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Abstract. We determine new, more favourable, and in a sense optimal, multipli-
ers for the three- and five-step backward difference formula (BDF) methods. We
apply the new multipliers to establish stability of these methods as well as of their
implicit–explicit counterparts for parabolic equations by energy techniques, under
milder conditions than the ones recently imposed in [4, 1].

1. Introduction

The aims of this paper are twofold: the determination of multipliers for the three- and
five-step BDF methods that are more favourable than the Nevanlinna–Odeh multipliers,
and their use in the derivation of stability estimates for parabolic equations under
relaxed stability conditions.

We first recall the multiplier concept of Nevanlinna and Odeh as well as their multi-
pliers for BDF methods of order up to five. We determine new, more favourable, and
in a sense optimal, multipliers for the three- and five-step BDF methods, and show
that the Nevanlinna–Odeh multiplier for the four-step BDF method is optimal.

Then, we consider initial value problems for two abstract parabolic equations, one
linear and one possibly nonlinear, and discuss their discretization in time by BDF
methods and by implicit–explicit BDF methods, respectively. We give necessary con-
ditions for the stability of these methods as well as known and new sufficient stability
conditions; stability is established by the energy technique, and the advantage of the
new multipliers is that they lead to relaxed sufficient stability conditions.

1.1. Multipliers for BDF methods. We consider the q−step BDF method (α, β),
described by the polynomials α and β,

(1.1) α(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j =

q∑
j=0

αjζ
j, β(ζ) = ζq.

The BDF methods are A−stable for q = 1 and q = 2, i.e., A(ϑq)−stable with ϑ1 =
ϑ2 = 90◦, and A(ϑq)−stable for q = 3, . . . , 6 with ϑ3 = 86.03◦, ϑ4 = 73.35◦, ϑ5 = 51.84◦

and ϑ6 = 17.84◦; see [10, Section V.2]. Their order is q.
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A set of real numbers (µ1, . . . , µq) is called multiplier for the q−step BDF method,
if, with µ̃(ζ) := 1− µ1ζ

−1 − · · · − µqζ−q, there holds

Re
α(ζ)

µ̃(ζ)β(ζ)
> 0 ∀ζ ∈ C, |ζ| > 1,

i.e., if

(1.2) Re
α(ζ)

µ(ζ)
> 0 ∀ζ ∈ C, |ζ| > 1,

with µ(ζ) := µ̃(ζ)β(ζ) = ζq − µ1ζ
q−1 − · · · − µq, and, in addition, the polynomials

α and µ have no common divisor; consequently, the q−step scheme described by the
parameters αq, . . . , α0, 1,−µ1, . . . ,−µq is A−stable. The motivation for this definition
is the equivalence between the A−stability of this scheme and the G−stability of the
corresponding one-leg method.

The concept of multipliers for multistep methods was introduced by Nevanlinna and
Odeh; see [12]. In [12] the multipliers (ηq, 0, . . . , 0) for the q−step BDF methods, with

(1.3) η1 = η2 = 0, η3 = 0.0836, η4 = 0.2878, η5 = 0.8160,

were also determined; these multipliers are optimal among the multipliers with vanish-
ing µ2, . . . , µq, in the sense that ηq cannot be replaced by a smaller number.

In this paper, we show that

(1.4) µ1 =
2

169
, µ2 =

11

169
, µ3 = 0,

(1.5) µ1 = η4, µ2 = µ3 = µ4 = 0,

and

(1.6) µ1 = 0.7321818449, µ4 = 0.07755190105, µ2 = µ3 = µ5 = 0,

are also multipliers for the three-, four- and five-step BDF methods, respectively, which
are optimal among the multipliers (µ1, . . . , µq), in the sense that they are the only
multipliers for which the sum η̂q := |µ1|+ · · ·+ |µq| of the absolute values of µ1, . . . , µq
attains its minimal value. While η̂4 = η4, the new multipliers for the three- and
five-step BDF methods are more favourable than the corresponding Nevanlinna–Odeh
multipliers, since

η̂3 =
1

13
= 0.076923076 < η3 = 0.0836 and η̂5 = 0.8097337459 < η5 = 0.8160.

The improvement for the five-step BDF method is only minor, while for the three-step
BDF method it is rather considerable.

A straightforward application of Dahlquist’s G-stability theory ensures then exis-
tence of a positive definite symmetric matrix G = (gij)i,j=1,...,q and reals δ0, . . . , δq such
that for v0, . . . , vq in an inner product space, with inner product (·, ·) and corresponding
norm | · |, there holds

(1.7) Re

( q∑
i=0

αiv
i, vq−

q∑
j=1

µjv
q−j
)

=

q∑
i,j=1

gij(v
i, vj)−

q∑
i,j=1

gij(v
i−1, vj−1)+

∣∣∣∣ q∑
i=0

δiv
i

∣∣∣∣2.
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Indeed, following the Baiocchi–Crouzeix approach [7], see also [10, Section V.6], we
explicitly determine the matrix G and the constants δ0, . . . , δ3 for the three-step BDF
method; see Lemma 2.3.

Identity (1.7) plays a key role in our stability analysis of the q−step BDF and the
implicit–explicit q−step BDF methods, q = 3, 5, for parabolic equations; it leads to
slightly relaxed stability conditions compared to the ones recently imposed in [4, 1].

The Nevanlinna–Odeh multipliers were for the first time used in the analysis of BDF
methods for parabolic equations in [11].

1.2. Abstract parabolic equations and time-stepping methods. Let T > 0, u0 ∈
H, and consider two abstract initial value problems, one for a linear parabolic equation,

(1.8)

{
u′(t) + A(t)u(t) = 0, 0 < t < T,

u(0) = u0,

and one for a possibly nonlinear parabolic equation,

(1.9)

{
u′(t) + A(t)u(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

in a usual triplet of separable complex Hilbert spaces V ⊂ H = H ′ ⊂ V ′, with V
densely and continuously embedded in H. Here A(t) : V → V ′ are linear operators,
while the operators B(t, ·) : V → V ′ may be nonlinear. We denote by (·, ·) both the
inner product in H and the antiduality pairing between V ′ and V, and by | · | and ‖ · ‖
the norms in H and V, respectively. The space V ′ may be considered the completion
of H with respect to the dual norm ‖ · ‖?,

∀v ∈ V ′ ‖v‖? := sup
w∈V \{0}

|(v, w)|
‖w‖

= sup
w∈V
‖w‖=1

|(v, w)|.

Besides the q−step BDF method (α, β) we consider also the explicit q−step method
(α, γ) described by the polynomials α and γ with

(1.10) γ(ζ) = ζq − (ζ − 1)q =

q−1∑
i=0

γiζ
i.

The scheme (α, γ) is the unique explicit q−step method of order q; the order of all
other explicit q−step schemes (α, γ̃) is at most q − 1.

Let N ∈ N, N ≥ q, and consider a uniform partition tn := nk, n = 0, . . . , N, of the
interval [0, T ], with time step k := T/N. Assuming we are given starting approximations
U0, . . . , U q−1 ∈ V, we discretize (1.8) in time by the q−step BDF method, i.e., we
define approximations Um ∈ V to the nodal values um := u(tm) of the exact solution
as follows:

(1.11)

q∑
i=0

αiU
n+i + kA(tn+q)Un+q = 0,
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n = 0, . . . , N − q. With the same notation, we discretize (1.9) in time by the implicit–
explicit q−step BDF method,

(1.12)

q∑
i=0

αiU
n+i + kA(tn+q)Un+q = k

q−1∑
i=0

γiB(tn+i, Un+i),

n = 0, . . . , N − q. The unknown Un+q appears only on the left-hand side of (1.12);
therefore, to advance in time, we only need to solve one linear equation, which reduces
to a linear system if we discretize also in space, at each time level.

Implicit–explicit multistep methods, for linear parabolic equations, were introduced
and analyzed in [8]; such methods for nonlinear parabolic equations are studied, e.g.,
in [2] and [1].

