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Abstract. We construct and analyze implicit–explicit multistep schemes for non-

linear evolution convection–diffusion partial differential equations. We establish

optimal order a priori error estimates. We are particularly interested in the depen-

dence of the stability constants on the ratio between the convection and diffusion

coefficients, the so-called Péclet number, and on the diffusion coefficient ε itself.

In particular, we show that the second order implicit–explicit backward differenti-

ation formula (BDF) admits stability constant independent of the Péclet number.

1. Introduction

This work is concerned with the design and analysis of implicit–explicit multistep

methods for parabolic semilinear convection-diffusion partial differential equation

(p.d.e.) problems. In order to focus on the time-stepping issues, only the time-

discrete schemes are discussed.

Previous works on multistep methods for evolution p.d.e. problems include [11,

4, 5, 6, 8, 12, 1, 2, 3, 7]. For the discretisation of convection–diffusion equations by

Runge–Kutta methods we refer to [9, 10]. The standard monograph for numerical

methods for parabolic equations is [15].

Multistep methods can be computationally attractive, as they do not require the

calculation of intermediate stages (in contrast to, e.g., Runge–Kutta time-stepping

schemes) to achieve high order convergence rates in time. The use of carefully

constructed implicit–explicit schemes can further reduce the computational cost by

requiring the solution of one linear equation at each time step.

More specifically, we shall construct and analyze implicit–explicit multistep meth-

ods for the following initial and boundary value problem: seek a function u :

Ω̄ × [0, T ]→ R satisfying

(1.1)


ut − ε∆u+∇ ·

(
ub(x, t)

)
+ c(x, t)u = f(u, x, t) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω.
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Here Ω ⊂ Rd is a bounded domain, Ω̄ and ∂Ω are the closure and the boundary of

Ω, respectively, T and ε are given positive numbers, and

∇ · (ub) :=
d∑
i=1

(biu)xi .

The convective coefficient b, the coefficient c, the initial value u0 and the forcing term

f are given functions. We assume the vector-valued function b : Ω̄ × [0, T ] → Rd

is continuously differentiable, c : Ω̄ × [0, T ] → R is continuous, u0 ∈ L2(Ω) and

f : R × Ω̄ × [0, T ] → R is globally Lipschitz continuous in its first argument,

uniformly with respect to its second and third arguments,

(1.2) ∃L > 0 ∀x ∈ Ω̄ ∀t ∈ [0, T ] ∀y1, y2 ∈ R |f(y1, x, t)− f(y2, x, t)| 6 L|y1− y2|,

and such that f(0, ·, t) ∈ L2(Ω), for all t ∈ [0, T ]. It is then easily seen that f(v, ·, t) ∈
L2(Ω), for any v ∈ L2(Ω) and all t ∈ [0, T ]; indeed, using the Lipschitz condition

(1.2) and elementary inequalities, we have∣∣f(v(x), x, t
)∣∣2 6 2

∣∣f(v(x), x, t
)
− f(0, x, t)

∣∣2 + 2|f(0, x, t)|2

6 2L2|v(x)|2 + 2|f(0, x, t)|2,

and our claim is evident. Additional hypotheses on the data will be imposed below.

We assume that the initial and boundary value problem (1.1) admits a sufficiently

smooth solution u.

Let now (α, β) be a strongly A(0)-stable q-step scheme and (α, γ) be an explicit

q-step scheme, characterized by three polynomials α, β and γ,

α(ζ) =

q∑
i=0

αiζ
i, β(ζ) =

q∑
i=0

βiζ
i, γ(ζ) =

q−1∑
i=0

γiζ
i.

For simplicity, we assume that the order of both q-step schemes, the implicit (α, β)

and the explicit (α, γ), is p, i.e.,

(1.3)

q∑
i=0

i`αi = `

q∑
i=0

i`−1βi = `

q−1∑
i=0

i`−1γi, ` = 0, 1, . . . , p.

As an example of schemes satisfying our assumptions we mention the implicit–

explicit BDF methods, described by the polynomials

(1.4) α(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j, β(ζ) = ζq, γ(ζ) = ζq − (ζ − 1)q.

The corresponding implicit (α, β)-schemes are the well-known BDF methods, which

are strongly A(0)-stable for q = 1, . . . , 6; their order is p = q. For a given α, the

scheme (α, γ) is the unique explicit q-step scheme of order p = q. Thus, the implicit–

explicit BDF methods satisfy the order conditions (1.3) with p = q.
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Let N ∈ N, k := T/N be the constant time step, and tn := nk, n = 0, . . . , N, be

a uniform partition of the interval [0, T ]. We assume that starting approximations

U0, . . . , U q−1 are given, as we shall be concerned with q-step schemes for (1.1).

We first write the differential equation in (1.1) in the form

(1.5) ut + Au+ C(t)u = B(t, u(t)), t ∈ (0, T ),

with appropriate for our purposes operators A,B and C. The numerical scheme

depends on the particular choice of the operators A,B and C in (1.5). We shall

discuss specific choices later on. We discretize the operators A and C implicitly,

by the implicit scheme (α, β), and the operator B explicitly, by the explicit scheme

(α, γ). Thus, we define approximations Um to the nodal values um := u(·, tm) of the

exact solution by

(1.6)

q∑
i=0

[
αiI + kβi

(
A+ C(tn+i)

)]
Un+i = k

q−1∑
i=0

γiB(tn+i, Un+i),

for n = 0, . . . , N − q.

1.1. Consistency error. We shall now discuss a suitable representation of the

consistency error of the implicit–explicit scheme (1.6), which will later be used to

derive optimal order consistency estimates; see also [1]. We assume that the order

of both schemes (α, β) and (α, γ) is p; cf. (1.3).

