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This study introduces, analyses and implements space-time discretizations of two-dimensional active dis-

sipative partial differential equations such as the Topper–Kawahara equation; this is the two-dimensional

extension of the dispersively modified Kuramoto–Sivashinsky equation found in falling film hydrody-

namics. The spatially periodic initial value problem is considered as the size of the periodic box increases.

The schemes utilized are implicit–explicit multistep (BDF) in time and spectral in space. Numerical anal-

ysis of these schemes is carried out and error estimates, in both time and space, are derived. Preliminary

numerical experiments provided strong evidence of analyticity, thus yielding a practical rule-of-thumb

that determines the size of the truncation in Fourier space. The accuracy of the BDF schemes (of order

one to six) is confirmed through computations. Extensive computations into the strongly chaotic regime

(as the domain size increases), provided an optimal estimate of the size of the absorbing ball as a function

of the size of the domain; this estimate is found to be proportional to the area of the periodic box. Numer-

ical experiments were also carried out in the presence of dispersion. It is observed that sufficient amounts

of dispersion reduce the complexity of the chaotic dynamics and can organise solution into nonlinear

travelling wave pulses of permanent form.
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1. Introduction

In this study we develop and implement numerical schemes to solve classes of multidimensional active-

dissipative partial differential equations (PDEs) in the presence of dispersion. Of particular interest are

two-dimensional (2D) Kuramoto–Sivashinsky type equations arising in the hydrodynamic stability of

viscous liquid films falling down inclined flat plates or vertical cylinders. In the case of falling film flows

down a plate inclined at an angle θ to the horizontal, Topper & Kawahara (1978) derived the following

evolution equation for the shape η(ξ ,ζ ,τ) of the liquid interface

ητ + 2Fηηξ +
2R̃F2

15
ηξ ξ −

R̃

3
∆η +F∆ηξ +

R̃W̃

3
∆ 2η = 0, (1.1)

with ∆ = ∂ 2

∂ξ 2 +
∂ 2

∂ζ 2 being the Laplacian in ξ and ζ . The dimensionless parameters appearing in (1.1)

are the Froude number F = ρgL2 sinθ/µU0, the Reynolds number R̃ = ρU0L/µ and the inverse Weber

number W̃ = σ/ρU2
0 L. Here g is the acceleration due to gravity, L is a typical length (e.g., the average

film thickness), U0 is a typical flow velocity, ρ is the fluid density, µ is its viscosity and σ is the

coefficient of surface tension. Clearly, R̃ and W̃ are non-negative but F can take any real value (it is

negative for films wetting the underside of the inclined plate). By utilizing the transformations

(ξ ,ζ ) =

(
5W̃

2|F2 − 5
2
|

)1/2

(X ,Y ), τ =
75W̃

4R̃|F2 − 5
2
|2

T, η =
21/2R̃|F2 − 5

2
|3/2

15(5W̃)1/2F
H,

equation (1.1) can be rescaled into the following canonical form:

HT +HHX ±HXX −αHYY + δ∆HX +∆ 2H = 0, (1.2)

where the parameters α and δ are given by

α =
5

2 |F2 − 5
2
|
, δ =

3
√

5F

R̃ |F2 − 5
2
|1/2

√
2W̃

. (1.3)

The plus sign in the third term of (1.2) corresponds to flows above critical, i.e., F2 > 5
2
, while the minus

sign to sub-critical flows F2 < 5
2
. The latter are trivial in the sense that the system is now stable to all

perturbations and it is easy to show that solutions decay exponentially to uniform trivial steady states in

this case. In what follows, therefore, we consider the case F2 > 5
2
.

We will consider the periodic initial value problem for (1.2) with the solution H being periodic both

in X and Y, with periods L1 and L2, respectively, i.e.,

H(X +L1,Y,T ) = H(X ,Y +L2,T ) = H(X ,Y,T ). (1.4)

The parameters L1 and L2 play an important role in the dynamics and as they increase, they introduce

more unstable modes and hence more complex dynamics.

The derivation in Topper & Kawahara (1978) assumes angles θ away from vertical. More recently it

has been shown in Frenkel & Indireshkumar (1999) that when the plate is vertical the resulting equation

is identical to (1.2) but with α = 0. This case is more interesting since α > 0 introduces additional

dissipation and potentially reduces the complexity of the dynamics. We also note that Indireshkumar

& Frenkel (1997) present some numerical experiments having α = 0, that indicate the presence of

attractors with complex chaotic dynamics in two dimensions.
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Pinto (1999, 2001) studied analytically the periodic initial value problem of a special version of (1.2)

that does not contain dispersion, namely,

HT +HHX +HXX +∆ 2H = 0.

In these papers he proved global existence of solutions, the existence of a global attractor (i.e., a compact

attracting set), and analyticity of solutions. In addition he obtained an estimate for the radius of the

global attractor in the case L1 = L2 = 2L; in particular, he showed that for large L

limsup
T→∞

‖H(·, ·,T )‖L2 6 c1 L12 lnL. (1.5)

Such estimates can be far from optimal, and one of the objectives of the present work is to use numerical

computations to conjecture optimal bounds for both the radius of the absorbing set as well as the band

of analyticity of the solutions as L increases. Our extensive numerical experiments indicate that

limsup
T→∞

‖H(·, ·,T )‖L2 6 c2 L. (1.6)

It is usual in the literature to extend the one-dimensional Kuramoto–Sivashinsky equation in the

form

υt +
1

2
|∇υ |2 +∆υ +∆ 2υ = 0, (1.7)

to be solved on periodic domains as in (1.4). This equation is mathematically interesting but as far as we

are aware it does not arise from a concrete physical problem (equation (1.7) has been suggested as an

empirical model for the process of ion-beam erosion in nanostructuring processing of materials by Frost

& Rauschenbach (2003)). Analytical studies were carried out by Sell & Taboada (1992) and Molinet

(2000) where the existence of global attractors is proved for periodic solutions in thin domains, i.e., L1

or L2 being small. The methods presented here can be readily extended to (1.7) and a detailed study is

currently under way.