Natural conditions for the parabolicity of the abstract equation in (1.8) are coercivity
and boundedness of the operators A(t) : V → V ′, i.e.,

(1.13) Re(A(t)v, v) ≥ κ(t)‖v‖2 ∀v ∈ V
and

(1.14) ‖A(t)v‖? ≤ ν(t)‖v‖ ∀v ∈ V,
respectively, with two smooth positive functions κ, ν : [0, T ]→ R.

In the stability analysis of the implicit–explicit scheme (1.12) we assume, in addition,
that B(t, ·) satisfies the following local Lipschitz condition in a ball Bu(t) := {v ∈ V :
‖v−u(t)‖ ≤ 1}, centered at the value u(t) of the solution u at time t, and, for simplicity,
defined here in terms of the norm of V,

(1.15) ‖B(t, v)−B(t, ṽ)‖? ≤ λ̃(t)‖v − ṽ‖+ µ̃|v − ṽ| ∀v, ṽ ∈ Bu(t),

for all t ∈ [0, T ], with a smooth nonnegative function λ̃ : [0, T ] → R and an arbitrary
constant µ̃.

Using (1.13) and (1.14), existence and uniqueness of the approximations U q, . . . , UN

can be easily established by the Lax–Milgram lemma.

1.3. Stability conditions.

1.3.1. Necessary stability conditions. Using the von Neumann stability criterion, it is
easily seen that a necessary condition for the stability of the q−step BDF scheme (1.11),
q = 3, 5, is

(1.16)
ν(t)

κ(t)
≤ 1

η̃3
= 14.45087 and

ν(t)

κ(t)
≤ 1

η̃5
= 1.62892979,

for all t ∈ [0, T ], respectively, with η̃3 = cos 86.03◦ = 0.0692, η̃5 = cos 51.84◦ = 0.6139;
see [1]. This result in combination with the stability result from [2] for the implicit-
explicit q−step BDF scheme (1.12), q = 3, 5, in the case of a time-independent, positive
definite self-adjoint operator A, shows that a necessary linear condition for the local
stability of the implicit–explicit q−step BDF scheme (1.12), q = 3, 5, is

(1.17) η̃qν(t) + (2q − 1)λ̃(t) < κ(t)

for all t ∈ [0, T ], in the sense that none of the coefficients η̃q and 2q− 1 can be replaced
by a smaller one; see [1].



NEW MULTIPLIERS FOR BDF METHODS 5

1.3.2. Known sufficient stability conditions. Stability of the q−step BDF scheme (1.11)
as well as local stability of the implicit–explicit q−step BDF scheme (1.12), q = 3, 5,
were recently established by energy techniques in [4, 1], based on the Nevanlinna–Odeh
multipliers, under the sufficient stability conditions

(1.18)
ν(t)

κ(t)
<

1

η3
= 11.9617 and

ν(t)

κ(t)
<

1

η5
= 1.2254902,

for all t ∈ [0, T ], for q = 3 and q = 5, respectively, and

(1.19) ηqν(t) + (2q − 1)(1 + ηq)λ̃(t) < κ(t),

for all t ∈ [0, T ], respectively, with η3 = 0.0836, η5 = 0.8160.

1.3.3. New sufficient stability conditions. Using the new multipliers (1.4) and (1.6) for
the three- and five-step BDF methods, respectively, we relax here the sufficient stability
conditions (1.18) and (1.19) to

(1.20)
ν(t)

κ(t)
<

1

η̂3
= 13 and

ν(t)

κ(t)
<

1

η̂5
= 1.23497392,

for all t ∈ [0, T ], for q = 3 and q = 5, respectively, and

(1.21) η̂qν(t) + (2q − 1)(1 + η̂q)λ̃(t) < κ(t),

for all t ∈ [0, T ], respectively, with η̂3 = 1/13 = 0.076923076, η̂5 = 0.8097337459.

1.3.4. An example. Let ϕ : [0, T ] → (−π
2
, π
2
) be a smooth function and consider the

initial value problem for the parabolic equation

(1.22) ut = −A(t)u = −eiϕ(t)Ãu = − cosϕ(t)Ãu− i sinϕ(t)Ãu, t ∈ (0, T ],

with Ã : V → V ′ a positive definite self-adjoint bounded operator.
The most suitable norm in V is ‖v‖ := |Ã1/2v| = (Ãv, v)1/2 in this case. Then, the

dual norm ‖ · ‖? in V ′ is ‖v‖? = |Ã−1/2v| = (v, Ã−1v)1/2. Now, for v ∈ V, we have

(eiϕ(t)Ãv, v) = cosϕ(t)(Ãv, v) + i sinϕ(t)(Ãv, v),

whence Re(eiϕ(t)Ãv, v) = (cosϕ(t))‖v‖2; we infer that κ(t) = cosϕ(t). Furthermore,
obviously,

‖eiϕ(t)Ã‖L(V,V ′) = |eiϕ(t)| ‖Ã‖L(V,V ′) = ‖Ã‖L(V,V ′) = 1,

whence ν(t) = 1. Therefore, λ(t) = 1/ cosϕ(t).
The eigenvalues of eiϕ(t)Ã are of the form reiϕ(t), with a positive number r, i.e., they

lie on the half-line in the complex plane starting at the origin and forming angle ϕ(t)
with the positive real half-axis. For |ϕ(t)| > ϑq, for some t ∈ [0, T ], this half-line is
not contained in the stability sector Sϑq := {z ∈ C : z = reiϕ, r ≥ 0, |ϕ| ≤ ϑq} of the
q−step BDF method; thus, according to the von Neumann criterion, the q−step BDF
method (1.11) is unstable for this equation; see the necessary stability condition (1.16).

As far as the sufficient stability conditions in the case of equation (1.22) are con-
cerned, the new multipliers ensure stability of the three- and five-step BDF scheme
(1.11), respectively, provided ϕ(t) is such that cosϕ(t) > η̂q, for all t ∈ [0, T ], for
q = 3, 5, respectively; see the new sufficient stability condition (1.20). On the other
hand, the Nevanlinna–Odeh multipliers ensure stability of these methods under the
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more stringent condition cosϕ(t) > ηq, for all t ∈ [0, T ], for q = 3, 5, respectively; see
the known sufficient stability condition (1.18). In other words, in case cosϕ(t) > η̂q,
for all t ∈ [0, T ], but cosϕ(t) ≤ ηq, for some t ∈ [0, T ], the new sufficient stability con-
dition (1.20) does ensure stability of the q−step BDF method (1.11), q = 3, 5, while
the known sufficient stability condition (1.18) fails to do so.

The new and known sufficient conditions (1.21) and (1.19) for the local stability of
the implicit–explicit q−step BDF scheme (1.12), q = 3, 5, can be compared analogously.

1.3.5. Sufficient stability conditions in terms of time-dependent norms. Proceeding as
in [1] for the case of the stability conditions (1.18) and (1.19), we can relax the sufficient
stability conditions (1.20) and (1.21) using time-dependent norms. Motivated by the
approach in [11] and [4], where time-dependent norms were used in the case of self-
adjoint operators, the operators A(t) were decomposed in [1] in their self-adjoint and
anti-self-adjoint parts As(t) and Aa(t), respectively,

As(t) :=
1

2

[
A(t) + A(t)?

]
, Aa(t) :=

1

2

[
A(t)− A(t)?

]
,

and the time-dependent norm ‖ · ‖t,

‖v‖t := (As(t)v, v)1/2 ∀v ∈ V,
was introduced in V. The corresponding dual norm on V ′ was denoted by ‖ · ‖?,t,

∀v ∈ V ′ ‖v‖?,t := sup
w∈V \{0}

|(v, w)|
‖w‖t

= sup
w∈V
‖w‖t=1

|(v, w)|.

An easy consequence of (1.13) and (1.14) is that the norms ‖·‖t and ‖·‖ are equivalent,

(1.23)
√
κ(t) ‖v‖ ≤ ‖v‖t ≤

√
ν(t) ‖v‖ ∀v ∈ V.