The consistency error En of the scheme (1.6) for the solution u of (1.1), i.e., the

amount by which the exact solution fails to satisfy (1.6), is given by

(1.7) kEn =

q∑
i=0

[
αiI + kβi

(
A+ C(tn+i)

)]
un+i − k

q−1∑
i=0

γiB(tn+i, un+i),

n = 0, . . . , N − q. First, letting

En
1 :=

q∑
i=0

[
αiu

n+i − kβiut(tn+i)
]
, En

2 := k

q∑
i=0

(βi − γi)B(tn+i, un+i),

with γq := 0, and using the differential equation in (1.5), we infer that

(1.8) kEn = En
1 + En

2 .

Furthermore, via a Taylor expansion about tn, we see that, due to the order condi-

tions of the implicit (α, β)-scheme, (i.e., the first equality in (1.3),) and the second

equality in (1.3), respectively, leading terms of order up to p − 1 cancel, and we

obtain

(1.9)


En

1 =
1

p!

q∑
i=1

∫ tn+i

tn
(tn+i − s)p−1

[
αi(t

n+i − s)− pkβi
]∂p+1u

∂tp+1
(s) ds,

En
2 =

k

(p− 1)!

q∑
i=1

(βi − γi)
∫ tn+i

tn
(tn+i − s)p−1 d

p

dtp
B(s, u(s)) ds.
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This representation of the consistency error will allow us to derive optimal order

consistency estimates in suitable norms, under reasonable regularity assumptions.

The remainder of this work is structured as follows. In Section 2, we study lin-

early implicit numerical schemes, characterised by the same discrete operator for all

time levels, and we derive optimal order error estimates. We show that, under such

general setting, the constant in the stability estimate for this family of methods de-

pends on the Péclet number. Moreover, the constant in the error estimate, depends

also on the diffusion parameter ε implicitly, through high order Sobolev norms of

the exact solution u. In such general setting one does not expect better dependence

on the singular perturbation parameter and the results should be treated as an in-

dication of the numerical challenges for this class of methods. At the other end of

the spectrum, in Section 3, we focus on first and second order schemes of BDF type,

requiring again one linear solve at every time level to advance in time. Crucially,

however, we shall make use of possibly time-dependent nonsymmetric, in general,

linear discrete operators, stemming from possible respective time-dependence of the

convective and/or reaction coefficients b and c. This somewhat nonstandard choice

will be justified below. Using the A-stability of these low order schemes, we improve

crucially on the estimates of Section 2: the stability constant is now independent

of the diffusion parameter ε, while the constant in the error estimate depends on

it only implicitly, through appropriate norms of the exact solution u. To test the

potential of the proposed method, in Section 4, we present a series of numerical

experiments demonstrating the performance of the second order BDF method in

the discretization of semilinear convection-diffusion equations, with nonlinearities

admitting non-Lipschitz growth. Although the latter result is somewhat in the folk-

lore of this class of methods, we were not able to locate a proof under the same

assumptions.

2. Error estimates with constants depending on the Péclet number

Let c? be a fixed positive number, let the operator C in (1.5) vanish, and choose

the operators A and B as Av := −ε∆v+c?v and B(t, v) := f
(
v(·), ·, t

)
−∇·

(
vb(t)

)
+(

c? − c(t)
)
v. We can then, obviously, write the p.d.e. in (1.1) in the form (1.5). For

simplicity, we suppressed the dependence on x; we shall follow this convention also

below.

With this splitting, the scheme (1.6) takes the form

(2.1)

q∑
i=0

(αiI + kβiA)Un+i = k

q−1∑
i=0

γiB(tn+i, Un+i),

n = 0, . . . , N − q.
To advance with (2.1) in time, i.e., to compute the unknown Un+q, we need

to solve one linear equation, with the same operator for all time levels. As we
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shall see below, this operator is self-adjoint and positive definite; in particular, the

approximate solutions are well defined.

We shall follow the analysis in [6], [4] and [1] to study the implicit–explicit nu-

merical scheme (1.6).

2.1. Notation and Lipschitz conditions. We let H := L2(Ω), denote by (·, ·) and

‖ · ‖ its inner product and norm, respectively, and we recall the standard Sobolev

spaces. Evidently, the operator A : D(A) = H2(Ω) ∩ H1
0 (Ω) → H is linear, self-

adjoint and positive definite; the domain V := D(A1/2) of A1/2 is V = H1
0 (Ω). We

denote by V ′ the dual of V , with respect to the pivot space H, i.e., V ′ = H−1(Ω),

and we introduce the norms ||| · ||| and ||| · |||? in V and V ′, respectively, by

|||v||| := ‖A1/2v‖ =
(
− ε(∆v, v) + c?(v, v)

)1/2
=
(
ε‖∇v‖2 + c?‖v‖2

)1/2

and

|||v|||? := ‖A−1/2v‖ =
(
v, (−ε∆+ c?I)−1v

)1/2
.

In a standard fashion, A can be extended to an operator from V onto V ′; the

notation (·, ·) will additionally signify the duality pairing between V ′ and V . The

operator B(t, ·) : D(A)→ H can also be viewed as an operator from V into V ′.

For notational convenience, we split the operator B into two parts, B = B1 +B2,

with

B1(t)v := −∇ ·
(
vb(t)

)
and B2(t, v) := f

(
v(·), ·, t

)
+
(
c? − c(t)

)
v.

Useful estimates for |||v|||?. We have

|||v|||? = sup
u∈V \{0}

(v, u)(
ε‖∇u‖2 + c?‖u‖2

)1/2
,

which leads to the estimate

(2.2) |||v|||? 6 min
{ 1√

c?
‖v‖, 1√

ε
‖v‖H−1

}
.