The structure of the paper is as follows. In Section 2 we carry out a numerical analysis of our

schemes; these are implicit-explicit multistep schemes, that include the backward difference formulæ

(BDF), in time and spectral in space. In Section 3 we describe our implementation and carry out numer-

ical experiments. Section 4 is devoted to conclusions and further discussion.

2. Linearly implicit spectral schemes

We find it convenient to have the same period in both variables, say 2π . To this end, we use the change

of variables

x :=
2π

L1

X , y :=
2π

L2

Y, u :=
L1

2π
H, t :=

(
2π

L1

)2

T

in (1.2). Subsequently, after appropriately rescaling (1.2), we write it in the form

ut + uux + uxx − δ1

ν2

ν1

uyy + δ2ν
1/2
1

(
uxxx +

ν2

ν1

uxyy

)

+ν1uxxxx + 2ν2uxxyy +
ν2

2

ν1

uyyyy = 0,

(2.1)

with positive constants δ1, δ2, ν1 = ( 2π
L1
)2 and ν2 = ( 2π

L2
)2. In (2.1), x is in the direction of the flow,

while y is the transverse coordinate.
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The time discretization of the Topper–Kawahara (TK) equation by linearly implicit multistep schemes

was recently analysed in Akrivis & Smyrlis (2011). Here, we consider fully discrete schemes, namely

the combination of linearly implicit multistep schemes with spectral methods for the space discretiza-

tion. We put particular emphasis on the numerical study of various physically relevant phenomena.

REMARK 2.1 (Non-dispersive TK equation) The third order term

uxxx +
ν2

ν1

uxyy,

in (2.1) is a dispersion term. If u is a solution of the non-dispersive TK equation, i.e., for vanishing δ2,

it is easily seen that

υ(x,y, t) :=−u(−x,−y, t),

is also a solution. Thus, if the periodic initial value is odd, then u(·, ·, t) is also odd, for all t > 0, i.e.,

u(−x,−y, t) =−u(x,y, t).

2.1 Preliminaries

We will rewrite the TK equation (2.1) in an appropriate form that will allow us to analyse its time

discretization by linearly implicit schemes.

With the self-adjoint operator A,

Aυ := ν1υxxxx + 2ν2υxxyy +
ν2

2

ν1

υyyyy +υxx − δ1
ν2

ν1

υyy + cυ ,

and the nonlinear operator B,

B(υ) := −δ2ν
1/2
1

(
υxxx +

ν2

ν1

υxyy

)
−υυx+ cυ ,

where c is a positive constant, which will be determined later on, equation (2.1) can be written in the

form

ut +Au = B(u). (2.2)

For a positive T, we will consider the discretization of a periodic initial value problem for (2.2), namely

{
ut +Au = B(u), (x,y, t) ∈R×R× (0,T),

u(0) = u0,
(2.3)

with a given periodic initial value u0.
Let us first show that the operator A is positive definite, when the constant c is sufficiently large. We

denote by υ̂ jℓ the Fourier coefficients of a 2π−periodic function υ of two variables,

υ(x,y) = ∑
j,ℓ∈Z

υ̂ jℓ ei( jx+ℓy). (2.4)

Then, for s∈R, we denote by Hs the periodic Sobolev space of order s in two dimensions (of period
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2π in x and y) with norm1

‖υ‖Hs :=
(

∑
j,ℓ∈Z

(1+ j2 + ℓ2)s |υ̂ jℓ|2
)1/2

.

Clearly, Hs is a Hilbert space, for every s∈R. Let H := H0 = L2. Then the norm of H, which we shall

be denoting by | · |, is induced by the inner product

(u,υ) =
1

4π2

∫ 2π

0

∫ 2π

0
u(x,y)υ(x,y)dxdy = ∑

j,ℓ∈Z
û jℓ υ̂ jℓ.

For υ ∈H4, we have by periodicity

(Aυ ,υ) = ν1|υxx|2 + 2ν2|υxy|2 +
ν2

2

ν1

|υyy|2 −|υx|2 + δ1
ν2

ν1

|υy|2 + c|υ |2. (2.5)

Obviously,

|υ |2 = ∑
j,ℓ∈Z

|υ̂ jℓ|2, |υx|2 = ∑
j,ℓ∈Z

j2|υ̂ jℓ|2, |υy|2 = ∑
j,ℓ∈Z

ℓ2|υ̂ jℓ|2,

|υxx|2 = ∑
j,ℓ∈Z

j4|υ̂ jℓ|2, |υxy|2 = ∑
j,ℓ∈Z

j2ℓ2|υ̂ jℓ|2, |υyy|2 = ∑
j,ℓ∈Z

ℓ4|υ̂ jℓ|2,

and using the obvious estimate

j2
6

1

4ε
+ ε j4,

we derive the inequality

|υx|2 6
1

4ε
|υ |2 + ε|υxx|2, (2.6)

valid for every positive ε . Hence, from (2.5) we obtain

(Aυ ,υ) > (ν1 − ε)|υxx|2 + 2ν2|υxy|2 +
ν2

2

ν1
|υyy|2 + δ1

ν2

ν1
|υy|2 +

(
c− 1

4ε

)
|υ |2.

Choosing here, for instance,

ε :=
ν1

2
and c := 1+

1

2ν1

,

we easily see that A is positive definite,

(Aυ ,υ) > σ‖υ‖2
2 for all υ ∈ H4, (2.7)

with a positive constant σ .

