,q(Ω))

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(Lq(Ω))

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(Lq(Ω))

+
∥∥(vi)

k−1
i=0

∥∥
Lp(W 2,q(Ω))

)
.

Then (A2) follows from (7.4) and the inequality

1

τ

∥∥(vn − vn−1

)N
n=0

∥∥
Lp(Lq(Ω))

≤ C

τ

∥∥∥( k∑
j=0

δjvn−j

)N
n=0

∥∥∥
Lp(Lq(Ω))

.

To prove the last inequality, let v̇n := 1
τ

∑k
j=0 δjvn−j. Recall that δ(ζ) = (1 −

ζ)µ(ζ), where the polynomial µ(ζ) of degree k − 1 has no zeros in the closed unit
disc; therefore

1

µ(ζ)
=
∞∑
n=0

χn ζ
n, with |χn| ≤ Cρn for some ρ < 1.

Then, with η` = 1 for ` ≥ 0 and η` = 0 for ` < 0, we have

vn − vn−1

τ
=

n∑
m=0

v̇n−m χm =
N∑
m=0

ηn−mv̇n−m χm,
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because both sides have the same generating function. Therefore,

1

τ

∥∥∥(vn − vn−1)Nn=0

∥∥∥
Lp(X)

≤
N∑
m=0

|χm| ‖(ηn−mv̇n−m)Nn=0‖Lp(X)

≤
N∑
m=0

|χm| ‖(v̇n)Nn=0‖Lp(X)

≤ C
∥∥(v̇n)Nn=0

∥∥
Lp(X)

.

Finally, we verify (A2) for Problem (I). In this case, we want to derive from
(7.4) the following estimate:

(7.5)

1

τ

∥∥∥( k∑
j=0

δjvn−j

)N
n=k

∥∥∥
Lp(W−1,q(Ω))

+
∥∥(vn)Nn=k

∥∥
Lp(W 1,q(Ω))

≤

C
(∥∥(fn)Nn=k

∥∥
Lp(W−1,q(Ω))

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(W−1,q(Ω))

+
∥∥(vi)

k−1
i=0

∥∥
Lp(W 1,q(Ω))

)
.

In fact, [10, Theorem 1] implies that the Riesz transform ∇AX(s)−1/2 is bounded
on Lq(Ω) for all 1 < q <∞. Once we have (7.4) and the boundedness of the Riesz
transform, the discrete maximal regularity (2.3) can be proved in the same way
as in [6, Proposition 8.7]. �

7.2. Proof of Proposition 2.2. Since the operator −(−∆)1/2 is self-adjoint and
nonpositive definite, it generates a bounded analytic semigroup of angle π/2 on
the Hilbert space H = L2(Rd), with domain DH = H1(Rd). This implies (A1).

Assumption (A3) is due to the time independence and self-adjointness of the
operator (−∆)1/2. The self-adjointness also implies λ = 1.

If w, v are bounded in W = L2(Rd)∩L∞(Rd) ↪→ Lq(Rd), with ‖w‖W + ‖v‖W ≤
K, then the local Lipschitz continuity of f implies, for q ≥ 2,

‖f(w)− f(v)‖X = ‖f(w)− f(v)‖L2(Rd) + ‖f(w)− f(v)‖Lq(Rd)

≤ CK
(
‖w − v‖L2(Rd) + ‖w − v‖Lq(Rd)

)
≤ CK

(
‖w − v‖L2(Rd) + ‖w − v‖

2
q

L2(Rd)
‖w − v‖

1− 2
q

L∞(Rd)

)
≤ CK

(
‖w − v‖L2(Rd) + ‖w − v‖L∞(Rd)

)
= CK‖w − v‖W .

This implies assumption (A4) in the case q ≥ 2, with λ̃ = 0.
If q > d, then [1, Theorems 5.2 and 5.9] implies that, for any positive ε, there

exists positive Cε such that

‖v‖Lq(Rd) + ‖v‖L∞(Rd) ≤ ε‖v‖W 1,q(Rd) + Cε‖v‖Lq(Rd) ∀v ∈ W 1,q(Rd).