Let λa(t) : [0, T ]→ [1,∞) be a smooth function such that

(1.24) ‖A(t)v‖?,t ≤ λa(t)‖v‖t ∀v ∈ V.
It easily follows from (1.13) and (1.14) that (1.24) is valid with λa(t) = λ(t) = ν(t)/κ(t).
In general, however, (1.24) may be satisfied with λa(t) much smaller than λ(t); see [1].
In the case of positive definite self-adjoint operators A(t), the estimate (1.24) holds as
an equality with λa(t) = 1. The difference λa(t)− 1 may be viewed as a measure of the
deviation of A(t) from a positive definite self-adjoint operator.

Assume also that As(t) satisfies a mild Lipschitz condition with respect to t, namely

(1.25) ‖
(
As(t)− As(t̃)

)
v‖? ≤ L|t− t̃| ‖v‖ ∀t, t̃ ∈ [0, T ] ∀v ∈ V,

with a Lipschitz constant L.
In analogy to (1.15), assume that the operators B satisfy the local Lipschitz condition

(1.26) ‖B(t, v)−B(t, ṽ)‖?,t ≤ λ̃b(t)‖v − ṽ‖t + µ̃b|v − ṽ| ∀v, ṽ ∈ Bu(t),

for all t ∈ [0, T ], with a smooth nonnegative function λ̃b : [0, T ]→ R and an arbitrary

constant µ̃b. It follows easily from (1.15) and (1.13) that (1.26) is valid with λ̃b(t) =

λ̃(t)/κ(t) and µ̃b = µ̃/min0≤t≤T
√
κ(t). In general, however, (1.26) may be satisfied

with λ̃b(t) much smaller than λ̃(t)/κ(t); see [1].
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Combining the use of the time-dependent norms mentioned above with the new
multipliers (1.4) and (1.6) along the lines of [1], one can show that the three- and
five-step BDF methods (1.11) are stable, provided

(1.27) λa(t) <
1

η̂q
, q = 3, 5,

respectively, for all t ∈ [0, T ]. Analogously, the implicit–explicit q−step BDF methods
(1.12) are locally stable, provided

(1.28) η̂qλa(t) + (2q − 1)(1 + η̂q)λ̃b(t) < 1, q = 3, 5,

respectively, for all t ∈ [0, T ]. These new sufficient stability conditions are relaxed
versions of the corresponding conditions (2.29) and (3.30) in [1], respectively, in which
ηq enters insted of η̂q.

Let us also note that all stability results for the schemes (1.11) and (1.12), respec-
tively, mentioned here, combined with the easily established consistency of the methods
for the underlying equations, lead to optimal order a priori error estimates for the initial
value problems (1.8) for the (inhomogeneous) linear equation and for (1.9), respectively.

Extensive numerical experiments to investigate the accuracy and efficiency of the
implicit–explicit BDF methods (1.12) were carried out in [5, 6, 3] with very satisfac-
tory results. More precisely, these methods were used for the discretization in time
of a nonlinear parabolic system arising in two-phase flows in [5], of a general class of
dispersively modified Kuramoto–Sivashinsky equations arising in multiphase hydrody-
namics in [6], and of two-dimensional active partial differential equations such as the
Topper–Kawahara equation, which is a two-dimensional extension of the dispersively
modified Kuramoto–Sivashinsky equation, found in falling film hydrodynamics in [3].

An outline of the paper is as follows: In Sections 2, 3 and 4 we show that (1.4), (1.5)
and (1.6) are the unique optimal multipliers for the three-, four-, and five-step BDF
methods, respectively. In Section 5 we establish stability of the three-step BDF scheme
(1.11) for the linear parabolic equation (1.8) and local stability of the implicit–explicit
three-step BDF scheme (1.12) for the nonlinear parabolic equation (1.9) under the
stability conditions (1.20) and (1.21), respectively. These stability results can be easily
extended to the case of the five-step methods and to the case of quasi-linear parabolic
equations (see [4]); the case of time-dependent norms can also be easily handled (see
[4, 1]).

2. A new multiplier for the three-step BDF method

In this section we show that the multiplier (1.4) is the unique optimal multiplier for
the three-step BDF method.

2.1. Background and known multipliers. First, we recall a result from Dahlquist’s
G-stability theory.

Lemma 2.1 ([9]; see also [7] and [10, Section V.6]). Let α(ζ) = αqζ
q + · · · + α0 and

µ(ζ) = µqζ
q + · · · + µ0 be polynomials, with real coefficients, of degree at most q (and

at least one of them of degree q) that have no common divisor. Let (·, ·) be an inner
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product with associated norm | · |. If

(2.1) Re
α(ζ)

µ(ζ)
> 0 for |ζ| > 1,

then there exists a positive definite symmetric matrix G = (gij) ∈ Rq,q and real δ0, . . . , δq
such that for v0, . . . , vq in the inner product space,

Re

( q∑
i=0

αiv
i,

q∑
j=0

µjv
j

)
=

q∑
i,j=1

gij(v
i, vj)−

q∑
i,j=1

gij(v
i−1, vj−1) +

∣∣∣∣ q∑
i=0

δiv
i

∣∣∣∣2. �

In combination with the preceding result for µ(ζ) = ζq − ηqζq−1, the following prop-
erty of BDF methods up to order 5 was established in [12].

Lemma 2.2 ([12]; see also [10, Section V.8]). For q ≤ 5, there exists 0 ≤ ηq < 1 such
that the generating polynomial α(ζ) of the q−step BDF method, see (1.1), satisfies

Re
α(ζ)

ζq − ηqζq−1
> 0 for |ζ| > 1.

The smallest possible values of ηq are

η1 = η2 = 0, η3 = 0.0836, η4 = 0.2878, η5 = 0.8160. �

Let now α ∈ Pq be the generating polynomial of the q−step BDF method and µ ∈ Pq
be a polynomial, µ(ζ) = ζq − µ1ζ

q−1 − · · · − µq, with real coefficients and roots inside
the unit disc, and assume that α and µ have no common divisor. Then α(z)/µ(z) is
holomorphic outside the unit disc in the complex plane, and

lim
|z|→∞

α(z)

µ(z)
= αq > 0.

Therefore, according to the maximum principle for harmonic functions, (2.1) is equiv-
alent to

Re
α(ζ)

µ(ζ)
≥ 0 ∀ζ ∈ K ,

with K the unit circle in the complex plane, K := {ζ ∈ C : |ζ| = 1}, i.e., equivalent
to

(2.2) Re[α(eiϕ)µ(e−iϕ)] ≥ 0 ∀ϕ ∈ R.

2.2. New multiplier. In the case of the three-step BDF method and the parameters
given in (1.4), it is easily seen that α and µ have no common divisor, cf. §2.3, and

(2.3) Re[α(eiϕ)µ(e−iϕ)] =
4

3
(1− cosϕ)

(
cosϕ− 7

13

)2
.

In particular, (2.2) is satisfied, whence (µ1, µ2, µ3) is indeed a multiplier for the three-
step BDF method.

More precisely, we have the following result:
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Lemma 2.3 (New multiplier). Let α(ζ) = α3ζ
3 + · · ·+α0 be the generating polynomial

of the three-step BDF method, and G = (gij)i,j=1,2,3 the positive definite symmetric
matrix

G :=
1

6 · 169

 169 −362 349
−362 997 −1181

349 −1181 1690

.
Then, for v0, . . . , v3 in an inner product space, with inner product (·, ·) and correspond-
ing norm | · |, we have the identity

Re

( 3∑
i=0

αiv
i, v3 − 2

169
v2 − 11

169
v1
)

=
3∑

i,j=1

gij(v
i, vj)−

3∑
i,j=1

gij(v
i−1, vj−1)

+
1

6 · 169

∣∣13v3 − 27v2 + 27v1 − 13v0
∣∣2.