Indeed, first

|||v|||? 6 sup
u∈V \{0}

(v, u)√
c?‖u‖

6 sup
u∈V \{0}

‖v‖ ‖u‖√
c?‖u‖

,

whence

(2.3) |||v|||? 6
1√
c?
‖v‖;

furthermore,

|||v|||? 6 sup
u∈V \{0}

(v, u)√
ε‖∇u‖

6 sup
u∈V \{0}

‖v‖H−1 ‖∇u‖√
ε‖∇u‖

6
1√
ε
‖v‖H−1 .

Lipschitz conditions. First, for v, ṽ ∈ V, we have

(B1(t, v), ṽ
)

=

∫
Ω

vb(·, t) · ∇ṽ dx =
d∑
i=1

∫
Ω

bi(·, t)v(ṽ)xi dx,
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whence, with

b̂ := max
16i6d

max
x∈Ω̄

06t6T

|bi(x, t)|,

we obtain∣∣(B1(t, v), ṽ
)∣∣ 6 b̂‖v‖

d∑
i=1

‖(ṽ)xi‖ 6 b̂
√
d‖v‖

( d∑
i=1

‖(ṽ)xi‖2
)1/2

= b̂
√
d‖v‖ ‖∇ṽ‖.

Therefore, since
√
ε‖∇ṽ‖ 6 |||ṽ|||,

(2.4) ∀t ∈ [0, T ] ∀v ∈ V |||B1(t, v)|||? 6 µ1‖v‖ with µ1 :=
b̂√
ε

√
d.

Furthermore, with

ĉ := max
x∈Ω̄

06t6T

|c? − c(x, t)|,

in view of (1.2), for v, ṽ ∈ V, we have

‖B2(t, v)−B2(t, ṽ)‖2 6
∫
Ω

[
(L+ ĉ)|v(x)− ṽ(x)|

]2
dx = (L+ ĉ)2‖v − ṽ‖2,

whence, according to (2.3),

|||B2(t, v)−B2(t, ṽ)|||? 6
1√
c?
‖B2(t, v)−B2(t, ṽ)‖ ≤ L+ ĉ√

c?
‖v − ṽ‖,

i.e.,

(2.5) ∀t ∈ [0, T ] ∀v, ṽ ∈ V |||B2(t, v)−B2(t, ṽ)|||? 6 µ2‖v− ṽ‖ with µ2 :=
L+ ĉ√
c?
.

From (2.4) and (2.5) we obtain the desired global Lipschitz condition

(2.6) ∀t ∈ [0, T ] ∀v, ṽ ∈ V |||B(t, v)−B(t, ṽ)|||? 6 µ‖v − ṽ‖,

with Lipschitz constant µ := µ1 + µ2,

(2.7) µ =
b̂√
ε

√
d+

L+ ĉ√
c?
.

Notice that the Lipschitz constant µ is bounded for uniformly bounded Péclet

numbers b̂/
√
ε.

2.2. Consistency. From the representations (1.8) and (1.9) of the consistency er-

ror, we immediately obtain, under obvious regularity requirements, the desired op-

timal order consistency estimate

(2.8) max
06n6N−q

|||En|||? 6 ckp;

the coefficient c depends on the diffusion parameter ε, through appropriate norms

of the exact solution u.
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2.3. Stability. Let Um, V m ∈ V,m = 0, . . . , N, satisfy (2.1) and

(2.9)

q∑
i=0

(αiI + kβiA)V n+i = k

q−1∑
i=0

γiB(tn+i, V n+i),

n = 0, . . . , N − q, respectively. Then, with ϑm := Um − V m,m = 0, . . . , N, we have

the stability estimate

(2.10) ‖ϑn‖2 + k
n∑
`=0

|||ϑ`|||2 6 c

q−1∑
j=0

(
‖ϑj‖2 + k|||ϑj|||2

)
, n = q − 1, . . . , N,

with a constant c independent of Um, V m and k; see [6, Theorem 2.1]. Actually,

since the Lipschitz constant µ in the Lipschitz condition (2.6) depends on ε only

through the Péclet number, the stability constant c in (2.10) depends on the diffusion

parameter ε also only through the Péclet number; indeed, it is bounded, for bounded

Péclet numbers.

2.4. Error estimates. According to [6, Theorem 2.1], we have the following error

estimate:

Theorem 2.1 (Error estimate). Let (α, β) be a strongly A(0)-stable q-step scheme

and (α, γ) be an explicit q-step scheme. Let the order of both schemes (α, β) and

(α, γ) be p. Assume we are given starting approximations U0, U1, . . . , U q−1 ∈ V to

u0, . . . , uq−1 such that

(2.11) max
06j6q−1

(
‖uj − U j‖+ k1/2|||uj − U j|||

)
6 ckp.

Let Un ∈ V, n = q, . . . , N, be recursively defined by (2.1). Let en = un − Un, n =

0, . . . , N, be the approximation error. Then, there exists a constant c, independent

of k and n, depending exponentially on b̂2/ε, such that

(2.12) ‖en‖2 + k

n∑
`=0

|||e`|||2 6 c
{ q−1∑

j=0

(
‖ej‖2 + k|||ej|||2

)
+ k

n−q∑
`=0

|||E`|||2?
}
,

n = q − 1, . . . , N, whence, in view of (2.11) and (2.8),

(2.13) max
06n6N

‖u(tn)− Un‖ 6 ckp.

