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GEORGIOS AKRIVIS

Abstract. We analyze the discretization of nonlinear parabolic equations in Hilbert
spaces by both implicit and implicit–explicit multistep methods and establish local
stability under best possible and best possible linear stability conditions, respectively.
Our approach is based on suitable quantifications of the non-self-adjointness of linear
elliptic operators and a discrete perturbation argument.

1. Introduction

Let T > 0 and u0 ∈ H, and consider the initial value problem, for a possibly nonlinear
abstract parabolic equation,

(1.1)
{
u′(t) + A(t)u(t) = B(t, u(t)), 0 < t < T,

u(0) = u0,

in the usual triple of separable complex Hilbert spaces V ⊂ H = H ′ ⊂ V ′, with V
densely and continuously imbedded in H. Here A(t) : V → V ′, t ∈ [0, T ], is a linear
operator, whereas the operator B(t, ·) : V → V ′, t ∈ [0, T ], may be nonlinear. Cf.,
e.g., [20, Chapter 3], [30, Chapters 3 and 4], [25, Sections 6.8.1, 6.9.4, 7.11.2, 9.3], [29,
Chapter 4]. We assume that (1.1) possesses a unique, smooth solution.

Let (α, β) and (α, γ) be implicit and explicit q-step methods, respectively, generated
by three polynomials α, β and γ,

α(ζ) =

q∑
i=0

αiζ
i, β(ζ) =

q∑
i=0

βiζ
i, γ(ζ) =

q−1∑
i=0

γiζ
i,

with real coefficients αi, βi and γi.
Let N ∈ N, k := T/N be the constant time step, and tn := nk, n = 0, . . . , N, be a

uniform partition of the interval [0, T ]. Since we consider q-step schemes, we assume that
starting approximations U0, . . . , U q−1 ∈ V are given. We recursively define a sequence
of approximations Um ∈ V to the nodal values um := u(tm) of the solution u of the
initial value problem (1.1) by discretizing the differential equation in (1.1) either by the
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implicit scheme (α, β),

(1.2)
q∑
i=0

(
αiI + kβiA(t

n+i)
)
Un+i = k

q∑
i=0

βiB(tn+i, Un+i),

n = 0, . . . , N − q, with I the identity operator on H, or by the implicit–explicit scheme
(α, β, γ),

(1.3)
q∑
i=0

(
αiI + kβiA(t

n+i)
)
Un+i = k

q−1∑
i=0

γiB(tn+i, Un+i),

n = 0, . . . , N−q. The implicit–explicit scheme (α, β, γ) results by employing the implicit
scheme (α, β) for the discretization of the linear part and the explicit scheme (α, γ) for
the discretization of the nonlinear part of the differential equation; see [5, 6, 1]. The
implicit scheme (1.2) has, in general, more advantageous stability properties than its
implicit–explicit counterpart (1.3); however, if B(t, ·) is nonlinear, (1.2) is a nonlinear
equation in the unknown Un+q. To approximate Un+q, we need to linearize, for instance
by the Newton method; we shall not study linearizations of (1.2) here. In contrast
to (1.2), the unknown Un+q appears in (1.3) only linearly, since γq = 0; therefore, to
advance with the implicit–explicit scheme (1.3) in time, we need to solve, at each time
level, just one linear equation, which reduces to a linear system of equations, if we
discretize also in space.

We assume that the implicit method (α, β) is strongly A(0)-stable and denote by
ϑ, 0 < ϑ ≤ 90◦, the largest angle for which the method (α, β) is A(ϑ)-stable.

1.1. Abstract setting. We denote by (·, ·) both the inner product on H and the
antiduality pairing between V ′ and V, and by | · | and ∥ · ∥ the norms on H and V,
respectively. The space V ′ may be considered the completion of H with respect to the
dual norm ∥ · ∥⋆,

∥v∥⋆ := sup
ṽ∈V
ṽ ̸=0

|(v, ṽ)|
∥ṽ∥

= sup
ṽ∈V
∥ṽ∥=1

|(v, ṽ)|.