In particular,

Re

( 3∑
i=0

αiv
i, v3 − 2

169
v2 − 11

169
v1
)
≥

3∑
i,j=1

gij(v
i, vj)−

3∑
i,j=1

gij(v
i−1, vj−1). �

Remark 2.1 (Positive definiteness of the matrix G). The positive definiteness of the
matrix G is a consequence of (2.2); see [9, 7]. Here, we give more precise information
about the eigenvalues of G.

The characteristic polynomial p of the symmetric matrix 6 · 169G is

p(λ) = −λ3 + 2856λ2 − 491427λ+ 4548960.

Now, p(0) is positive and p′ is negative in (−∞, 0]; thus, the eigenvalues of G are
positive, i.e., G is positive definite. More precisely, it is easily seen that the roots
of p are in the intervals (9, 10), (173, 174) and (2672, 2673). Therefore, the smallest
eigenvalue λ?min of G is bounded from below by 9/(6 · 169),

λ?min >
3

338
. �

Remark 2.2 (Derivation of the identity in Lemma 2.3). Our derivation of the identity in
Lemma 2.3 is based on the approach of Baiocchi and Crouzeix [7]: With the notation
of Lemma 2.3 and

µ(ζ) := ζ3 − 2

169
ζ2 − 11

169
ζ,

it is easily seen that

E(ζ) := α(ζ)µ(
1

ζ
) + α(

1

ζ
)µ(ζ) = − (ζ − 1)2

3 · 169ζ3
(13ζ2 − 14ζ + 13)2,

whence

(2.4) α(ζ)µ(
1

ζ
) + α(

1

ζ
)µ(ζ) = p(ζ)p(

1

ζ
)

with

(2.5) p(ζ) :=
1

13
√

3
(ζ − 1)(13ζ2 − 14ζ + 13) =

1

13
√

3
(13ζ3 − 27ζ2 + 27ζ − 13).
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Furthermore,

(2.6) α(ζ)µ(ω) + α(ω)µ(ζ)− p(ζ)p(ω) = 2(ζω − 1)
3∑

i,j=1

gijζ
i−1ωj−1;

(2.6) and (2.5) immediately lead to the identity in Lemma 2.3.
Notice that p has one real root, namely ζ1 = 1, and two complex conjugate roots

ζ2 and ζ3; since, obviously, ζ2ζ3 = 1, we infer that |ζ2| = |ζ3| = 1. Therefore, |p(ζ)| is
positive in the exterior of the unit disc in the complex plane, i.e., for |ζ| > 1. Thus, it
immediately follows from (2.6) that the real part of α(ζ)µ(ζ̄) is positive in the exterior
of the unit disc in the complex plane, whence (2.1) is satisfied. �

2.3. Optimality of the new multiplier. Without loss of generality, we consider
multipliers with |µ1|+ |µ2|+ |µ3| < 1/11, say, since a multiplier with |µ1|+ |µ2|+ |µ3| =
0.0836 is already known; see [12]. In the sequel, we call such multipliers admissible. Let
α ∈ P3 be the generating polynomial of the three-step BDF method, and let (µ1, µ2, µ3)
be an admissible multiplier for the three-step BDF method, i.e., satisfying (1.2) with
µ(ζ) = ζ3 − µ1ζ

2 − µ2ζ − µ3. It is easily seen that the roots of µ are in the interior
of the unit disc, whence α(ζ)/µ(ζ) is holomorphic outside the unit disc. Furthermore,
the polynomials α and µ have no common divisor; indeed, since

α(ζ) =
11

6
(ζ − 1)

(
ζ2 − 7

11
ζ +

2

11

)
,

if α and µ had a common divisor, then µ would be of the form

(2.7) µ(ζ) = (ζ − c)
(
ζ2 − 7

11
ζ +

2

11

)
= ζ3 −

( 7

11
+ c
)
ζ2 +

7c+ 2

11
ζ − 2

11
c

with c ∈ (−1, 1). It is easily seen that the sum of the absolute values of the constant
term and the coefficients of ζ and ζ2 of the polynomial µ in (2.7) is larger than 1/11,
for all possible choices of c ∈ (−1, 1), a contradiction.

2.3.1. First claim. A triplet (µ1, µ2, µ3) is an admissible multiplier for the three-step
BDF method, if and only if

(2.8) (2µ1 − 11µ2 − 4µ3 + 5)2 − 8(11µ3 + 2)(8µ1 + µ2 − 8µ3 + 1) ≤ 0.

First, a straightforward but lengthy calculation shows that, in the case of the three-
step BDF method, relation (2.2) can be equivalently written in the form

(2.9)
− 4(11µ3 + 2) cos(3ϕ) + (2µ1 − 11µ2 + 18µ3 + 9) cos(2ϕ)

− (20µ1 − 20µ2 + 9µ3 + 18) cosϕ+ 18µ1 − 9µ2 + 2µ3 + 11 ≥ 0,

for all ϕ ∈ R. Next, we use the substitution x := cosϕ and write (2.9) as

− 4(11µ3 + 2)(4x3 − 3x) + (2µ1 − 11µ2 + 18µ3 + 9)(2x2 − 1)

− (20µ1 − 20µ2 + 9µ3 + 18)x+ 18µ1 − 9µ2 + 2µ3 + 11 ≥ 0,

i.e.,

(1− x)
[
2(11µ3 + 2)x2 − (2µ1 − 11µ2 − 4µ3 + 5)x+ (8µ1 + µ2 − 8µ3 + 1)

]
≥ 0,

or equivalently, since x ≤ 1,

(2.10) 2(11µ3 + 2)x2 − (2µ1 − 11µ2 − 4µ3 + 5)x+ (8µ1 + µ2 − 8µ3 + 1) ≥ 0,
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for all x ∈ [−1, 1].
Let us now first consider the case that the quadratic polynomial on the left-hand

side of (2.10) has two distinct real roots x1, x2. Since

x1 + x2 =
2µ1 − 11µ2 − 4µ3 + 5

22µ3 + 4
, x1x2 =

8µ1 + µ2 − 8µ3 + 1

22µ3 + 4

are both positive and x1x2 < 1, for all admissible multipliers, we see that x1 and x2
are positive, and at least one of them is less than 1. Therefore, in this case, (2.10) can
obviously not be satisfied for all x ∈ [−1, 1].

Thus, since the coefficient of x2 is positive, we infer that (2.10) is satisfied for all
x ∈ [−1, 1], if and only if the discriminant of the quadratic polynomial on its left-hand
side is nonpositive, i.e., if (2.8) holds true.

Remark 2.3 (The case of two vanishing µi’s). Let us first consider the case µ2 = µ3 = 0.
Then, (2.8) takes the form

(2.11) 4µ2
1 − 108µ1 + 9 ≤ 0.

Now, the smallest real number satisfying (2.11) is the smallest root η3 of the quadratic
polynomial on its left-hand side, i.e.,

(2.12) η3 =
3

2

(√
5− 2

)2
= 0.083592135.

Thus, in this case, we recover the corresponding Nevanlinna–Odeh multiplier; see [12].
Next, we consider the case µ1 = µ3 = 0. Then, (2.8) takes the form

(2.13) 121µ2
2 − 126µ2 + 9 ≤ 0;

the smallest µ2 for which this relation is satisfied is

(2.14) µ2 =
63− 24

√
5

121
= 0.077143541.

This is a more favourable multiplier than the Nevanlinna–Odeh multiplier, and, indeed,
only slightly worse than the optimal multiplier (1.4).

Finally, in the case µ1 = µ2 = 0, the quadratic polynomial on the left-hand side of
(2.10) has two real roots; consequently, as we saw, (2.10) is not satisfied. �

Remark 2.4 (The case of vanishing µ2, µ3; alternative proof). We give here an alterna-
tive proof of the fact that σ := |µ1| + |µ2| + |µ3| = µ1 ≥ η3 in the case µ2 = µ3 = 0;
the idea of this proof will be useful in the sequel. First, we rewrite (2.10) in the form

(2.15) f0(x) + f1(x)µ1 + f2(x)µ2 + f3(x)µ3 ≥ 0 ∀x ∈ [−1, 1],

with

f0(x) := 4x2 − 5x+ 1, f1(x) := 8− 2x, f2(x) := 11x+ 1, f3(x) := 22x2 + 4x− 8.