In the estimate (2.12) E` is the consistency error of the scheme; see (1.7) with

C(t) = 0. �

Remark 2.1 (BDF schemes). We focus here on the case that the method (2.1)

is the implicit–explicit q-step BDF scheme. Since in the Lipschitz condition (2.6)

the norm ||| · ||| does not enter on the right-hand side, the stability constants λ in

the notation of [6] vanishes; therefore, Remark 7.2 of [4] applies, and we can relax
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condition (2.11) on the starting approximations U0, . . . , U q−1. More precisely, the

statement of Theorem 2.1 is valid in this case under the assumption

max
06j6q−1

‖uj − U j‖ 6 ckp. �

Remark 2.2 (A wider class of linearly implicit methods). The splitting of the p.d.e.

in (1.1) that we used in the scheme (2.1) satisfies also the assumptions imposed in

[4]. Therefore, with this specific splitting, the initial and boundary value problem

(1.1) can be discretized by the wider class of linearly implicit methods discussed in

[4]. Thus, the abstract results of [4] apply and lead to error estimates with error

constants depending exponentially on b̂2/ε, as is the case in Theorem 2.1. �

2.5. Alternative forms of the implicit–explicit schemes. Various possibili-

ties of splitting the p.d.e. in (1.1) before discretizing by implicit–explicit multistep

schemes are possible; here, we comment on two such alternatives.

2.5.1. First choice. Consider now the operators Ã and B̃ defined as Ãv := −ε∆v,
and B̃(t, v) := f

(
v(·), ·, t

)
−∇·

(
vb(t)

)
− c(t)v. Notice that the only difference to the

splitting we used in (2.1) is that here we set c? = 0. With this splitting, the scheme

(1.6) takes the form

(2.14)

q∑
i=0

(αiI + kβiÃ)Un+i = k

q−1∑
i=0

γiB̃(tn+i, Un+i),

n = 0, . . . , N − q. In this case,

|||v||| := ‖Ã1/2v‖ =
√
ε‖∇v‖ and |||v|||? := ‖Ã−1/2v‖ =

1√
ε
‖(−∆)−1/2v‖.

and, with B̃2(t, v) := f
(
v(·), ·, t

)
, we have

‖B̃2(t, v)− B̃2(t, ṽ)‖2 =

∫
Ω

∣∣f(v(x), x, t
)
− f

(
ṽ(x), x, t

)∣∣2 dx
6 L2

∫
Ω

|v(x)− ṽ(x)|2 dx = L2‖v − ṽ‖2.

Furthermore, using the Poincaré–Friedrichs inequality ‖w‖ 6 CPF‖∇w‖, for w ∈ V,
we easily see that |||v|||? 6 1√

ε
CPF‖v‖, for v ∈ H. Thus, we infer that

(2.15) ∀t ∈ [0, T ] ∀v, ṽ ∈ V |||B̃2(t, v)− B̃2(t, ṽ)|||? 6 µ̃2‖v − ṽ‖

with µ̃2 := 1√
ε
LCPF. Therefore, a straightforward application of the analysis of [6]

leads to a stability estimate with constant depending exponentially on 1/ε, rather

than on the Péclet number. However, the scheme (2.14) can, obviously, be equiva-

lently written in the form

(2.16)

q∑
i=0

(αiI + kβiA)Un+i − kc?
q∑
i=0

βiU
n+i = k

q−1∑
i=0

γiB̃(tn+i, Un+i),
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n = 0, . . . , N − q. Applying here the analysis of [1], rather than the one of [6], we

can then easily see that the results of both Theorem 2.1 and Remark 2.1 remain

valid also for the scheme (2.14).

2.5.2. Second choice. We discuss here the discretization of the linear part of equation

(1.1) implicitly, by the implicit scheme (α, β), and of the nonlinear part explicitly, by

the explicit scheme (α, γ). With the operator A used above, C(t)v := ∇ ·
(
vb(t)

)
+(

c(t)− c?
)
v, and B(t, v) := f

(
v(·), ·, t

)
, the scheme can be written in the form (2.1).

Applying the analysis of [1] (with the operator A rather than with Ã) we easily see

that the results of Theorem 2.1 remain valid in this case as well. Furthermore, in

the case of BDF schemes the requirement on the starting approximations can be

relaxed as in Remark 2.1. Notice that c? is used in the analysis of the schemes only;

the schemes themselves are independent of c?.

Let us emphasize that, in contrast to the schemes (2.1) and (2.14), in this case

the operator of the linear equations is in general time dependent, and so varies from

one time level to the next, if b and/or c are/is time dependent. Also, the numerical

approximations are well defined, provided the time step k is sufficiently small. More

precisely, for a given w ∈ V ′, it suffices to show that equation

(2.17) αqv + kβq
[
− ε∆v +∇ ·

(
vb(tn+q)

)
+ c(tn+q)v

]
= w,

possesses a unique solution v ∈ V. A well-known property of A(0)-stable multistep

schemes (α, β) is that the product αqβq is positive. Assume, without loss of general-

ity, that αq is positive. According to the Lax–Milgram Lemma, it obviously suffices

to show that the bilinear form a : V × V → R,

a(v, ṽ) := αq(v, ṽ) + kβqε(∇v,∇ṽ) + kβq
(
∇ · (vb(tn+q)), ṽ

)
+ kβq

(
c(tn+q)v, ṽ

)
is coercive and continuous. First, for v ∈ V, using an elementary inequality, we have

a(v, v) = αq‖v‖2 + kβqε‖∇v‖2 − kβq
(
vb(tn+q),∇v

)
+ kβq

(
c(tn+q)v, v

)
= αq‖v‖2 + kβqε‖∇v‖2 +

1

2
kβq
(
v∇ · b(tn+q), v

)
kβq
(
c(tn+q)v, v

)
>
(
αq −

1

2
βqk‖∇ · b(tn+q)‖L∞(Ω) − βqk‖c(tn+q)‖L∞(Ω)

)
‖v‖2 + kβqε‖∇v‖2,

and we infer that a is indeed coercive for sufficiently small k, independent of ε.