Let ‖ · ‖ denote the norm of the space V := D(A1/2) = H2, defined by ‖υ‖ := |A1/2υ |. We identify

H with its dual, and denote by V ′ := H−2 the dual of V, again by (·, ·) the duality pairing between

1Note that, if s is a non–negative integer, then ‖ ·‖Hs is equivalent to the norm defined by

‖u‖s =
(

∑
|α|6s

∫ 2π

0

∫ 2π

0
|Dα u(x,y)|2 dxdy

)1/2

.
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V ′ and V, and by ‖ · ‖⋆ the dual norm on V ′, ‖υ‖⋆ := |A−1/2υ |. Obviously, ‖υ‖ = (Aυ ,υ)1/2 and

‖υ‖⋆ = (υ ,A−1υ)1/2.
Then, since A : V →V ′, from (2.7) we obtain

(Aυ ,υ) > σ‖υ‖2
2 for all υ ∈V = H2. (2.8)

Next, we will show that the operator B satisfies an appropriate local Lipschitz condition in the tube

Tu around the solution u defined in terms of the L∞−norm, i.e.,

Tu :=
{

υ ∈V : min
t

‖υ − u(t)‖L∞ 6 1
}
.

For convenience, we split B into two parts, B = B1 +B2, with

B1(υ) :=−υυx + cυ and B2(υ) :=−δ2ν
1/2

1

(
υxxx +

ν2

ν1

υxyy

)
.

Now, for υ , υ̃ ,w ∈V = H2, we have

(
B1(υ)−B1(υ̃),w

)
=

1

2
(υ2 − υ̃2,wx)+ c(υ − υ̃,w)

6
1

2
‖υ + υ̃‖L∞ |υ − υ̃| |wx|+ c |υ − υ̃| |w|

6

(1

4
‖υ + υ̃‖2

L∞ + c2
)1/2

|υ − υ̃|‖w‖1,

whence, since, according to (2.8), ‖w‖1 6 ‖w‖2 6
1√
σ
|A1/2w|= 1√

σ
‖w‖, we have

‖B1(υ)−B1(υ̃)‖⋆ 6 µ1|υ − υ̃| for all υ , υ̃ ∈ Tu, (2.9)

with

µ1 =
1√
σ

((
1+ max

06t6T
‖u(t)‖L∞

)2
+ c2

)1/2

.

Furthermore, it is easily seen that

(
B2(υ),w

)
6 |δ2|ν1/2

1 max
{

1,
ν2

ν1

}√
2|υx|‖w‖2,

whence, in view of (2.8),

(
B2(υ),w

)
6

√
2√
σ
|δ2|ν1/2

1 max
{

1,
ν2

ν1

}
|υx|‖w‖,

i.e.,

‖B2(υ)‖⋆ 6
√

2√
σ
|δ2|ν1/2

1 max
{

1,
ν2

ν1

}
|υx|;

using here (2.6) and the linearity of B2, we obtain

‖B2(υ)−B2(υ̃)‖⋆ 6

√
2√
σ
|δ2|ν1/2

1 max
{

1,
ν2

ν1

}(
ε‖υ − υ̃‖2 +

1

4ε
|υ − υ̃|

)
for all υ , υ̃ ∈V, (2.10)



LINEARLY IMPLICIT SCHEMES FOR MULTI-DIMENSIONAL KS-TYPE EQUATIONS 7 of 20

for any positive ε.
We infer from (2.9) and (2.10) that B satisfies the local Lipschitz condition used in Akrivis, Crouzeix

& Makridakis (1999) for any positive λ . Hence, all implicit–explicit multistep methods considered in

Akrivis, Crouzeix & Makridakis (1999), and, indeed, the wider class of methods considered in Akrivis

& Crouzeix (2004) are suitable for the discretization of the periodic initial value problem (2.3) for the

TK equation.

REMARK 2.2 It follows immediately from (2.9) that it is possible for the TK equation as well to have

a local Lipschitz condition with λ = 0. This can be done by considering B2 as a dispersive operator,

D := B2, and, consequently, letting B := B1; see Akrivis & Smyrlis (2011), Remark 4.2. The advantage

of this splitting is that we can get by with less stringent conditions on the starting approximations; see

Akrivis & Crouzeix (2004), Remark 7.2, and Akrivis & Smyrlis (2011), Remarks 2.2 and 3.2. More

precisely, the conditions (2.12) and (2.18) on the starting approximations, respectively, can be replaced

by the corresponding ones without the second term on their left-hand sides. The drawback of this

splitting, however, is that we have to confine ourselves to implicit–explicit multistep schemes of first–

or second–order; see Akrivis & Smyrlis (2011).

2.2 Time discretization

We discuss here the discretization in time of the TK equation by implicit–explicit (α,β ,γ)−schemes.

Let (α,β ) be a strongly A(0)−stable q−step scheme and (α,γ) an explicit q−step scheme, both of

order p, characterized by the polynomials α,β and γ ,

α(ζ ) =
q

∑
i=0

αiζ
i, β (ζ ) =

q

∑
i=0

βiζ
i, γ(ζ ) =

q−1

∑
i=0

γiζ
i.

We then combine the schemes (α,β ) and (α,γ), and construct an implicit–explicit (α,β ,γ)−scheme

for the discretization of the TK equation (2.1) written in the form (2.2). Let N ∈N, k := T/N be the

time step, tn := nk, n = 0, . . . ,N, and u the solution of (2.3). The linear part of the equation (2.2) is

discretized by the implicit scheme (α,β ) and the nonlinear part by the explicit scheme (α,γ), i.e., we

define approximations Un to the nodal values un := u(·, tn) by the (α,β ,γ)−scheme

q

∑
i=0

(αiI + kβiA)U
n+i = k

q−1

∑
i=0

γiB(U
n+i), (2.11)

for n = 0, . . . ,N − q, for given starting approximations U0, . . . ,Uq−1.

In particular, we are interested in the implicit–explicit BDF schemes: For q∈{1,2,3,4,5,6}, let the

polynomials α,β and γ be given by

α(ζ ) :=
q

∑
j=1

1

j
ζ q− j(ζ − 1) j, β (ζ ) := ζ q and γ(ζ ) := ζ q − (ζ − 1)q.