We assume that the operator A(t) : V → V ′ is uniformly coercive and bounded, i.e.,
(1.4) Re(A(t)v, v) ≥ κ(t)∥v∥2 ∀v ∈ V

and
(1.5) ∥A(t)v∥⋆ ≤ ν(t)∥v∥ ∀v ∈ V,

respectively, with two positive functions, κ, ν : [0, T ] → R, uniformly bounded from
below by a positive constant and from above, respectively. Operators satisfying (1.4)
and (1.5) are sectorial in the sense that their numerical range {(A(t)v, v)/(v, v), v ∈
V, v ̸= 0} is contained in a sector Sφ, Sφ := {z ∈ C : z = ρeiψ, ρ ≥ 0, |ψ| ≤ φ}, of
half-angle φ < 90◦.

High-order multistep schemes are not A-stable. To take advantage of the A(ϑ)-
stability of the implicit scheme (α, β), in the case ϑ < 90◦, we need to quantify the
non-self-adjointness of the operator A(t). There are several equivalent measures of the
non-self-adjointness of linear operators. Which measure or estimate of the non-self-
adjointness of an operator is more suitable depends also on the employed stability
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technique. In the case of the energy technique, the ratio ν(t)/κ(t) is commonly used as
an estimate of the non-self-adjointness of A(t); notice, however, that this ratio depends
on the norm ∥ · ∥ on V and may be a crude estimate of the non-self-adjointness of A(t);
see Section 4. On the other hand, the smallest half-angle of a sector containing the nu-
merical range of A(t) is a measure rather than an estimate of the non-self-adjointness
of A(t), which has been used in the stability analysis of multistep methods for linear
parabolic equations by alternative stability techniques, such as Cauchy integral repre-
sentations or spectral and Fourier techniques; see, e.g., [14, 15, 26]. As we shall see later
on, sharp sufficient stability conditions for nonlinear parabolic equations are nonlinear
in this measure of the non-self-adjointness of A(t); see (4.14).

It will prove advantageous for our purposes to introduce alternative equivalent mea-
sures of the non-self-adjointness of A(t). To this end, we first decompose A(t) into
its self-adjoint and anti-self-adjoint parts As(t) :=

(
A(t) + A(t)⋆

)
/2 and Aa(t) :=(

A(t)− A(t)⋆
)
/2, respectively,

(1.6) A(t) = As(t) + Aa(t), t ∈ [0, T ].

Then, with the bounded linear operator A(t) : H → H and its anti-self-adjoint part
Aa(t),

(1.7) A(t) := A−1/2
s (t)A(t)A−1/2

s (t) = I +Aa(t), Aa(t) = A−1/2
s (t)Aa(t)A

−1/2
s (t),

with I the identity operator on H, for the operator A(t) we have the equivalence

(1.8) ∀v ∈ V (A(t)v, v) ∈ Sφ ⇐⇒ |Aa(t)| ≤ tanφ ⇐⇒ |A(t)| ≤ 1

cosφ.

Indeed, for v ∈ V, with ṽ := A
1/2
s (t)v ∈ H, we have

(A(t)v, v) = (A(t)A−1/2
s (t)ṽ, A−1/2

s (t)ṽ) = (A−1/2
s (t)A(t)A−1/2

s (t)ṽ, ṽ)

= (A(t)ṽ, ṽ) = ((I +Aa(t))ṽ, ṽ) = |ṽ|2 + (Aa(t)ṽ, ṽ),

i.e.,

(1.9) (A(t)v, v) = |ṽ|2
[
1 +

(Aa(t)ṽ, ṽ)

|ṽ|2
]

∀v ∈ V, v ̸= 0.