Similarly, for v, ṽ ∈ V, we have

|a(v, ṽ)| 6 αq‖v‖ ‖ṽ‖+ kβqε‖∇v‖ ‖∇ṽ‖+ kβqb
?‖v‖ ‖∇ṽ‖+ kβqc

?‖v‖ ‖ṽ‖,

and see that a is also continuous.

It is evident from the above discussion that, Péclet-number independent stability

analysis, in such general setting, is an essential challenge and may potentially not

be true for schemes that are not A-stable. Indeed, as we shall see below, upon

employing non-standard and specialised techniques, we are able to recover Péclet-

number independent stability bounds for implicit–explicit Euler method (a known
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result, but nevertheless, included for completeness of the presentation) and for the

classical implicit–explicit second order BDF method; the latter is an improvement

upon the results presented in [12].

3. Low order schemes

Focusing, now, on low order time stepping schemes, our goal is to establish error

estimates via the energy technique with stability constants independent of ε.

We consider, again, the initial and boundary value problem (1.1) and assume that

(3.1) c(x, t) +
1

2
∇ · b(x, t) > b2 ∀x ∈ Ω̄ t ∈ [0, T ],

for some positive b; notice that this can always be achieved by either adding, if neces-

sary, to both sides of the differential equation a term of the form au with a sufficiently

large coefficient a, or by the change of variables ũ := e−atu. Notice that this affects

the constant in the error estimate. Indeed, in the first case the Lipschitz constant

changes from L to L+ a. In the second case f̃(ũ, x, t) = e−atf(eatũ, x, t) satisfies the

Lipschitz condition with constant L, but we need to multiply the approximations Ũn

of ũn by eat
n

to obtain approximations Un of un and thus un−Un = eat
n(
ũn− Ũn

)
.

For convenience we introduce the operator A(t) : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) =:

H, t ∈ [0, T ], by

A(t)v := −ε∆v +∇ ·
(
vb(x, t)

)
+ c(x, t)v.

Notice, however, that A(t) is not self-adjoint and possibly time-dependent. Obvi-

ously, A(t) can be extended to an operator from V := H1
0 (Ω) to V ′ = H−1(Ω).

Taking the duality paring with v and integrating by parts, we have

(A(t)v, v) = ε‖∇v‖2 + (∇ ·
(
vb(x, t)

)
+ c(x, t)v, v)

= ε‖∇v‖2 + ((c+
1

2
∇ · b)v, v).

Thus, in view of (3.1), A(t) is coercive:

(3.2) (A(t)v, v) > ε‖∇v‖2 + b2‖v‖2 ∀v ∈ V = H1
0 (Ω).

3.1. Implicit–explicit Euler method. For completeness, we begin by presenting

the lowest order case of implicit–explicit Euler method, keeping careful track of the

stability constants.

We recursively define a sequence of approximations Um to the nodal values u(tm)

of the solution u of the initial and boundary value problem (1.1) by the implicit–

explicit Euler method,

(3.3) Un+1 + kA(tn+1)Un+1 = Un + kf(Un, ·, tn), n = 0, . . . , N − 1,

with starting approximation U0 := u0. In view of the coercivity (3.2), it can be

easily seen that the numerical approximations are well defined.



IMPLICIT–EXPLICIT METHODS FOR CONVECTION–DIFFUSION EQUATIONS 11

3.1.1. Consistency. The consistency error En of the implicit–explicit Euler scheme

(3.3) for the solution u of (1.1),

(3.4) kEn = un+1 + kA(tn+1)un+1 − un − kf(un, ·, tn), n = 0, . . . , N − 1,

can be written in the form kEn = En
1 + En

2 with

(3.5) En
1 =

∫ tn+1

tn
(tn − s)utt(s) ds, En

2 = k

∫ tn+1

tn

d

dt
f(u(s), ·, s) ds;

cf. (1.9). Therefore, under obvious regularity assumptions, we derive the desired

optimal order consistency estimate

(3.6) max
06n6N−1

‖En‖ 6 ck

with a suitable positive constant c. (Of course, c depends implicitly on ε, since the

solution u depends on ε.)

3.1.2. Stability. Let Um, V m ∈ V,m = 0, . . . , N, satisfy (3.3) and

(3.7) V n+1 + kA(tn+1)V n+1 = V n + kf(V n, ·, tn), n = 0, . . . , N − 1,

respectively. Then, ϑm := Um − V m,m = 0, . . . , N, satisfy the relation

(3.8) ϑn+1 + kA(tn+1)ϑn+1 = ϑn + k
[
f(Un, ·, tn)− f(V n, ·, tn)

]
,

n = 0, . . . , N − 1. Taking in (3.8) the inner product with ϑn+1 and utilizing (3.2),

we obtain

‖ϑn+1‖2+kε‖∇ϑn+1‖2+kb2‖ϑn+1‖2 6 (ϑn, ϑn+1)+k(f(Un, ·, tn)−f(V n, ·, tn), ϑn+1).

Therefore,

‖ϑn+1‖2 + kε‖∇ϑn+1‖2 + kb2‖ϑn+1‖2 6
1

2
‖ϑn‖2 +

1

2
‖ϑn+1‖2

+ k‖f(Un, ·, tn)− f(V n, ·, tn)‖ ‖ϑn+1‖

6
1

2
‖ϑn‖2 +

1

2
‖ϑn+1‖2 +

1

2
Lk‖ϑn‖2 +

1

2
Lk‖ϑn+1‖2,

whence, by multiplying by 2,

(3.9)
[
1− (L− 2b2)k

]
‖ϑn+1‖2 ≤ (1 + Lk)‖ϑn‖2.

Now, for sufficiently small k,

(3.10) ‖ϑn+1‖2 6 (1 + c?k)‖ϑn‖2,

with a suitable constant c?. This is obviously valid in the case 2b2 > L, with c? = L.