For D = H1(Rd) ∩W 1,q(Rd) and X = L2(Rd) ∩ Lq(Rd), we have

W 1,p(0, T ;X) ∩ Lp(0, T ;D) ↪→ L∞(0, T ;X) ↪→ L∞(0, T ;L2(Rd)), when p > 1,
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and

W 1,p(0, T ;X) ∩ Lp(0, T ;D) ↪→ W 1,p(0, T ;Lq(Rd)) ∩ Lp(0, T ;W 1,q(Rd))

↪→ L∞(0, T ; (Lq(Rd),W 1,q(Rd))1−1/p,p) see [23, Proposition 1.2.10]

= L∞(0, T ;B1−1/p;q,p(Rd)) by the definition of Besov spaces [1, §7.32]

↪→ L∞(0, T ;L∞(Rd)), when 1/p+ d/q < 1, see [1, §7.34].

The last two imbedding results imply

W 1,p(0, T ;X) ∩ Lp(0, T ;D) ↪→ L∞(0, T ;L2(Rd) ∩ L∞(Rd)) = L∞(0, T ;W ).

This proves assumption (A5) in the case q > d.
It is well known that the operator −(−∆)1/2 generates a bounded analytic

semigroup {EH(z)}z∈Σπ/2 with the kernel

(7.6) E(z, x, y) =
cd
zd

(
1 +
|x− y|2

z2

)− d+1
2

,

where cd is a positive constant; see [16, §1.1.3]. It is easy to check that the
kernel E(z, x, y) satisfies the condition of [11, Proposition 2.9-(b)] with g(s) =

C(1 + s2)−
d+1
2 . Hence, [11, Proposition 2.9-(a), with p = 1 and q = ∞ therein]

is satisfied. Substituting (s, p, q, po) = (2, 1,∞, q) and Ω = Rd into [11, Corollary
2.7], we see that the analytic semigroup generated by the operator −(−∆)1/2 is
R-bounded on Lq(Rd) in the sector Σϕ, for any ϕ ∈ (0, π/2). Equivalently, in view

of [26, Theorem 4.2], the family of operators {z(z + (−∆)
1
2 )−1 : z ∈ Σϕ+π/2} is

R-bounded on Lq(Rd), for any 1 < q <∞ and ϕ ∈ (0, π/2). Then [19, Theorems
4.1–4.2 and Remark 4.3] implies that, for BDF methods up to order 6,

(7.7)

1

τ

∥∥(vn − vn−1)Nn=k

∥∥
Lp(L2(Rd))

+
∥∥(vn)Nn=k

∥∥
Lp(H1(Rd))

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(L2(Rd))

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(L2(Rd))

+
∥∥(vi)

k−1
i=0

∥∥
Lp(H1(Rd))

)
and

(7.8)

1

τ

∥∥(vn − vn−1)Nn=k

∥∥
Lp(Lq(Rd))

+
∥∥(vn)Nn=k

∥∥
Lp(W 1,q(Rd))

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(Lq(Rd))

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(Lq(Rd))

+
∥∥(vi)

k−1
i=0

∥∥
Lp(W 1,q(Rd))

)
.

Estimates (7.7) and (7.8) imply (A2).
Overall, assumptions (A1)–(A5) are satisfied for q ∈ (d,∞) ∩ [2,∞).

7.3. Proof of Proposition 2.3. Similarly, the operator −∆2 is self-adjoint and
nonpositive definite. Hence, it generates a bounded analytic semigroup of angle
π/2 on the Hilbert space H = L2(Rd), with domain DH = H4(Rd). This implies
(A1).

Assumption (A3) is due to the time independence and self-adjointness of the
operator ∆2. The self-adjointness also implies λ = 1.

Since W = H2(Rd) ∩W 2,∞(Rd) ↪→ W 2,q(Rd) for q ≥ 2, if w, v are bounded in
W with ‖w‖W + ‖v‖W ≤ K, then the local Lipschitz continuity of f implies

‖∆f(w)−∆f(v)‖X = ‖∆f(w)−∆f(v)‖L2(Rd) + ‖∆f(w)−∆f(v)‖Lq(Rd)
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≤ CK(‖w − v‖H2(Rd) + ‖w − v‖W 2,q(Rd))

≤ CK(‖w − v‖H2(Rd) + ‖w − v‖W 2,∞(Rd)) = CK‖w − v‖W .