Due to the anti-self-adjointness of Aa(t), the second term in brackets is purely imaginary
and (notice that iAa(t) is self-adjoint)

sup
ṽ∈H
ṽ ̸=0

|(Aa(t)ṽ, ṽ)|
|ṽ|2

= |Aa(t)|;

see, e.g., [27, Theorem 2.2.11]; the first equivalence in (1.8) follows immediately from
the last relation and (1.9). Furthermore, it is easily seen that the norms of Aa(t) and
A(t) are related by
(1.10) |A(t)|2 = 1 + |Aa(t)|2

(cf. (2.6) in the sequel); this yields the second equivalence in (1.8). In view of (1.8),
the norms of both Aa(t) and A(t) are alternative measures of the non-self-adjointness
of the linear operator A(t).
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Obviously, any stability condition on |Aa(t)| can be equivalently written as a stability
condition on |A(t)| or on the smallest half-angle φ(t) of the sector Sφ(t) containing the
numerical range of A(t), and vice versa. Usually, stability analyses lead directly to
linear sufficient stability conditions; indirectly, one may reformulate such conditions as
nonlinear sufficient stability conditions on other quantities. It turns out that the best
possible sufficient stability condition for the implicit scheme (1.2), under which we shall
indeed establish stability, is linear in |Aa(t)| (and in the Lipschitz bound λ2(t) of B(t, ·),
see (1.12) in the sequel) and nonlinear in |A(t)| or φ(t). Thus, our crucial assumption
on the linear operator A(t) is
(1.11) |Aa(t)v| ≤ λ1(t)|v| ∀v ∈ H ∀t ∈ [0, T ],

with a non-negative continuous stability function λ1. Our main assumption on the non-
linear operator B(t, ·) : V → V ′ is that it satisfies the local Lipschitz condition
(1.12) |A−1/2

s (t)
(
B(t, v)−B(t, ṽ)

)
| ≤ λ2(t)|A1/2

s (t)(v − ṽ)|+ µ2(t)|v − ṽ| ∀t ∈ [0, T ],

for all v, ṽ in a tube Tu, Tu := {v ∈ V : mint ∥v − u(t)∥ ≤ 1}, around the solution u,
defined in terms of the norm ∥·∥ on V, with a non-negative continuous stability function
λ2 and a bounded function µ2. Clearly, (1.12) holds as an equality with µ2(t) = 0 for
B(t, ·) := λ2(t)As(t); in particular, the condition λ2(t) < 1 ensures local parabolicity of
the differential equation in (1.1); actually, depending on the particular scheme we will
use for the discretization of (1.1) in time as well as on λ1(t), we will need to assume
that λ2(t) is suitably small.

Furthermore, we assume that the operators A(t), B(t, ·) : V → V ′, t ∈ [0, T ], satisfy
a Lipschitz condition in t,

(1.13) ∥
(
A(t)− A(s)

)
v∥⋆ ≤ LA|t− s| ∥v∥ ∀s, t ∈ [0, T ] ∀v ∈ V,

and a Lipschitz-like condition, namely
(1.14) ∥[B(t, v)−B(t, ṽ)]− [B(s, v)−B(s, ṽ)]∥⋆ ≤ LB|t− s| ∥v − ṽ∥ ∀s, t ∈ [0, T ],

for v, ṽ ∈ Tu, respectively; notice that the Lipschitz-like condition on B(t, ·) is local in
the second argument. Actually, the Lipschitz conditions (1.13) and (1.14) can easily be
relaxed to bounded variation conditions; see Remark 2.1. Notice also that[

B(t, v)−B(t, ṽ)
]
−

[
B(s, v)−B(s, ṽ)

]
=

∫ t

s

[
Bt(τ, v)−Bt(τ, ṽ)

]
dτ,

with Bt(τ, ·) denoting the partial derivative of B with respect to t; thus, it is readily
seen that (1.14) is satisfied if Bt(τ, ·) : V → V ′ satisfies the local Lipschitz condition
(1.15) ∥Bt(τ, v)−Bt(τ, ṽ)∥⋆ ≤ LB∥v − ṽ∥ ∀v, ṽ ∈ Tu,

uniformly in τ ∈ [0, T ].
Since the implicit scheme (α, β) is A(0)-stable, the product αqβq is positive. It then

follows immediately from the Lax–Milgram lemma that, given a w ∈ V ′, the linear
equation
(1.16) αqv + kβqA(t)v = w

possesses a unique solution v ∈ V, for any fixed t ∈ [0, T ]. Therefore, given the starting
approximations U0, . . . , U q−1 ∈ V, the approximations U q, . . . , UN ∈ V are well defined
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by the implicit–explicit scheme (1.3). We refer to [1, §3 and Remark 6.1] for a discussion
concerning existence and local uniqueness of approximate solutions U q, . . . , UN ∈ V for
the implicit scheme (1.2).