The corresponding (α,β )−scheme is the q−step BDF scheme; its order is p = q. These schemes are

strongly A(0)−stable. For a given α, the scheme (α,γ) is the unique explicit q−step scheme of order

p = q; the order of all other explicit q−step schemes (α, γ̃) is at most q− 1. In this particular case, the

general scheme (2.11) reduces to

q

∑
i=0

αiU
n+i + kAUn+q = k

q−1

∑
i=0

γiB(U
n+i), n = 0, . . . ,N − q.
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According to Akrivis & Crouzeix (2004), Theorem 4.1, we have the following error estimate:

PROPOSITION 2.1 (Error estimate) Let the solution u of (2.3) be sufficiently smooth. Assume we are

given starting approximations U0,U1, . . . ,Uq−1 ∈V ∩Tu to u0, . . . ,uq−1 such that

max
06 j6q−1

(
‖u(·, t j)−U j‖L2 + k1/2‖u(·, t j)−U j‖H2

)
6Ckp. (2.12)

Let Un ∈V,n = q, . . . ,N, be recursively defined by (2.11). Then, there exists a constant C, independent

of k, such that, for k sufficiently small, i.e., for N sufficiently large,

max
06n6N

‖u(·, tn)−Un‖L2 6Ckp. ✷

2.3 Discretization in space and fully discrete schemes

Let M∈N and SM := span{ϕ jℓ : −M+ 1 6 j, ℓ6 M}, with ϕ jℓ(x,y) := ei( jx+ℓy).
Let PM : V ′ → SM denote the orthogonal L2−projection operator onto SM, i.e., (υ −PMυ ,χ) = 0, for

all χ ∈ SM. Obviously, PMυ corresponds to the partial sum

PMυ =
M

∑
j,ℓ=−M+1

υ̂ j,ℓ ϕ j,ℓ

of the Fourier series (2.4) of υ . Since differentiation commutes with PM, we have PMA = APM. Further-

more, we define the discrete nonlinear operator BM : H2 → SM by BM := PMB.
In the semidiscrete problem corresponding to the periodic initial value problem (2.3) we seek a

function uM, such that uM(·, t) ∈ SM, satisfying

{
∂tuM(·, t)+AuM(·, t) = BM

(
uM(·, t)

)
, 0 < t < T,

uM(·,0) = u0
M,

(2.13)

with u0
M ∈SM a given approximation to u0.

To construct implementable, fully discrete schemes, we discretize the initial value problem (2.13)

for a system of o.d.e’s in time by the implicit–explicit (α,β ,γ)−scheme, i.e., we recursively define a

sequence of approximations U ℓ∈SM to u(·, tℓ) by

q

∑
i=0

(αiI + kβiA)U
n+i = k

q−1

∑
i=0

γiBM(Un+i), (2.14)

n = 0, . . . ,N − q, for given starting approximations U0, . . . ,Uq−1∈SM .

2.4 Error estimates

The projection PM : V ′ → SM has the following approximation property: For m∈N, there exists a con-

stant c, independent of υ and M, such that, for υ ∈ Hm and ℓ= 0, . . . , m,

‖υ −PMυ‖Hℓ 6 cMℓ−m‖υ‖Hm ; (2.15)

see, e.g., Canuto et al. (1988), (9.7.4).
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Let W (·, t)∈SM denote the L2−projection of u(·, t) in SM,

W (·, t) = PMu(·, t), t∈ [0,T ].

Let EM(t)∈SM denote the consistency error of the semidiscrete equation (2.13) for W ,

EM(t) :=Wt(·, t)+AW(·, t)−BM

(
W (·, t)

)
, t ∈ [0,T ]. (2.16)

Now, using the linearity of B2 and the fact that PM commutes with differentiation, we obtain

EM(t) = PM

[
ut(·, t)+Au(·, t)−B2

(
u(·, t)

)
−B1

(
W (·, t)

)]
,

and thus, in view of (2.2),

EM(t) = PM

[
B1

(
u(·, t)

)
−B1

(
W (·, t)

)]
.

Now, as a consequence of (2.15), W (·, t) ∈ Tu, for t ∈ [0,T ], and thus in view of (2.9) and (2.15), for

u(·, t) ∈ Hm, t ∈ [0,T ], we easily obtain the following optimal order estimate for the consistency error

EM,
max

06t6T
‖EM(t)‖H−2 6C(u)M−m . (2.17)

We can now derive an optimal order error estimate:

THEOREM 2.2 (Error estimate) Assume that U0,U1, . . . ,Uq−1 ∈ SM are starting approximations to

u(·, t0), . . . ,u(·, tq−1) such that

max
06 j6q−1

(
‖u(·, t j)−U j‖L2 + k1/2‖u(·, t j)−U j‖H2

)
6 c(kp +M−m). (2.18)

Let Un∈SM,n = q, . . . ,N, be recursively defined by (2.14). Then, if the solution u of (2.3) is sufficiently

smooth, there exists a constant C, independent of k and M, such that, for k sufficiently small and M4mk

sufficiently large,

max
06n6N

‖u(·, tn)−Un‖L2 6 C(kp +M−m). (2.19)

Proof. First of all, in view of the approximation property (2.15), we have

max
06n6N

‖u(·, tn)−W(·, tn)‖L2 6 cM−m (2.20)

and, also, for M sufficiently large,

max
06n6N

‖u(·, tn)−W(·, tn)‖L∞ 6
1

4
. (2.21)

We next let starting values W̃ j :=W (·, t j), j = 0, . . . ,q−1, and define W̃ n∈SM,n= q, . . . ,N, by applying

the implicit–explicit time stepping scheme (α,β ,γ) to equation (2.16), i.e., by

q

∑
i=0

(αiI+ kβiA)W̃
n+i = k

q−1

∑
i=0

γi

[
BM(W̃ n+i)+EM(tn+i)

]
. (2.22)