Then, for µ2 = µ3 = 0, we have

µ1 ≥ −
f0(x)

f1(x)
,
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since f1(x) is positive in [−1, 1]. It is easily seen that the derivative of the function on
the right-hand side vanishes if and only if 4x2 − 32x + 19 = 0 and that −f0(x)/f1(x)
attains its maximum η3 at

(2.16) x? := 4− 3

2

√
5.

thus, µ1 ≥ η3 and the desired result follows. �

2.3.2. Second claim. If µ2 ≤ 0, then σ ≥ η3.
Indeed, for x = x?, with x? as in (2.16), relation (2.15) yields

µ1 ≥ η3 −
f2(x

?)

f1(x?)
µ2 −

f3(x
?)

f1(x?)
µ3 ≥ η3 − aµ3,

since f2(x
?) is positive and µ2 nonpositive, with a := f3(x

?)/f1(x
?) ∈ (0, 1). Therefore,

σ = |µ1|+ |µ2|+ |µ3| ≥ µ1 + |µ3| ≥ η3 − aµ3 + |µ3| = η3 + (1− a sgnµ3)|µ3| ≥ η3,

since a ∈ (0, 1). Furthermore, obviously, σ = η3, if and only if µ2 = µ3 = 0 and µ1 = η3.
Thus, from now on we assume that µ2 is positive.

2.3.3. Third claim. Assuming µ3 = 0, the sum σ = |µ1| + |µ2| + |µ3| of multipliers
(µ1, µ2, µ3) for the three-step BDF method attains its minimal value 1/13, if and only
if µ1 = 2/169 and µ2 = 11/169.

Indeed, we have σ = |µ1|+ |µ2| = |µ1|+µ2, whence µ2 = σ−|µ1|. We now distinguish
two subcases, µ1 positive and µ1 nonpositive.

If µ1 is positive, replacing µ2 by σ − µ1 in (2.8), we rewrite it in the form

(2.17) 169µ2
1 + 2(9− 143σ)µ1 + 121σ2 − 126σ + 9 ≤ 0.

Obviously, a necessary condition for (2.17) is that the quadratic polynomial in µ1 on
its left-hand side has real roots; it is easily seen that this is the case if and only if
18720σ − 1440 ≥ 0, i.e.,

(2.18) σ ≥ 1

13
.

Now, for σ = 1/13, (2.17) is satisfied if and only if µ1 = 2/169; then, µ2 = σ − µ1 =
11/169.

If µ1 is nonpositive, replacing µ2 by σ + µ1 in (2.8), we rewrite it in the form

(2.19) 81µ2
1 − 2(99σ + 117)µ1 + 121σ2 − 126σ + 9 ≤ 0.

Now, if 121σ2 − 126σ + 9 ≤ 0, then it is easily seen that

(2.20) σ ≥ 63− 24
√

5

121
>

1

13
.

Furthermore, if 121σ2 − 126σ + 9 > 0, a necessary condition for (2.19) is that the
quadratic polynomial in µ1 on its left-hand side has real roots x1 and x2; it is easily
seen that in this case both the sum x1 + x2 and the product x1x2 are positive. Thus,
if x1 ≤ x2, we have x1 ≤ µ1 ≤ x2, whence µ1 is positive, a contradiction.
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2.3.4. Fourth claim. If (µ1, µ2, µ3) is a multiplier for the three-step BDF method with
µ1 6= 2/169 or µ2 6= 11/169, then σ = |µ1|+ |µ2|+ |µ3| > 1/13.

In fact, for x = 7/13, relation (2.15) yields

− 90

169
+

90

13
µ1 +

90

13
µ2 +

90

169
µ3 ≥ 0, i.e., µ1 + µ2 ≥

1

13
− 1

13
µ3.

Then, since µ2 is positive,

σ = |µ1|+ µ2 + |µ3| ≥ µ1 + µ2 + |µ3| ≥
1

13
+
(
1− 1

13
sgnµ3

)
|µ3|.

The last expression attains its minimal value 1/13, if and only if µ3 = 0. We considered
the latter case in §2.3.3.

We infer that if (µ1, µ2, µ3) is a multiplier for the three-step BDF method, then
σ = |µ1| + |µ2| + |µ3| ≥ 1/13, and σ attains the minimal value 1/13 only for the
multiplier given in (1.4).

3. Optimality of the Nevanlinna–Odeh multiplier for the four-step
BDF method

Our goal here is not to improve the Nevanlinna–Odeh multiplier for the four-step
BDF method but rather to give a precise expression for η4 and to show that this
multiplier is indeed optimal among all multipliers (µ1, µ2, µ3, µ4) for the four-step BDF
method.

Let α be the generating polynomial of the four–step BDF method,

α(ζ) =
4∑
j=1

1

j
ζ4−j(ζ − 1)j =

1

12

(
25ζ4 − 48ζ3 + 36ζ2 − 16ζ + 3

)
.

A quadruplet of real numbers (µ1, µ2, µ3, µ4) is a multiplier for the four-step BDF
method, if

(3.1) Re[α(eiϕ)µ(e−iϕ)] ≥ 0 ∀ϕ ∈ R,

with µ(ζ) := ζ4 − µ1ζ
3 − µ2ζ

2 − µ3ζ − µ4, provided that the roots of µ are inside the
unit disc and α and µ have no common divisor; see (2.2).

In analogy to (2.9), it is easily seen that, with x = cosϕ, (3.1) takes the form

(1− x)
[
f0(x) + f1(x)µ1 + f2(x)µ2 + f3(x)µ3 + f4(x)µ4

]
≥ 0 ∀x ∈ [−1, 1],

i.e.,

(3.2) f0(x) + f1(x)µ1 + f2(x)µ2 + f3(x)µ3 + f4(x)µ4 ≥ 0 ∀x ∈ [−1, 1],

with

f0(x) := −2(x− 1)2(3x+ 1), f1(x) := 3x2 − 5x+ 8, f2(x) := 2(7x− 1),

f3(x) := 25x2 + x− 8, f4(x) := 50x3 + 2x2 − 30x+ 2.

Assume first that µ2 = 0 and µ3, µ4 ≥ 0. Since f1(x) is positive, (3.2) takes the form

(3.3) µ1 ≥ −
f0(x)

f1(x)
− f3(x)

f1(x)
µ3 −

f4(x)

f1(x)
µ4 ∀x ∈ [−1, 1].
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The derivative of the function f0(x)/f1(x) vanishes at x = 1 and at x = x?, with x?

the real root of 9x3 − 21x2 + 73x− 13, given by Cardano’s formula,

(3.4) x? =
1

9

(
7 +

3

√
90
√

859− 1430− 3

√
90
√

859 + 1430

)
= 0.18737068.

It is easily seen that −f0(x)/f1(x) attains its maximum in [−1, 1] at x?; the maximal
value is

−f0(x
?)

f1(x?)
=

2(x? − 1)2(3x? + 1)

3(x?)2 − 5x? + 8
= η4 = 0.287806557.

Since f3(x
?) and f4(x

?) are negative, µ1 can attain its minimal value −f0(x?)/f1(x?)
if and only if µ3 = µ4 = 0. Summarizing, in the case µ2 = 0 and µ3, µ4 ≥ 0, the sum
|µ1|+ · · ·+ |µ4| attains its minimal value for

(3.5) µ1 = η4 = 0.287806557, µ3 = µ4 = 0.

Thus, in this case, we recover the Nevanlinna–Odeh multiplier for the four-step BDF
method; see [12].

We next consider the general case. With x? as in (3.4), let now

a :=
f2(x

?)

f1(x?)
, b := −f3(x

?)

f1(x?)
, c := −f4(x

?)

f1(x?)
.