1.2. The stability result. We first introduce two constants, K(α,β) and K(α,β,γ), by

(1.17) K(α,β) := sup
x>0

max
ζ∈K

|xβ(ζ)|
|(α + xβ)(ζ)|

, K(α,β,γ) := sup
x>0

max
ζ∈K

|xγ(ζ)|
|(α + xβ)(ζ)|

,

with K denoting the unit circle in the complex plane, K := {z ∈ C : |z| = 1}. Under
our hypotheses, the constants K(α,β) and K(α,β,γ) are finite; cf. [6, 1]. Actually, with ϑ
the largest angle for which the scheme (α, β) is A(ϑ)-stable, we have

(1.18) K(α,β) =
1

sinϑ ;

see [1]. Moreover, for some implicit–explicit multistep schemes, the constants K(α,β,γ)

are explicitly given in [6] and [8].
The main result of this article is as follows:

Theorem 1.1 (Stability of the schemes (1.2) and (1.3)). Let λ1 and λ2 be the stability
functions of the boundedness condition (1.11) and of the local Lipschitz condition (1.12),
respectively. Then, under the linear conditions

(1.19) (cotϑ)λ1(t) +K(α,β)λ2(t) < 1 ∀t ∈ [0, T ]

and

(1.20) (cotϑ)λ1(t) +K(α,β,γ)λ2(t) < 1 ∀t ∈ [0, T ],

respectively, on the stability functions λ1 and λ2, the implicit multistep scheme (1.2)
and the implicit–explicit multistep scheme (1.3) are locally stable in the following sense:
If U0, . . . , UN ∈ Tu satisfy (1.2) and (1.3), respectively, and V 0, . . . , V N ∈ Tu satisfy
the corresponding perturbed equations

(1.21)
q∑
i=0

(
αiI + kβiA(t

n+i)
)
V n+i = k

q∑
i=0

βiB(tn+i, V n+i) + kEn

and

(1.22)
q∑
i=0

(
αiI + kβiA(t

n+i)
)
V n+i = k

q−1∑
i=0

γiB(tn+i, V n+i) + kEn,

n = 0, . . . , N − q, respectively, then with ϑm := V m − Um, for sufficiently small time
step k, we have

(1.23) |ϑn|2 + k
n∑
ℓ=0

∥ϑℓ∥2 ≤ C
{ q−1∑

j=0

(
|ϑj|2 + k∥ϑj∥2

)
+ k

n−q∑
ℓ=0

∥Eℓ∥2⋆
}
,

n = q, . . . , N, with a constant C independent of the time step k, the approximations
Un, V n and the perturbations En.
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Actually, (1.19) and (1.20) are best possible linear sufficient stability conditions on
the functions λ1 and λ2 in the sense that none of the three coefficients cotϑ,K(α,β) and
K(α,β,γ) can be replaced by a smaller coefficient, if we want the schemes (1.2) and (1.3),
respectively, to be stable for all initial value problems (1.1) with linear operators A(t)
of the form (1.6) satisfying the boundedness condition (1.11) and nonlinear operators
B(t, ·) satisfying the local Lipschitz condition (1.12); see [3]. Indeed, as we shall see, in
the case of the implicit scheme (1.2), a necessary stability condition is linear, namely
of the form of (1.19) with strict inequality replaced by nonstrict inequality; therefore,
the linear sufficient stability condition (1.19) is sharp, even among possibly nonlinear
conditions on the stability functions λ1 and λ2.