Then, according to Akrivis & Crouzeix (2004), Theorem 4.1, see in particular the stability estimate (4.6)

there, under the assumption

max
06t6T

‖∂ j
t u(·, t)‖H2 6C, j = 1, . . . , p+ 1,
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for a constant C, we have

‖W (·, tn)−W̃n‖2
L2 + k

n

∑
ℓ=0

‖W(·, tn)−W̃n‖2
H2 6Ck2p,

n = q, . . . ,N. Therefore, in particular, we infer that

max
06n6N

‖W(·, tn)−W̃n‖L2 6Ckp (2.23)

and, for k sufficiently small,

max
06n6N

‖W (·, tn)−W̃n‖L∞ 6
1

4
. (2.24)

In view of (2.20) and (2.23), it remains to estimate ϑ n := W̃ n −Un. Subtracting (2.14) from (2.22), we

obtain
q

∑
i=0

(αiI+ kβiA)ϑ
n+i = k

q−1

∑
i=0

γi

[
BM(W̃ n+i)−BM(Un+i)

]
+ k

q−1

∑
i=0

γiEM(tn+i).

Now, using the stability estimate Akrivis & Crouzeix (2004), (5.16), we obtain

‖ϑ n‖2
L2 + k

n

∑
ℓ=0

‖ϑ ℓ‖2
H2 6Cecµ2tn

{ q−1

∑
j=0

(
‖ϑ j‖2

L2 + k‖ϑ j‖2
H2

)
+ k

n−q

∑
ℓ=0

‖EM(tℓ)‖2
H−2

}
, (2.25)

provided that U0, . . . ,Un−1 ∈ Tu, with an appropriate constant µ ; see (2.9) and (2.10). According to

(2.18) and (2.17), there exists a constant C⋆ such that

Cecµ2T
{ q−1

∑
j=0

(
‖ϑ j‖2

L2 + k‖ϑ j‖2
H2

)
+ k

N−q

∑
ℓ=0

‖EM(tℓ)‖2
H−2

}
6C2

⋆(k
p +M−m)2. (2.26)

We will use induction to prove (2.25).

We start with a preparatory statement. Assume, for the time being, that

‖ϑ j‖2
L2 + k‖ϑ j‖2

H2 6C2
⋆(k

p +M−m)2. (2.27)

Then, using the well–known interpolation inequality

‖ϑ j‖2
L∞ 6 K‖ϑ j‖L2 ‖ϑ j‖H2 ,

see, e.g., (Adams & Fournier, 2003, p. 140, relation (12)), we obtain

‖ϑ j‖2
L∞ 6C(1+ k−1/2)(kp +M−m)2;

therefore, for k sufficiently small and M4mk sufficiently large, we have

‖ϑ j‖L∞ 6
1

2
. (2.28)

From (2.21), (2.24) and (2.28) we obtain

‖u(·, t j)−U j‖L∞ 6 1,
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and infer that U j ∈ Tu.
According to (2.18) the estimate (2.27) is valid for j = 0, . . . ,q− 1, and hence U0, . . . ,Uq−1 ∈ Tu.

Consequently, the estimate (2.25) is valid for n = 0, . . . ,q. Assuming that it holds for 0, . . . ,n− 1 with

q < n 6 N, and using (2.26), we see that (2.27) is valid for j = 0, . . . ,n− 1, and infer, as before, that

U0, . . . ,Un−1 ∈ Tu. Thus, (2.25) holds for n as well and the induction proof is complete.

From (2.25) and (2.26), we easily conclude, for k sufficiently small and M4mk sufficiently large,

max
06n6N

‖W̃ n −Un‖L2 6C
(
kp +M−m

)
. (2.29)

From (2.20), (2.23) and (2.29) the desired estimate (2.19) follows and the proof is complete.

REMARK 2.3 Here, we briefly discuss two issues, the computation of starting approximations satisfying

(2.18) as well as the extension of our results to more general time-stepping schemes. The computation

of appropriate starting approximations in the general case of abstract parabolic equations when the

discretization in space is based on the finite element method, is discussed in detail in section 6 of Akrivis

& Crouzeix (2004); the ideas presented there can be adapted to the present case of the TK equation with

space discretization based on the spectral method, and lead to starting approximationsU0, . . . ,Uq−1∈SM

satisfying (2.18).

To summarize, in this section we established error estimates for fully discrete schemes for the pe-

riodic initial value problem (2.3) for the TK equation. These schemes result by combining implicit–

explicit multistep schemes for the time discretization with spectral methods for the discretization in

space - see Theorem 2.2. Analogous results for fully discrete methods for (2.3), that use time-stepping

under the wider class of linearly implicit schemes considered in Akrivis & Crouzeix (2004), can also be

easily derived. This is not pursued in any more detail due to space constraints.

3. Numerical experiments

3.1 Implementation

We use the implicit-explicit BDF schemes (2.14) of order q = 1, . . . ,6, to compute solutions of equation

(2.2) analysed in Section 2; a list of these six schemes may be found in the appendix of Akrivis, Papa-

georgiou & Smyrlis (2011). Alternative schemes are available - for a comparative review as well as a

new scheme for stiff PDEs the reader is referred to Kassam & Trefethen (2005).

We consider doubly periodic initial conditions, hence the solution takes the form

u(x,y, t) = ∑
j,ℓ∈Z

û jℓ(t)ei( jx+ℓy), (3.1)

with û jℓ(t) to be computed. Note that the mean

ū =
1

(2π)2

∫ 2π

0

∫ 2π

0
u(x,y, t)dxdy,

of solutions to (2.2) is constant, and hence without loss of generality we take ū = 0. (Note that if ū 6= 0,

then u(x− ūt,y, t)− ū is also a solution and has zero mean.) Hence û00(t) in (3.1) is zero.