It is easily seen that a, b, c ∈ (0, 1). Now, for x = x?, relation (3.2) yields

µ1 ≥ η4 − aµ2 + bµ3 + cµ4.

Consequently,

σ := |µ1|+ |µ2|+ |µ3|+ |µ4| ≥ µ1 + |µ2|+ |µ3|+ |µ4|
≥ η4 + (1− a sgnµ2)|µ2|+ (1 + b sgnµ3)|µ3|+ (1 + c sgnµ4)|µ4|.

Since a, b, c ∈ (0, 1), the last expression attains its minimal value η4, if and only if
µ2 = µ3 = µ4 = 0 and µ1 = η4.

We infer that if (µ1, . . . , µ4) is a multiplier for the four-step BDF method, then
σ = |µ1|+ · · ·+ |µ4| ≥ η4, and σ attains the minimal value η4 only for the Nevanlinna–
Odeh multiplier (η4, 0, 0, 0).

4. A new multiplier for the five-step BDF method

In this section we show that the multiplier (1.6) is the unique optimal multiplier for
the five-step BDF method.

Let α be the generating polynomial of the five–step BDF method,

α(ζ) =
5∑
j=1

1

j
ζ5−j(ζ − 1)j =

1

60

(
137ζ5 − 300ζ4 + 300ζ3 − 200ζ2 + 75ζ − 12

)
.

A set of real numbers (µ1, µ2, µ3, µ4, µ5) is a multiplier for the five-step BDF method,
if

(4.1) Re[α(eiϕ)µ(e−iϕ)] ≥ 0 ∀ϕ ∈ R,
with µ(ζ) := ζ5−µ1ζ

4−µ2ζ
3−µ3ζ

2−µ4ζ−µ5, provided that the roots of µ are inside
the unit disc and α and µ have no common divisor; see (2.2).
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First, as in the previous cases, with x = cosϕ, (4.1) takes the form (1− x)f(x) ≥ 0,
for x ∈ [−1, 1], with

f(x) := 4(12 + 137µ5)x
4 − (102 + 24µ1 − 274µ4 + 52µ5)x

3

+ (38 + 51µ1 − 12µ2 + 137µ3 − 26µ4 − 437µ5)x
2

+ (38− 25µ1 + 94µ2 − 19µ3 − 150µ4 + 63µ5)x

− 22 + 28µ1 − 22µ2 − 28µ3 + 22µ4 + 28µ5;

thus, (4.1) can be equivalently written as

(4.2) f(x) ≥ 0 ∀x ∈ [−1, 1].

We let

f0(x) := (x− 1)2(48x2 − 6x− 22), f1(x) := −24x3 + 51x2 − 25x+ 28,

f2(x) := −12x2 + 94x− 22, f3(x) := 137x2 − 19x− 28,

f4(x) := 274x3 − 26x2 − 150x+ 22, f5(x) := 548x4 − 52x3 − 437x2 + 63x+ 28,

and write (4.2) in the form

(4.3) f0(x) + f1(x)µ1 + f2(x)µ2 + f3(x)µ3 + f4(x)µ4 + f5(x)µ5 ≥ 0 ∀x ∈ [−1, 1].

We observe that f1 takes on only positive values in the interval [−1, 1] while f2, f3, f4
and f5 take on both positive and negative values.

4.1. The case µ4 = µ5 = 0 and µ2, µ3 ≥ 0. In this case, (4.3) takes the form

(4.4) µ1 ≥ −
f0(x)

f1(x)
− f2(x)

f1(x)
µ2 −

f3(x)

f1(x)
µ3 ∀x ∈ [−1, 1].

The function −f0(x)/f1(x) attains its maximum in [−1, 1] at x? = −0.0907628; we
have −f0(x?)/f1(x?) = 0.815980225. Now, since f2(x

?) and f3(x
?) are negative, µ1 can

attain its minimal value −f0(x?)/f1(x?) if and only if µ2 = µ3 = 0. Summarizing, in
the case µ4 = µ5 = 0 and µ2, µ3 ≥ 0, the sum |µ1|+ · · ·+ |µ5| attains its minimal value
for

(4.5) µ1 = 0.815980225, µ2 = µ3 = 0.

Thus, in this case, we recover the Nevanlinna–Odeh multiplier for the five-step BDF
method; see [12].

4.2. If µ4 ≤ 0, then σ ≥ η5. Indeed, with x? = −0.0907628 as above, and

a := −f2(x
?)

f1(x?)
, b := −f3(x

?)

f1(x?)
, c :=

f4(x
?)

f1(x?)
, d :=

f5(x
?)

f1(x?)
,

it is easily seen that a, b, d ∈ (0, 1) while c > 1. Now, for x = x?, relation (4.3) yields

µ1 ≥ η5 + aµ2 + bµ3 − cµ4 − dµ5,

whence, since µ4 is nonpositive,

µ1 ≥ η5 + aµ2 + bµ3 − dµ5,
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Consequently,

σ := |µ1|+ · · ·+ |µ5| ≥ µ1 + |µ2|+ |µ3|+ |µ5|
≥ η5 + (1 + a sgnµ2)|µ2|+ (1 + b sgnµ3)|µ3|+ (1− d sgnµ5)|µ5|.

Since a, b, d ∈ (0, 1), the last expression is at least η5. Furthermore, obviously, σ = η5,
if and only if µ2 = · · · = µ5 = 0 and µ1 = η5.

Thus, it suffices to consider the case µ4 positive.

4.3. The case µ5 = 0, µ1, µ2, µ3 ≥ 0 and µ4 > 0. We let λ := µ1/µ4 ≥ 0. First, we
note that, for x = 0, (4.3) yields µ4 ≥ 11/(11 + 14λ), whence, for λ < 4,

σ = |µ1|+ · · ·+ |µ5| ≥ µ1 + µ4 = (λ+ 1)µ4 ≥
11(λ+ 1)

11 + 14λ
> 0.82 > η5.

Therefore, it suffices to consider the case λ ≥ 4. In this case, f4 + λf1 takes on only
positive values in the interval [−1, 1], and (4.3) can be written as

(4.6) µ4 ≥ ϕλ(x) + Φλ(x)µ2 + Ψλ(x)µ3 ∀x ∈ [−1, 1]

with

ϕλ(x) :=
−f0(x)

f4(x) + λf1(x)
, Φλ(x) :=

−f2(x)

f4(x) + λf1(x)
, Ψλ(x) =

−f3(x)

f4(x) + λf1(x)
.

Now

f4(x) +λf1(x) = (λ+ 1)f1(x) ⇐⇒ f4(x) = f1(x) ⇐⇒ (2x+ 1)(149x2− 113− 6) = 0.

At the root x0,

x0 =
113−

√
16345

298
= −0.049824045,

of this equation, we have

∀λ > 0 Fλ(x0) = −f0(x0)
f1(x0)

= 0.809733746, where Fλ(x) := (λ+ 1)ϕλ(x).

Now, for µ2 = µ3 = 0 and for all λ ≥ 4, from (4.6), we obtain

(4.7) minσ = max
−1≤x≤1

[(λ+ 1)ϕλ(x)] = max
−1≤x≤1

Fλ(x) ≥ Fλ(x0) = 0.809733746.

On the other hand, we observe that, for λ = 9.441185, (4.6) yields

minµ4 = max
−1≤x≤1

ϕλ(x) = ϕλ(x̃) = 0.07755190105, with x̃ = −0.049824 ≈ x0,

if and only if µ2 = µ3 = 0, since both f2(x̃) and f3(x̃) are negative. Then, the minimum
of σ is (9.441185+1)0.07755190105 = 0.8097337459, that is, for λ = λ0, λ0 = 9.441185,
(4.7) holds essentially as an equality.