Stability of implicit–explicit multistep methods under the sufficient stability condition
(1.20) was recently established in [3] for a particular subclass of equations of the form
(1.1), namely with A(t) =

[
1 + ia(t)

]
As, where As is a time-independent, positive

definite, self-adjoint operator, i is the imaginary unit and a is a real-valued function.
Combining the stability result of Theorem 1.1 with the easily established consistency

of the implicit–explicit scheme (1.3), we are led to optimal-order a priori error estimates;
see Proposition 2.2 in the sequel. These results extend easily to fully discrete schemes
if we discretize in space, for instance by the finite element method; cf., e.g., [6, 4]. The
error analysis for the implicit schemes (1.2) and the analysis of linearizations of these
schemes are left to future work.

We assumed that the stability functions λ1 and λ2 are continuous for simplicity; it
suffices to assume that the functions on the left-hand sides of the stability conditions
(1.19) and (1.20) are uniformly bounded away from 1.

The local stability estimates of Theorem 1.1 are valid in any tube T̃u ⊂ V of u, defined
in terms of other norms, provided the local Lipschitz conditions (1.12) and (1.14) hold
in T̃u.

An advantage of the implicit schemes is thatK(α,β) may be much smaller thanK(α,β,γ);
see [1, Table 2.1] for the case of the backward difference formula (BDF) methods. A
drawback of the implicit schemes, on the other hand, is that to advance in time we need
to solve, at each time level, a nonlinear equation. Thus, to implement such schemes,
we need to linearize, for instance by the Newton method.

1.3. An example. Let Ω ⊂ Rd be a bounded domain with smooth boundary ∂Ω,
and consider the following initial and boundary value problem, subject to homogeneous
Dirichlet boundary conditions,

(1.24)


ut −

d∑
i,j=1

(
(aij(x, t) + ãij(x, t))uxj

)
xi
= B(t, u) in Ω × [0, T ],

u = 0 on ∂Ω × [0, T ],

u(·, 0) = u0 in Ω,

with T positive and u0 : Ω → C a given initial value. Here, Oι, Õι : Ω× [0, T ] → Cd,d are
uniformly positive definite and Hermitian, and anti-Hermitian matrices, respectively,
with smooth entries aij(x, t) and ãij(x, t), respectively, and B(t, ·) are suitable, possibly
nonlinear, operators. We assume that (1.24) possesses a smooth solution.
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We consider complex-valued functions in Ω and, with standard notation for Sobolev
spaces, let H := L2 := L2(Ω), V := H1

0 := H1
0 (Ω) and V ′ = H−1 := H−1(Ω). We then

let the time-dependent, linear operators As(t), Aa(t) : V → V ′ be defined by

(1.25) As(t)v := −
d∑

i,j=1

(
aij(·, t)vxj

)
xi
, Aa(t)v := −

d∑
i,j=1

(
ãij(·, t)vxj

)
xi
,

and write (1.24) in the form (1.1) with A(t) := As(t) + Aa(t) and B(t, ·) : V → V ′, t ∈
[0, T ], (possibly) nonlinear operators. Notice that the operators As(t) and Aa(t) are
positive definite and self-adjoint, and anti-self-adjoint, respectively. We shall elaborate
on the boundedness condition (1.11) for this example in Section 5.

Some early references for multistep methods for parabolic equations are [31, 14, 15,
32, 18, 19]. The analysis originated in [31], where linear parabolic equations with
self-adjoint elliptic operators were considered; spectral techniques were employed. A-
stable two-step methods for nonlinear parabolic equations are investigated by the energy
technique in [32]. Multistep methods for linear parabolic equations with general time-
independent operators are analyzed in [14, 15]; a Cauchy integral representation is
used and stability bounds, containing a logarithmic factor, for linear equations with
maximally sectorial operators are established. The analysis of [14, 15] is extended via
a discrete perturbation argument to linear parabolic equations with time-dependent
operators and to quasilinear parabolic equations, respectively, in [18, 19]; spectral theory
is employed in the case of self-adjoint operators, whereas the von Neumann inequality
is used in the case of A-stable methods; in the case of strongly A(ϑ)-stable methods
and operators with numerical range in a sector Sϑ0 of angle ϑ0 < ϑ the analysis relies
on the stability bounds of [14, 15].