Substitution of (3.1) into (2.2) provides the following infinite-dimensional dynamical system for the

Fourier coefficients û jℓ :
dû jℓ

dt
+α jℓ û jℓ = β jℓû jℓ− (̂uux) jℓ, (3.2)
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where

α jℓ = ν1 j4 + 2ν2 j2ℓ2 +
ν2

2

ν1

ℓ4 − j2 + δ1
ν2

ν1

ℓ2 + c,

β jℓ = iδ2ν
1/2
1

(
− j3 + jℓ2 ν2

ν1

)
+ c.

In the computations that follow ν1 = ν2 (this corresponding to square boxes in the unscaled domain),

we truncate system (3.2) to a finite number of modes N in each spatial dimension. For efficiency, the

nonlinear term on the right hand side of (3.2) is calculated using Fast Fourier Transforms and care

was taken to remove any aliasing errors - we employed the classical two-thirds rule extended to two-

dimensional arrays, Boyd (2001). Preliminary numerical experiments showed an exponential decay of

the Fourier coefficients for | j|+ |ℓ| sufficiently large - see Section 3.2 below for details; this in turn

guided us in the efficient choice of N, namely N ∼ ν
−1/2
1 = ν

−1/2
2 . We note that even in the presence of

dispersion, δ2 6= 0, all our schemes (q = 1, . . . ,6) are stable since the dispersive terms are of lower order

than the fourth order self-adjoint operator A.

Before proceeding to numerical experiments we consider the linear properties of the equation. Lin-

earization of (3.2) and looking for solutions of the form û jl ∼ eλ t yields the eigenvalues (selecting

ν1 = ν2 = ν and δ1 = δ2 = 0)

λ = j2 −ν
(

j4 + 2 j2ℓ2 + ℓ4
)
. (3.3)

Even though λ is defined for integer values j, ℓ, it is useful to consider its values as j, ℓ take on any

positive value in order to obtain instability regions, and it is understood that only integer pairs ( j, ℓ)
within such regions are admissible unstable modes. Inspection of (3.3) shows that when ℓ= 0 there is a

band of unstable modes 0 < j < 1/
√

ν and this is the familiar result for the 1-D Kuramoto–Sivashinsky

equation. Depending on the value of ν , unstable modes exist in the y−direction also and we illustrate

this in Figure 1 that plots the neutral curves λ = 0 for ν = 0.1, 0.05 and 0.01 (with solid, long-dashed

and dashed curves, respectively).

The flow is unstable below the curves and stable above them, consistent with the underlying long

wave instability. Using elementary methods we can find the maximum point of the neutral curves to be(
1

2
√

ν
, 1

2
√

ν

)
. This establishes that there are order ν−1/2 unstable modes in either direction and in fact an

upper bound of the total number of unstable modes is given by the area A under the neutral curves, i.e.,

the area of {
(x,y) ∈ R2 : x,y > 0 and x4 + 2x2y2 + y4 − x2/ν 6 0

}
.

In fact this area can be found using elementary methods and the result is A = π
8
√

ν
. We can conclude,

therefore, that as ν decreases we expect to find complex dynamics in both directions, and in the remain-

der of this study we consider these cases.

3.2 Decay of Fourier coefficients and analyticity estimates

Extensive computations were carried out as ν1 > 0 and ν2 > 0 decrease, in order to establish numer-

ically the exponential decay of the Fourier coefficients and hence surmise analyticity of solutions. In the

computations that follow we take δ1 = δ2 = 0 and ν1 = ν2 = ν . Note that allowing ν1, ν2 to decrease

at the same rate, provides the same number of unstable modes in each direction, and hence enables

the development of equally complex dynamics in x and y. At small values of ν the solution typically
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exhibits complex chaotic dynamics, and we monitor the size of the nth order Fourier coefficients (after

sufficiently large times so that the solution enters an attractor) defined by

Mn = max
| j|+|ℓ|=n

|û jℓ|.



14 of 20 G. AKRIVIS, A. KALOGIROU, D. T. PAPAGEORGIOU & Y.-S. SMYRLIS

The decay of Mn with n is shown in log-linear coordinates in Figure 2 for 0.016 ν 6 0.1, and the results

indicate that the decay is exponential; for sufficiently large n we observe

Mn = O(e−βν n),

with βν increasing as ν decreases. The dependence of the decay rate βν on ν is analysed in Table 1 using

least squares fits of the data of Figure 2. The table shows the estimates of βν and βν ν−1/2 as ν varies,

and there is strong evidence to support the scaling β ≈ 3ν1/2. This in turn implies that the solution is

analytic in a band of width of order ν1/2 as ν → 0; interestingly this computational estimate is identical

to that found (also numerically) in the 1-D Kuramoto–Sivashinsky equation - Akrivis, Papageorgiou

& Smyrlis (2011, 2012); Collet et al. (1993). Note that the available analytic estimates for βν in the

1-D case (Collet et al. (1993); Akrivis, Papageorgiou & Smyrlis (2013)), underestimate the apparently

optimal ν1/2 value determined numerically. The present results of the 2-D KS equation provide an

optimal bound for βν which is guiding analytical studies under way in our group.

ν 0.1 0.08 0.05 0.04 0.03 0.02 0.01

βν 0.986 0.888 0.729 0.617 0.553 0.433 0.314

βν ν
−1/2

3.118 3.140 3.260 3.085 3.192 3.062 3.140

Table 1. Decay rates and band of analyticity.

3.3 Accuracy tests for the six BDF schemes.

In what follows we verify the accuracy of the schemes (2.14) for q = 1, . . . ,6 and in the absence of

dispersion (δ2 = 0). To achieve this we solve the inhomogeneous equation

ut + uux+ uxx +ν1uxxxx + 2ν2uxxyy +
ν2

2

ν1

uyyyy = g(x,y, t), (3.4)

where the function g(x,y, t) is selected so that

u(x,y, t) = cos(x+ y)+ cos(t)cos(2x− y)

solves (3.4) exactly. In all computations presented we used ν1 = ν2 = ν = 0.8 and calculated the

L2−norm of the error (E = ‖Un − un‖L2
) between the exact and numerical solutions at time T = 1 -

the quadrature is performed with spectral accuracy in order to isolate time-stepping errors. In addition,

to maintain accuracy any required starting values were found using the exact solution. The largest

time step used is k = 1/10 and this is halved five times to provide the smallest time step k = 1/320.