In the case L > 2b2, (3.9) yields, for k < 1/(L− 2b2),

(3.11) ‖ϑn+1‖2 6
1 + Lk

1− (L− 2b2)k
‖ϑn‖2.
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For any fixed c? (strictly) larger than 2(L− b2), it is easily seen that

(3.12)
1 + Lk

1− (L− 2b2)k
6 1 + c?k,

provided that k is sufficiently small,

(3.13) k 6
c? − 2(L− b2)

c?(L− 2b2)
,

and (3.10) follows from (3.11) and (3.12).

Now, from (3.10) we obtain

‖ϑn‖2 6 (1 + c?k)n‖ϑ0‖2, n = 0, . . . , N,

and thus

‖ϑn‖2 6 ec?nk‖ϑ0‖2, n = 0, . . . , N.

Hence, we arrive at the desired stability estimate

(3.14) max
16n6N

‖ϑn‖ 6 ec?T/2‖ϑ0‖.

Crucially, the above stability constant is independent of the diffusion coefficient ε.

3.1.3. Error estimate. Let en := un−Un, n = 0, . . . , N. Subtracting (3.3) from (3.4),

we obtain the error equation

(3.15) en+1 + kA(tn+1)en+1 = en + k
[
f(un, ·, tn)− f(Un, ·, tn)

]
+ kEn,

n = 0, . . . , N − 1. Taking here the inner product with en+1, proceeding as in the

stability proof, and utilizing the consistency estimate (3.6) as well as the fact that

e0 vanishes, we easily derive the desired error estimate

(3.16) max
16n6N

‖en‖ 6 ck.

The constant c on the right-hand side of (3.16) depends on ε only implicitly through

Sobolev norms of the solution u (see (3.5) and (3.6)).

3.2. Implicit–explicit two–step BDF method. Here we present a robust error

analysis for the IMEX using a two-step BDF method. Although we present the

time-discrete analysis only, the result can be used to improve fully discrete a priori

error bounds for fully discrete BDF-IMEX schemes for various stable spatial dis-

cretisations, e.g., [12]; in particular the exponential dependence of the a priori error

bound constant on the Péclet number from [12] can be avoided.

With starting approximation U0 := u0, we first perform one step of the implicit–

explicit Euler scheme to compute U1, i.e., we let U1 be given by

(3.17) U1 + kA(t1)U1 = U0 + kf
(
U0, ·, t0

)
,
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and then let the approximations U2, . . . , UN be given by the implicit–explicit two–

step BDF scheme,

(3.18)
3

2
Un+2 − 2Un+1 +

1

2
Un + kA(tn+2)Un+2 = 2kf(Un+1, ·, tn+1)− kf(Un, ·, tn),

n = 0, . . . , N − 2. Again, in view of (3.2), it can be easily seen that the numerical

approximations are well defined.

3.2.1. Consistency. The consistency error En of the implicit–explicit BDF scheme

(3.18),

(3.19)
kEn =

3

2
un+2 − 2un+1 +

1

2
un + kA(tn+2)un+2

− 2kf(un+1, ·, tn+1) + kf(un, ·, tn),

n = 0, . . . , N − 2, can be written in the form

kEn = En
1 + En

2

with

En
1 = −

∫ tn+1

tn
(tn+1 − s)2uttt(s) ds+

3

4

∫ tn+2

tn
(tn+2 − s)

(
tn+2 − s− 4

3
k
)
uttt(s) ds,

En
2 = − 2k

∫ tn+1

tn
(tn+1 − s) d

2

dt2
f
(
u(s), ·, s

)
ds+ k

∫ tn+2

tn
(tn+2 − s) d

2

dt2
f
(
u(s), ·, s

)
ds;

cf. (1.9). Therefore, under the regularity assumptions

(3.20) ‖uttt(t)‖? 6 c1 and
∥∥∥ d2

dt2
f
(
u(t), ·, t

)∥∥∥ 6 c2,

for all t ∈ [0, T ], we immediately conclude that

max
06n6N−2

‖En
1 ‖ 6 2c1k

2 and max
06n6N−2

‖En
2 ‖ 6 2c2k

2.

Thus, we obtain the desired estimate for the consistency error En,

(3.21) max
06n6N−2

‖En‖ 6 Ck2.

Remark 3.1 (Regularity requirement). Note that (3.20) can be replaced by slightly

weaker C2,1-requirements on u and f . Similar remark applies to (3.5) and (3.6). �

3.2.2. Stability. Let U0, . . . , UN ∈ V satisfy (3.17) and (3.18), and V 0, . . . , V N ∈ V
satisfy

(3.22)
3

2
V n+2− 2V n+1 +

1

2
V n + kA(tn+2)V n+2 = 2kf(V n+1, ·, tn+1)− kf(V n, ·, tn),

n = 0, . . . , N − 2. Let

ϑm := Um − V m and bm := f(Um, ·, tm)− f(V m, ·, tm),
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m = 0, . . . , N. Subtracting (3.22) from (3.18), we obtain

(3.23)
3

2
ϑn+2 − 2ϑn+1 +

1

2
ϑn + kA(tn+2)ϑn+2 = 2kbn+1 − kbn.

Now, we observe the identity

(3.24)

(3

2
ϑn+2 − 2ϑn+1 +

1

2
ϑn, ϑn+2

)
=

5

4
‖ϑn+2‖2 − ‖ϑn+1‖2 − 1

4
‖ϑn‖2

−
(
(ϑn+2, ϑn+1)− (ϑn+1, ϑn)

)
+

1

4
‖ϑn+2 − 2ϑn+1 + ϑn‖2;

cf. [16]. We note that (3.24) stems from the G-stability of the BDF method (α, β)

with the positive definite symmetric matrix G,

G =
1

4

(
5 −2

−2 1

)
;

see [14, Example 6.5].