We infer that

(4.8) µ1 = 9.441185µ4 = 0.7321818449, µ4 = 0.07755190105, µ2 = µ3 = µ5 = 0,

and

(4.9) σ0 := µ1 + · · ·+ µ5 = 0.8097337459,
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provided there exist points x?λ such that f2(x
?
λ) and f3(x

?
λ) are negative, in which case

µ2 = µ3 = 0, and Fλ(x
?
λ) > 0.809733746. Taking, now, x?λ = −0.04982 x?λ = −0.04985,

points at which both f2 and f3 are negative, we have

Fλ(−0.04982) =
23.78593427(λ+ 1)

29.37458573 + 29.37505137λ
> 0.809733746 ⇐⇒ λ < λ1

and

Fλ(−0.04985) =
23.78693713(λ+ 1)

29.37894674 + 29.37595923λ
> 0.809733746 ⇐⇒ λ > λ2

with λ1 := 9.440374924 and λ2 := 9.444166548.
We thus see that for λ /∈ [λ1, λ2], suitable x?λ do exist. Now, if we take an x?λ ∈

(x̃,−0.04982) and an x?λ ∈ (−0.04985, x̃), and repeat the above calculations, we see
that, for λ ≥ 4, outside a new subinterval [λ3, λ4] of [λ1, λ2], suitable x?λ do exist. We
note that both f2 and f3 are negative in the whole interval [−0.04985,−0.04982]. By
the continuity of Fλ, we infer that, if x?λ tends to x̃, then λ tends to λ0; thus, for all
λ 6= λ0, suitable x?λ do exist.

4.4. Optimality of the multiplier (4.8). Let us first note that the parameters
µ1, . . . , µ5 given in (4.8) constitute a multiplier for the five-step BDF method. In-
deed, as we saw, (4.1) is satisfied for these values of the parameters. Furthermore,
the roots of the polynomial µ, µ(ζ) = z5 − µ1z

4 − µ4z, are 0,−0.40819, 0.85589, and
0.14224±0.44919i, while the roots of the generating polynomial α ∈ P5 of the five-step
BDF method are 1, 0.38485 ± 0.16212i, and 0.21004 ± 0.67687i; thus, the roots of µ
are in the interior of the unit disc, and µ and α have no common divisor. Therefore,
(µ1, . . . , µ5) is a multiplier for the five-step BDF method.

Now, let µ1, . . . , µ5 be such that (4.3) is satisfied. Then, with x0 = −0.049824045 as
in §4.3, since f1(x0) = f4(x0), for x = x0 relation (4.3) yields

f1(x0)(µ1 + µ4) ≥ −f0(x0)− f2(x0)µ2 − f3(x0)µ3 − f5(x0)µ5,

i.e.,

µ1 + µ4 ≥ σ0 + aµ2 + bµ3 − cµ5,

with

a := −f2(x0)
f1(x0)

, b := −f3(x0)
f1(x0)

, c :=
f5(x0)

f1(x0)
.

It is easily seen that a, b, c ∈ (0, 1). Consequently,

σ = |µ1|+ · · ·+ |µ5| ≥ µ1 + µ4 + |µ2|+ |µ3|+ |µ5|
≥ σ0 + (1 + a sgnµ2)|µ2|+ (1 + b sgnµ3)|µ3|+ (1− c sgnµ5)|µ5|.

Since a, b, c ∈ (0, 1), the last expression attains its minimal value σ0, if and only if
µ1 ≥ 0 and µ2 = µ3 = µ5 = 0.

We considered the latter case in §4.3. We infer that if (µ1, . . . , µ5) is a multiplier for
the five-step BDF method, then σ = |µ1|+ · · ·+ |µ5| ≥ σ0, and σ attains the minimal
value σ0 only for the multiplier given in (4.8).
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5. Stability of the three-step BDF method for parabolic equations

This section is devoted to the analysis of stability properties of the three-step BDF
method (1.11) for the linear parabolic equation (1.8) as well as of the implicit–explicit
three-step BDF method (1.12) for the nonlinear equation (1.9). The analysis can be
easily extended to the five-step BDF method.

5.1. The implicit method for the linear equation. We shall derive a sufficient
stability condition, expressed in terms of the ratio λ(t) = ν(t)/κ(t), for the scheme
(1.11). The proof proceed along the lines of corresponding results in [4, 1]; we employ
the energy technique and make use of Lemma 2.3, while Lemma 2.2 was used in [4, 1].
This allows us to slightly relax the stability conditions of [4, 1] for the three-step BDF
method.

Proposition 5.1 (Stability of the three-step BDF scheme (1.11)). Assume (1.13) and
(1.14). Then, under the stability condition

(5.1) κ(t)− 1

13
ν(t) ≥ ρ > 0,

the three-step BDF method (1.11) is stable in the sense that, for k sufficiently small,

(5.2)
3

338
|Un|2 +

1

2
ρk

n∑
`=3

‖U `‖2 ≤ C3

2∑
j=0

|U j|2 + ck
(
‖U1‖2 + ‖U2‖2

)
,

for n = 3, . . . , N, with C3 a positive constant, and c a constant depending only on the
maximum of ν.

Proof. We let q = 3 in (1.11) and take the inner product with Un+3−µ1U
n+2−µ2U

n+1,
with µ1 and µ2 as in (1.4), and then real parts to obtain

(5.3) Re

( 3∑
i=0

αiU
n+i, Un+3 − µ1U

n+2 − µ2U
n+1

)
+ kIn+3 = 0

with

(5.4) In+3 := Re
(
A(tn+3)Un+3, Un+3 − µ1U

n+2 − µ2U
n+1
)
.

The first term on the left-hand side of (5.3) can be taken care of using Lemma 2.3:
With the notation Un := (Un−2, Un−1, Un)T and the norm |Un|G given by

|Un|2G =
3∑

i,j=1

gij(U
n−3+i, Un−3+j),

from Lemma 2.3 we have

Re

( 3∑
i=0

αiU
n+i, Un+3 − µ1U

n+2 − µ2U
n+1

)
≥ |Un+3|2G − |Un+2|2G.

Thus, (5.3) yields

(5.5) |Un+3|2G − |Un+2|2G + kIn+3 ≤ 0.
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It now remains to estimate In+3 from below in a suitable way. First, we have

In+3 = Re
(
A(tn+3)Un+3, Un+3

)
−

2∑
i=1

µ3−i Re
(
A(tn+3)Un+3, Un+i

)
,

whence, in view of the coercivity condition (1.13),

(5.6) In+3 ≥ κ(tn+3)‖Un+3‖2 −
2∑
i=1

µ3−i Re
(
A(tn+3)Un+3, Un+i

)
.

To estimate the sum on the right-hand side of (5.6), we notice that, for i = 1, 2,

Re
(
A(tn+3)Un+3, Un+i

)
≤ ‖A(tn+3)Un+3‖? ‖Un+i‖,

whence, in view of the boundedness condition (1.14),

Re
(
A(tn+3)Un+3, Un+i

)
≤ ν(tn+3)‖Un+3‖ ‖Un+i‖,

and hence

(5.7) Re
(
A(tn+3)Un+3, Un+i

)
≤ ν(tn+3)

2

[
‖Un+3‖2 + ‖Un+i‖2

]
.

In view of (5.7) and the fact that µ1 + µ2 = 1/13, estimate (5.6) leads to

(5.8) In+3 ≥
[
κ(tn+3)− 1

26
ν(tn+3)

]
‖Un+3‖2 − 1

2
ν(tn+3)

2∑
i=1

µ3−i‖Un+i‖2.

From (5.3) and (5.8), we obtain

|Un+3|2G − |Un+2|2G

+ k
[
κ(tn+3)− 1

26
ν(tn+3)

]
‖Un+3‖2 − k1

2
ν(tn+3)

2∑
i=1

µ3−i‖Un+i‖2 ≤ 0,

whence, in view also of the stability condition (5.1),

(5.9)

|Un+3|2G − |Un+2|2G + ρk‖Un+3‖2

+
1

2
kν(tn+3)

2∑
i=1

µ3−i
[
‖Un+3‖2 − ‖Un+i‖2

]
≤ 0.