The results are summarized in Table 2 and the theoretical accuracy of the schemes is seen to be fully

supported by the computations - the error decreases by a factor 2q every time the time step is halved. We

note that for q = 6 the error reaches machine accuracy (double precision computations were used) when

k = 1/160 and hence the geometric decrease is halted and the error remains at machine precision levels.

The dependence of the error on the time step k for each scheme q = 1, . . . ,6, was also considered and

plotted on logarithmic scales; the slopes of the lines increase from 1 for the first order schemes q = 1,

to 6 for the sixth order schemes q = 6 (results not shown for brevity).
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A second test was undertaken for the unforced equation (3.4) (g = 0) with ν1 = ν2 = ν = 0.5.

In particular we choose to numerically evaluate the theoretical accuracy characteristics of our BDF

schemes on a quantitative feature of the solution such as the L2-norm. The large time solution at this

value of ν is a non-uniform steady state with constant energy. The convergence of the six BDF schemes

to this solution as the time-step k decreases, is shown in Table 3. Results are obtained by integrating the

equation from random initial conditions (these are fixed for the different runs) up to a final time T = 50

- this is chosen empirically to ensure that the solution has entered the attractor. It can be seen that for the

schemes of order q= 3, 4, 5, 6 (note that these schemes are not unconditionally stable), as soon as a time

step is small enough for the scheme to be stable (e.g., for q = 5 this value is k ≈ 0.0128), convergence is

achieved within machine accuracy. As expected, scheme q = 1 does not perform as well as higher order

schemes - indeed convergence is not seen for the smallest time-step k = 5×10−5, whereas convergence

is achieved for the q = 2 scheme for time-steps smaller than k ≈ 0.0001. The reason for this follows

from the respective errors of these schemes being of order k and k2, respectively.

k q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

1/10 3.51·10−1 3.48·10−2 3.24·10−3 3.63·10−4 2.71·10−5 3.13·10−6

1/20 1.88·10−1 7.80·10−3 4.60·10−4 2.05·10−5 1.10·10−6 4.87·10−8

1/40 9.73·10−2 1.83·10−3 6.05·10−5 1.17·10−6 3.72·10−8 7.63·10−10

1/80 4.94·10−2 4.43·10−4 7.74·10−6 6.97·10−8 1.20·10−9 1.10·10−11

1/160 2.49·10−2 1.09·10−4 9.78·10−7 4.24·10−9 3.82·10−11 2.70·10−13

1/320 1.25·10−2 2.69·10−5 1.23·10−7 2.61·10−10 1.19·10−12 9.60·10−13

Table 2. Error ‖U(·,nk)−u(·,nk)‖L2 for ν = 0.8 at T = 1.

k q = 1 q = 2 q = 3 q = 4 q = 5 q = 6

0.0512 13.603226 13.602399 13.602466 13.602466 — —

0.0256 13.602807 13.602449 13.602466 13.602466 — —

0.0128 13.602626 13.602462 13.602466 13.602466 13.602466 —

0.0064 13.602544 13.602465 13.602466 13.602466 13.602466 —

0.0032 13.602504 13.602466 13.602466 13.602466 13.602466 13.602466

0.0016 13.602485 13.602466 13.602466 13.602466 13.602466 13.602466

0.0008 13.602475 13.602466 13.602466 13.602466 13.602466 13.602466

0.0004 13.602471 13.602466 13.602466 13.602466 13.602466 13.602466

0.0002 13.602468 13.602466 13.602466 13.602466 13.602466 13.602466

0.0001 13.602467 13.602466 13.602466 13.602466 13.602466 13.602466

0.00005 13.602467 13.602466 13.602466 13.602466 13.602466 13.602466

Table 3. Energy for ν = 0.5 at T = 50 (random initial conditions with coefficients fixed in all runs).

3.4 Computational estimate of the size of the absorbing ball

In sections 3.2-3.3 we presented numerical tests which illustrate the analyticity of solutions and the

accuracy and convergence of our numerical schemes. In what follows we carry out extensive numerical
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experiments to obtain quantitative aspects of solutions and their absorbing set.

The first set of results is aimed at identifying numerically L2−bounds of the size of the absorbing

ball, and evaluating theoretical bounds such as those of Pinto (1999, 2001) - see (1.5). Rigorous bounds

typically overestimate the radius of the absorbing ball. It is customary to present such results as the

size of the domain L1 ×L2 increases; we will consider L1 = L2 = 2L and allow L to increase - this is

equivalent to ν1 = ν2 = ν decreasing in (2.1). Thus, we present numerical solutions of

{
Ut +UUx+Uxx +∆ 2U = 0,

U(x+ 2L,y, t) =U(x,y, t), U(x,y+ 2L, t) =U(x,y, t),
(3.5)

subject to initial conditions U(x,y,0) = U0(x,y). Equation (3.5) is the unscaled version of (2.1) with

δ1 = δ2 = 0. As L increases, the number of unstable linear modes scales with L2. This follows from

the area of the unstable regions in Figure 1 which was shown to be of order 1/ν; the result follows by

noting that ν = (π/L)2.