Taking the inner product with ϑn+2 in (3.23), and using (3.24) and (3.2), we have

(3.25)

5

4
‖ϑn+2‖2 − ‖ϑn+1‖2 − 1

4
‖ϑn‖2 −

(
(ϑn+2, ϑn+1)− (ϑn+1, ϑn)

)
+ kε‖∇ϑn+2‖2 + kb2‖ϑn+2‖2 6 2k‖bn+1‖ ‖ϑn+2‖+ k‖bn‖ ‖ϑn+2‖.

Now, in view of the Lipschitz condition (1.2), we have

(3.26) ‖bm‖ 6 L‖ϑm‖;

therefore, (3.25) yields

(3.27)

5

4
‖ϑn+2‖2 − ‖ϑn+1‖2 − 1

4
‖ϑn‖2 −

(
(ϑn+2, ϑn+1)− (ϑn+1, ϑn)

)
+ kε‖∇ϑn+2‖2 + kb2‖ϑn+2‖2 6 2Lk‖ϑn+1‖ ‖ϑn+2‖+ Lk‖ϑn‖ ‖ϑn+2‖,

and, using a standard Poincaré-Friedrichs inequality ‖v‖2 6 cPF‖∇v‖2, we infer

(3.28)
5

4

(
‖ϑn+2‖2 − ‖ϑn+1‖2

)
+

1

4

(
‖ϑn+1‖2 − ‖ϑn‖2

)
−
(
(ϑn+2, ϑn+1)− (ϑn+1, ϑn)

)
6
(3L

2
− δ)k‖ϑn+2‖2 + Lk‖ϑn+1‖2 +

Lk

2
‖ϑn‖2,

with δ := cPF ε+ b2. Summing in (3.28) from n = 0 to n = `, we obtain

5

4

(
‖ϑ`+2‖2 − ‖ϑ1‖2

)
+

1

4

(
‖ϑ`+1‖2 − ‖ϑ0‖2

)
− (ϑ`+2, ϑ`+1)

6 (3L− δ)k
`+2∑
n=0

‖ϑn‖2 − (ϑ1, ϑ0),

whence, easily,

1

4
‖ϑ`+2‖2 6 (3L− δ)k

`+2∑
n=0

‖ϑn‖2 +
1

2

(
‖ϑ1‖2 + ‖ϑ0‖2

)
.
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Therefore, we have,

(3.29) ‖ϑ`‖2 6 4(3L− δ)k
∑̀
n=0

‖ϑn‖2 + 2
(
‖ϑ1‖2 + ‖ϑ0‖2

)
,

` = 2, . . . , N. Now, for sufficiently small k, whose size depends adversely only on

L, application of the discrete Gronwall inequality leads to the desired local stability

estimate

(3.30) ‖ϑn‖2 6 c
(
‖ϑ1‖2 + ‖ϑ0‖2

)
, n = 1, . . . , N.

Note that, in particular, the dependence of the stability constant c on ε is desirable,

in that it diminishes as ε→ 0 and can even be beneficial for large ε.

Now, let V 1 and V 0 be related by

(3.31) V 1 + kA(t1)V 1 = V 0 + kf(V 0, ·, t0),

i.e., starting with initial value V 0 we obtain V 1 by performing one step with the

implicit–explicit Euler scheme to the differential equation in (1.1); see (3.17) and

(3.18). Obviously, in view of the stability property (3.14) of the implicit–explicit

Euler method, ‖ϑ1‖ 6 c‖ϑ0‖, which combined with (3.30) leads to our final stability

estimate

(3.32) max
16n6N

‖ϑn‖ 6 c‖ϑ0‖,

with a constant c > 0 independent of ε.

3.2.3. Error estimates. Let the implicit–explicit BDF2 approximations U0, . . . , UN

be given by (3.17) and (3.18). Assume that the solution u of (1.1) is sufficiently

smooth, such that (3.21) and (3.6) be valid. Then, combining stability and consis-

tency in the standard way we establish the following optimal order error estimate

(3.33) max
06n6N

‖u(tn)− Un‖ 6 ck2.

Again, here the constant c in (3.32) depends only implicitly on ε, through its de-

pendence on Sobolev norms of the exact solution u, via the consistency estimates

(3.21) and (3.6).

Remark 3.2 (Energy technique for higher order BDF methods). Proceeding as in

Section 2.1, we can see that

(3.34) |
(
A(t)v, u

)
| 6

(√
ε‖∇v‖+µ‖v‖

)(
ε‖∇u‖2+b2‖u‖2

)1/2 ∀v, u ∈ V = H1
0 (Ω),

with a constant µ depending on d,maxx,t |c(x, t)| and the Péclet number b̂/
√
ε. In

view of the coercivity condition (3.2) and (3.34), as well as of the fact that the time

interval [0, T ] is bounded, a slight modification of the stability analysis of [2] leads

to optimal order error estimates in our case with constants depending on the Péclet

number for BDF methods up to order five. Notice that (3.34) is a slight relaxation

of the corresponding boundedness condition [2, (1.7)]. The energy stability analysis



16 GEORGIOS AKRIVIS AND EMMANUIL H. GEORGOULIS

in [2] is based on the Nevanlinna–Odeh multiplier technique. Moreover, it is not

clear if it is possible to improve upon these estimates to arrive to a Péclet-number

independent stability analysis for A(α)-stable BDF methods with α < π/2. �

The proposed implicit-explicit methods are somewhat non-standard in that they

require the solution of a non-symmetric linear system per time-step. Indeed, it is a

usual practice to treat convection explicitly also in an effort to arrive at symmetric

linear systems instead. Such methods, however, require careful tuning of the dis-

cretization parameters, as hyperbolic-type CFL restrictions are introduced by the

explicit treatment of the dominant convection term. The latter is, crucially, not the

case for the low order schemes studied in this work.