Now, |ν(tm+i)− ν(tm)| ≤ L̃k, with L̃/2 the Lipschitz constant of ν, whence

(5.10) ν(tn+3) ≤ ν(tn+i) + L̃k, i = 1, 2;

thus, estimate (5.9) yields

(5.11)

|Un+3|2G − |Un+2|2G + ρk‖Un+3‖2

+
1

2
k

2∑
i=1

µ3−i

[
ν(tn+3)‖Un+3‖2 − ν(tn+i)‖Un+i‖2

]
≤ 1

2
L̃k2

2∑
i=1

µ3−i‖Un+i‖2.
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Summing here from n = 0 to n = m− 3, we obtain

|Um|2G + ρk

m∑
n=3

‖Un‖2 +
1

2
k
[
(µ1 + µ2)ν(tm)‖Um‖2 + µ2ν(tm−1)‖Um−1‖2

]
≤ |U2|2G +

1

2
k(µ1 + µ2)

[
ν(t2) + L̃k

]
‖U2‖2 +

1

2
kµ2

[
ν(t1) + L̃k

]
‖U1‖2

+
1

2
(µ1 + µ2)L̃k

2

m−1∑
n=3

‖Un‖2.

For k sufficiently small such that (µ1 +µ2)L̃k ≤ ρ, the last term on the right-hand side
can be absorbed into the second term on the left-hand side, and we get

|Um|2G +
ρ

2
k

m∑
n=3

‖Un‖2 ≤ |U2|2G + c1k
(
‖U1‖2 + ‖U2‖2

)
.

Using now the lower bound |Um|2G ≥ λ?min|Um|2 ≥ 3
338
|Um|2, see Remark 2.1, as well as

the obvious estimate |U2|2G ≤ Ĉ
(
|U0|2 + |U1|2 + |U2|2

)
, we obtain the desired stability

estimate (5.2). �

5.2. The implicit–explicit method for the nonlinear equation. In this section
we prove local stability of the implicit–explicit three-step BDF method, (1.12) for q = 3,
for the nonlinear parabolic equation (1.9).

Besides the approximations Un ∈ Bu(tn) satisfying (1.12), for q = 3, we consider
implicit–explicit three-step BDF approximations V n ∈ Bu(tn) such that

(5.12)
3∑
i=0

αiV
n+i + kA(tn+3)V n+3 = k

2∑
i=0

γiB(tn+i, V n+i), n = 0, . . . , N − 3.

Theorem 5.1 (Stability of the implicit–explicit three-step BDF scheme). Assume (1.13),
(1.14) and (1.15). Then, under the stability condition

(5.13) ∀t ∈ [0, T ] κ(t)− 1

13
ν(t)− 7 · 14

13
λ̃(t) ≥ ρ > 0,

the implicit–explicit three-step BDF method, (1.12) for q = 3, is locally stable in the
sense that, with ϑm := Um − V m, for k sufficiently small,

(5.14)
3

338
|ϑn|2 +

1

2
ρk

n∑
`=3

‖ϑ`‖2 ≤ C
2∑
j=0

(
|ϑj|2 + k‖ϑj‖2

)
,

for n = 3, . . . , N, with C a constant independent of ρ, k, n and the approximations.

Proof. Letting bm := B(tm, Um) − B(tm, V m) and subtracting (5.12) from (1.12), for
q = 3, we obtain

(5.15)
3∑
i=0

αiϑ
n+i + kA(tn+3)ϑn+3 = k

2∑
i=0

γib
n+i,
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n = 0, . . . , N − 3. As in §5.1, we take in (5.15) the inner product with ϑn+3−µ1ϑ
n+2−

µ2ϑ
n+1, with µ1 and µ2 as in (1.4), and take real parts to obtain

(5.16) Re

( 3∑
i=0

αiϑ
n+i, ϑn+3 − µ1ϑ

n+2 − µ2ϑ
n+1

)
+ kIn+3 = kJn+3

with

(5.17) In+3 := Re
(
A(tn+3)ϑn+3, ϑn+3 − µ1ϑ

n+2 − µ2ϑ
n+1
)

and

(5.18) Jn+3 := Re

( 2∑
i=0

γib
n+i, ϑn+3 − µ1ϑ

n+2 − µ2ϑ
n+1

)
.

With the notation Θn := (ϑn−2, ϑn−1, ϑn)T and the norm |Θn|G given by

|Θn|2G =
3∑

i,j=1

gij(ϑ
n−3+i, ϑn−3+j),

in view of (1.7), relation (5.16) yields the estimate

(5.19) |Θn+3|2G − |Θn+2|2G + kIn+3 ≤ kJn+3.

Furthermore, In+3 can be estimated from below exactly as in the case of the implicit
three-step BDF scheme,

(5.20) In+3 ≥
[
κ(tn+3)− 1

26
ν(tn+3)

]
‖ϑn+3‖2 − 1

2
ν(tn+3)

2∑
i=1

µ3−i‖ϑn+i‖2;

see (5.8). Therefore, all that remains to be done, is to estimate Jn+3 from above in
a suitable way. For simplicity of presentation, we assume in the following that µ̃ = 0
in (1.15); the general case can be treated similarly via a straightforward use of the
discrete Gronwall inequality at the end of the proof. To simplify the notation, we set
µ0 := 1. First, we have

Jn+3 ≤
2∑
i=0

|γi| ‖bn+i‖?
3∑
j=0

µ3−j‖ϑn+j‖,

whence, in view of the local Lipschitz condition (1.15),

Jn+3 ≤
2∑
i=0

|γi|λ̃(tn+i)‖ϑn+i‖
3∑
j=0

µ3−j‖ϑn+j‖

≤ 1

2

2∑
i=0

|γi|λ̃(tn+i)
3∑
j=0

µ3−j
(
‖ϑn+i‖2 + ‖ϑn+j‖2

)
=

1

2
· 14

13

2∑
i=0

|γi|λ̃(tn+i)‖ϑn+i‖2 +
1

2

( 2∑
i=0

|γi|λ̃(tn+i)
) 3∑
j=1

µ3−j‖ϑn+j‖2.
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Now, since λ̃(tn+i) ≤ λ̃(tn+j) + L̂k, i = 0, 1, 2, j = 1, 2, 3, and |γ0| + |γ1| + |γ2| = 7, we
easily see that

2∑
i=0

|γi|λ̃(tn+i) ≤ 7λ̃(tn+j) + Ĉk, j = 1, 2, 3.

Therefore, the above estimate for Jn+3 yields

(5.21)

Jn+3 ≤
1

2
· 14

13

2∑
i=0

|γi|λ̃(tn+i)‖ϑn+i‖2 +
1

2
7

3∑
j=1

µ3−jλ̃(tn+j)‖ϑn+j‖2

+ Ĉk

3∑
j=1

µ3−j‖ϑn+j‖2.

In view of the stability assumption (5.13), from (5.19), (5.20) and (5.21) we infer
that

(5.22)

|Θn+3|2G − |Θn+2|2G + ρk‖ϑn+3‖2 +
1

2
kν(tn+3)

2∑
i=1

µ3−i
(
‖ϑn+3‖2 − ‖ϑn+i‖2

)
+ 7
(14

13
− 1

2

)
kλ̃(tn+3)‖ϑn+3‖2 ≤ 1

2
· 14

13
k

2∑
i=0

|γi|λ̃(tn+i)‖ϑn+i‖2

+
1

2
7k

2∑
i=1

µ3−iλ̃(tn+i)‖ϑn+i‖2 + Ĉk2
3∑
i=1

µ3−i‖ϑn+3‖i.

Estimating the coefficient ν(tn+3) of ‖ϑn+i‖2 on the left-hand side of (5.22) as in (5.10),
proceeding as in the proof of Proposition 5.1, and using the fact that |γ0|+ |γ1|+ |γ2| =
7, we easily arrive at the desired stability estimate (5.14), provided k is sufficiently
small. �

The sufficient stability condition (5.13) can also be written in the form (1.21) with

q = 3. We already mentioned in (1.17) how much the coefficient of ν(t) and λ̃(t) in
(1.21) with q = 3 could be possibly decreased.
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