To obtain a computational estimate of the size of the absorbing ball in L2 as the domain size L

increases, the initial condition U0(x,y) is taken to consist of a large range of linearly unstable Fourier

modes with random amplitudes. Typically the attractor becomes chaotic for L sufficiently large and we

calculate the time average of the energy (L2-norm) of the solution as follows:

E(L) :=
1

T2 −T1

∫ T2

T1

E(L, t)dt, where E(L, t) =

∫ 2L

0

∫ 2L

0
U2(x,y, t)dxdy. (3.6)

The times T1,T2 are chosen so as the former is sufficiently large for the solution to be inside the attractor,

and the latter sufficiently large to obtain convergence to a time-average value. The results of E(L) versus

L are plotted using logarithmic scales in Figure 3. The slope of E(L) provides an estimate for the energy

norm of the solution as a function of L. Our results show conclusively that this relationship is of the

form

E(L) = cL2, L ≫ 1. (3.7)

This estimate has been obtained using a least squares fit of the data presented in Figure 3 to obtain a

value of 1.9533. To visualize the fit, we also superimpose a line of slope 2 (i.e., a function proportional

to L2).

Note that if higher Sobolev norms, e.g., Hs,s = 1,2,3, are used in (3.6) instead of the L2−norm, the

same large L behaviour shown in (3.7) is found, and in particular the slope 2 shown in Figure 3 persists.

These numerical results provide a strong indication that the two-dimensional KS equation studied here

exhibits extensive dynamics analogous to the one-dimensional case (for the latter see Giacomelli & Otto

(2005); Wittenberg (1999), for example).

3.5 Chaotic dynamics and the effect of dispersion

In the previous Sections we carried out numerical convergence and accuracy studies of our schemes,

and also established numerically a lower bound of the band of analyticity of solutions as the viscosity

parameter ν (equivalently ν1 and ν2) decreases (see Section 3.2). The latter result furnishes us with

a rule-of-thumb estimate for the number of modes retained in a computation as ν decreases - more

precisely this provides an estimate for the number of modes used in the two-thirds de-aliasing scheme.

In what follows we utilize our own routines and algorithms to probe the nonlinear dynamics of the

system at small values of ν , along with the effect of the dispersion parameter δ .
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FIG. 3. Log-log plot of the time average of L2−norms against L. The slope is estimated to be equal to 2.

A general finding of our computations is that the dynamics become increasingly complex and in

fact fully 2D and chaotic. In addition, a sufficient amount of dispersion is found to regularize chaotic

dynamics into either nonlinear stable steady-state travelling wave pulses (travelling in the x−direction),

or time-periodic ones (i.e., the dimension of the attractor is drastically reduced). Note that such regu-

larizing dispersive effects have also been found in the one-dimensional case (see Akrivis, Papageorgiou

& Smyrlis (2012), for example), and the associated reduction in dimension of the attractor as dispersion

increases has not been explained analytically.

Figure 4 presents typical results for ν = 0.05 in the absence of dispersion δ2 = 0, along with the

dynamics for the same value of ν but with δ2 = 5. Figure 4(a) shows the evolution of the energy norm

over a time interval 0 6 t 6 500 and in 4(b) we present the corresponding solution at the final time

t = 500. These results strongly suggest the presence of spatiotemporal chaos; numerical confirmation

has been obtained by constructing return maps of the energy extrema, as described in detail for the 1D

KS equation in Akrivis, Papageorgiou & Smyrlis (2011). Figures 4(c) and 4(d) depict analogous results

corresponding to ν = 0.05 but δ2 = 5. We observe that the dynamics initially enter a chaotic attractor

for a time interval of approximately 400 time units, but beyond this time the effects of dispersion are felt

and transform the solution into a nonlinear travelling wave composed of two pulses in the x−direction

and three pulses in the y−direction. We emphasise that the computed solution is stable at these values

of δ2, but eventually looses stability at higher δ2. In a related study, Saprykin et al. (2005) construct

travelling wave solutions by assuming solutions of permanent form, i.e., u(x,y, t) = u(x− ct,y), but
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FIG. 4. L2−norm and profile u(x,y) at t = 500 for ν = 0.05. Panels (a) and (b): chaotic solution for δ2 = 0. Panels (c) and (d):

travelling wave solution for δ2 = 5. (Panels (b) and (d): red high wave amplitudes, blue low wave amplitudes.)

do not provide information about their stability. Our computations (based on initial value problems)

suggest that most of these travelling wave solutions are unstable in the sense that they do not emerge

as large time solutions to the initial value problem. This facet of the two-dimensional problem is quite

distinct from the behaviour in the one-dimensional case, where even moderate amounts of dispersion

produce travelling wave pulses; see Akrivis, Papageorgiou & Smyrlis (2012).

4. Conclusions

In this study we introduced, analysed and implemented a class of space-time schemes to solve two-

dimensional PDEs arising in viscous falling film flows. The equations (known as the Topper–Kawahara

equations) contain nonlinear advection in the stream wise x-direction, negative diffusion terms due to

inertial effects (we only consider situations above critical, F2 > 5/2, where F is the Froude number),

two-dimensional dispersive effects and two-dimensional dissipation due to the presence of surface ten-

sion.



LINEARLY IMPLICIT SCHEMES FOR MULTI-DIMENSIONAL KS-TYPE EQUATIONS 19 of 20

Global existence of solutions, the existence of a global attractor, and analyticity has been proven by

Pinto (1999, 2001), who also provides a bound for the radius of the absorbing ball in the L2−norm. Such

analytical bounds are far from optimal, and we have carried out accurate computations to numerically

determine the absorbing ball radius as the system size L increases and the dynamics enter a strongly

chaotic regime. Our results show that the radius of the global attractor has size L (see (1.6) and (3.7)),

i.e., scales with the linear scale of the physical computational domain. Our computations also show that

the solutions remain analytic in a band of width 1/L as L increases, and again this provides an optimal

bound that can guide analytical studies.

The overall features of the dynamics have been obtained and it is established that two-dimensional

spatio-temporal chaos persists as the system size L increases. It has also been illustrated that when dis-

persion is present in the deeply chaotic regime, it acts to regularize the dynamics in the sense that it has

a propensity to reduce the dimension of the global attractor and to produce two-dimensional structures

such as time-periodic travelling waves or nonlinear travelling waves of permanent form consisting of

arrays of pulses - see Figure 4(d) for an illustrative example.
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