We shall now argue that the implicit treatment of the predominantly skew-symme-

tric convection term does not hinder the computational efficiency of the proposed

methods in any essential fashion. This is because nonsymmetric linear systems

arising from the discretisation of the convection-diffusion spatial operator through

some stable finite elements (e.g., streamline upwinded Petrov-Galerkin methods,

discontinuous Galerkin approaches, etc.) admit a number of special properties that

can be exploited in the design of scalable preconditioning strategies. For instance,

for discontinuous Galerkin methods for steady convection-diffusion problems it has

been shown in [13] that, preconditioning by the symmetric part of the convection-

diffusion stiffness matrix for the interior penalty discontinuous Galerkin method

within a preconditioned GMREs iteration, provides a three-step recurrence Krylov

method that converges independently of the spatial mesh-size. This means that,

up to the cost of inversion of a symmetric preconditioner, the complexity of the

preconditioned GMREs is comparable to that of a standard Conjugate Gradient

iteration that would normally be used for the respective symmetric linear system

of the classical diffusion-only implicit IMEX scheme. At the same time the step

of inverting the symmetric part of the stiffness matrix can be efficiently tackled by

standard multilevel approaches, whose convergence is further aided by the presence

of a strong reaction coefficient stemming from the time discretization.

4. Numerical Experiments

We present some numerical experiments investigating the convergence rates for

the implicit-explicit second order BDF (BDF2) method, described in Section 3.2,

as well as its robustness with respect to the Péclet number. To fully asses the

applicability of the proposed method, our numerical investigations are not confined

to globally Lipschitz nonlinearities.

4.1. Example 1. We begin with considering the semilinear convection-diffusion

problem for Ω = [0, 1]2, T = 1, b = (1, 1)T , c = 0 and f(u, x, t) = −u2 + g(x, t), with

g such that the exact solution of the problem is given by

u(x, t) := (1− exp(−t))x1x2(1− x1)(1− x2), x := (x1, x2)T .
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ε = 1 ε = 10−1

k ‖e‖L∞(L2) rate k ‖e‖L∞(L2) rate

1.0e-1 2.519e-4 – 1.0e-1 1.646e-4 –

5.0e-2 6.603e-5 1.93 5.0e-2 4.289e-5 1.94

1.0e-2 2.674e-6 1.99 1.0e-2 2.221e-6 1.84

5.0e-3 6.687e-7 1.99 5.0e-3 5.832e-7 1.93

1.0e-3 2.682e-8 1.99 1.0e-3 2.451e-8 1.97

ε = 10−3 ε = 10−5

k ‖e‖L∞(L2) rate k ‖e‖L∞(L2) rate

1.0e-1 3.075e-4 – 1.0e-1 3.790e-4 –

5.0e-2 8.958e-5 1.78 5.0e-2 1.102e-4 1.78

1.0e-2 3.874e-6 1.95 1.0e-2 4.786e-6 1.95

5.0e-3 9.731e-7 1.99 5.0e-3 1.203e-6 1.99

1.0e-3 3.897e-8 2.00 1.0e-3 4.572e-8 2.03

Table 4.1. Example 1. Error and convergence rates.

The implicit-explicit BDF2 method is implemented for ε = 1, 10−1, 10−3, 10−5, using

the finite element library FEniCS, with spatial discretisation via conforming finite

elements on a 32× 32 triangular mesh. The mesh is fine enough to ensure that the

time-discretisation error dominates the spatial error, which is, generally, non-zero as

cubic conforming elements on triangular meshes are used for all computations but

one, namely for k = 10−3, ε = 10−5, where quadric elements are used.

The errors and the convergence rates are given in Table 4.1, where k is the time-

step size, ‖e‖L∞(L2) := max06n6N ‖u(tn) − Un‖, and ‘rate’ is the respective conver-

gence rate between two consecutive time-step sizes. As predicted by the theory,

second order convergence with respect to k is observed in all cases.

4.2. Example 2. Next, we consider a convective variant of the classical Fisher equa-

tion, namely problem (1.1) with Ω = [0, 1]2, T = 1, b = (1, 1)T , c = 0 and f(u, x, t) =

10u(1 − u). We apply the implicit-explicit BDF2 method for ε = 10−1, 10−2, with

spatial discretisation via conforming quadratic finite elements on a 64 × 64 trian-

gular mesh. The finite element space is accurate enough to ensure that the time-

discretisation error dominates the spatial error and that the boundary layers are,

therefore, sufficiently resolved.

As no analytical solution is available, the time-discretisation error is computed by

comparing the numerical solution to a much finer reference numerical solution Ũn,

n = 0, 1, . . . , N . The reference numerical solution is computed using the implicit-

explicit Euler method from Section 3.1, with k = 2.5 · 10−4 and cubic conforming
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ε = 10−1 ε = 10−2

k ‖e‖L∞(L2) rate k ‖e‖L∞(L2) rate

1.0e-1 4.982e-2 – 5.0e-2 6.743e-1 –

5.0e-2 1.647e-2 1.58 2.5e-2 2.653e-1 1.34

2.5e-2 4.348e-3 1.87 1.25e-2 2.382e-2 3.48

1.25e-2 8.677e-4 2.12 6.125e-3 6.793e-3 1.81

Table 4.2. Example 2. Error and convergence rates.

finite elements on the same meshes as the numerical solution. The errors and the

convergence rates are given in Table 4.2, where k is the time-step size, ‖e‖L∞(L2) :=

max06n6N ‖Ũn − Un‖, and ‘rate’ is the respective convergence rate between two

consecutive time-step sizes. Approximately second order convergence with respect

to k is observed in this case also.
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