This implies assumption (A4) in the case q ≥ 2, with λ̃ = 0.
If 1 < q < ∞ and 2q > d, then [1, Theorems 5.2 and 5.9] imply that, for any

ε > 0, there exists Cε > 0 satisfying

‖v‖H2(Rd) ≤ ε‖v‖H4(Rd) + Cε‖v‖L2(Rd) ∀v ∈ H4(Rd),

‖v‖W 2,∞(Rd) ≤ ε‖v‖W 4,q(Rd) + Cε‖v‖Lq(Rd) ∀v ∈ W 4,q(Rd).

Since D = H4(Rd)∩W 4,q(Rd) and X = L2(Rd)∩Lq(Rd), the last two inequalities
imply (2.7) in assumption (A5). Moreover, we have

W 1,p(0, T ;X) ∩ Lp(0, T ;D) ↪→ W 1,p(0, T ;L2(Rd)) ∩ Lp(0, T ;H4(Rd))

↪→ W 1−θ,p(0, T ;H4θ(Rd)) by using complex interpolation

↪→ L∞(0, T ;H2(Rd)), when (1− θ)p > 1 and 4θ > 2,

and

W 1,p(0, T ;X) ∩ Lp(0, T ;D) ↪→ W 1,p(0, T ;Lq(Rd)) ∩ Lp(0, T ;W 4,q(Rd))

↪→ W 1−θ,p(0, T ;W 4θ,q(Rd)) by using complex interpolation

↪→ L∞(0, T ;W 2,∞(Rd)), when (1− θ)p > 1 and (4θ − 2)q > d.

It remains to prove the existence of a θ satisfying the conditions above. In fact,
if 1 < p, q <∞ and d/q + 4/p < 2, then 1

4

(
2 + d

q

)
< 1− 1

p
and 1

2
< 1− 1

p
. Hence,

there exists θ ∈ (0, 1) satisfying

1

4

(
2 +

d

q

)
< θ < 1− 1

p
and

1

2
< θ < 1− 1

p
.

Then θ satisfies (1− θ)p > 1, 4θ > 2 and (4θ − 2)q > d. This proves (A5) in the
case q > max(d/2, 1).

Now, according to [18, Example 3.2 (A)], the semigroup generated by −eiϕ∆2

satisfies a Gaussian estimate

|E(teiϕ, x, y)| ≤ Cϕ
td/4

exp

(
−|x− y|

4/3

Cϕ t1/3

)
for any ϕ ∈ (0, π/2). Substituting (s, p, q, po) = (2, 1,∞, q) and Ω = Rd into [11,
Corollary 2.7], we see that the analytic semigroup generated by the operator −∆2

is R-bounded on Lq(Rd), 1 < q < ∞, in the sector Σϕ, for any ϕ ∈ (0, π/2).
Equivalently, in view of [26, Theorem 4.2], the family of operators {z(z +∆2)−1 :
z ∈ Σϕ+π/2} is R-bounded on Lq(Rd), for any 1 < q <∞ and ϕ ∈ (0, π/2). Then
[19, Theorems 4.1–4.2 and Remark 4.3] implies that, for BDF methods of order
up to 6,

(7.9)

1

τ

∥∥(vn − vn−1)Nn=k

∥∥
Lp(L2(Rd))

+
∥∥(vn)Nn=k

∥∥
Lp(H4(Rd))

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(L2(Rd))

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(L2(Rd))

+
∥∥(vi)

k−1
i=0

∥∥
Lp(H4(Rd))

)
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and

(7.10)

1

τ

∥∥(vn − vn−1)Nn=k

∥∥
Lp(Lq(Rd))

+
∥∥(vn)Nn=k

∥∥
Lp(W 4,q(Rd))

≤ C
(∥∥(fn)Nn=k

∥∥
Lp(Lq(Rd))

+
1

τ

∥∥(vi)
k−1
i=0

∥∥
Lp(Lq(Rd))

+
∥∥(vi)

k−1
i=0

∥∥
Lp(W 4,q(Rd))

)
.

Estimates (7.9) and (7.10) imply (A2).
Overall, assumptions (A1)–(A5) are satisfied for q ∈ (d/2,∞) ∩ [2,∞).
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13. M. Crouzeix, Une méthode multipas implicite–explicite pour l’approximation des équations
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