Implicit–explicit multistep methods, for linear parabolic equations, were introduced
and analyzed in [13]; the analysis was extended to nonlinear parabolic equations in [5, 6,
1, 12, 2, 3, 9]. Implicit multistep schemes are studied in [21] for nonlinear stiff differential
equations and in [26] for linear parabolic equations with time-dependent operators. The
analysis in [21, 26, 6, 1, 2, 3] is based on spectral and Fourier techniques. In contrast,
in [13, 5] the energy method is employed; the drawback of the specific analysis is that
it does not lead to quantified sufficient stability conditions on the stability functions
λ1 or λ2. Energy methods for high-order multistep schemes that do lead to quantified
sufficient stability conditions were only recently applied to BDF schemes of order up
to 5, first in [22] for implicit BDF methods for linear parabolic equations on evolving
surfaces, and subsequently in [12] and [2, 9] for implicit and implicit–explicit BDF
schemes for quasilinear and nonlinear parabolic equations, respectively.

Multistep and, in particular, BDF methods in Banach spaces are analyzed, e.g., in
[24, 16, 17, 11, 10]; the analysis in [24, 16] and [17, 11, 10] relies on semigroup theory and
discrete maximal parabolic regularity, respectively; more precisely, in [11] the discrete
maximal parabolic regularity is combined with the energy technique.

The efficiency of implicit–explicit BDF methods for nonlinear parabolic equations has
been investigated by extensive numerical experiments in, e.g., [7] with very satisfactory
results; see also relevant references therein.

For a variety of time-stepping schemes for parabolic equations and their properties,
we refer to the classical monograph in this field, namely [28].
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An outline of the article is as follows: In Section 2, we first recall the main stability
result of [1]; then, combining this result with a suitable decomposition of the operator
A(t) in (1.6), we prove Theorem 1.1 and establish optimal-order error estimates. In
Section 3, we give necessary stability conditions for the schemes (1.2) and (1.3) and
discuss the sharpness of the sufficient stability conditions (1.19) and (1.20); the stability
condition for the implicit schemes is sharp even among possibly nonlinear sufficient
stability conditions on the stability functions λ1 and λ2; whether this is the case also for
the implicit–explicit schemes remains open. In Section 4, we present additional sufficient
stability conditions. For BDF schemes up to order 5, stability has also been established
by the energy technique, under more stringent sufficient stability conditions than the
corresponding present ones in the case of the three-, four- and five-step methods. In
Section 5, we elaborate on some special cases of parabolic equations of the form (1.24).

2. Proof of the stability result

We first present a stability result of [1] and then prove Theorem 1.1. Our approach
combines the main idea of [3] with a discrete perturbation argument and concerns a
much wider class of nonlinear parabolic equations. Combining stability and consistency,
we establish optimal order error estimates for the implicit–explicit schemes.

2.1. A known stability result. In this subsection, we assume that the operators A
and B in (1.1) are time independent, and the linear operator A is of the form
(2.1) A = As + Ã

with As : V → V ′ a time-independent, positive definite, self-adjoint linear operator, and
a general bounded linear operator Ã : V → V ′, not necessarily anti-self-adjoint,
(2.2) |A−1/2

s Ãv| ≤ λ1|A1/2
s v|+ µ1|v| ∀v ∈ V,

with a stability constant λ1 and a constant µ1.
It is shown in [1] that the implicit scheme (1.2) and the implicit–explicit scheme (1.3),

respectively, are locally stable in the tube Tu for the initial value problem (1.1), with
operator A as described in this section, provided the stability constants λ1 and λ2 in
the boundedness condition (2.2) and in the local Lipschitz condition (1.12), with the
operator As(t) replaced by As, are small enough such that
(2.3) K(α,β)λ1 +K(α,β)λ2 < 1

and
(2.4) K(α,β)λ1 +K(α,β,γ)λ2 < 1,

respectively. Furthermore, (2.3) and (2.4) are best possible linear sufficient stability
conditions on the constants λ1 and λ2 in the sense that none of the coefficients K(α,β)

and K(α,β,γ) can be replaced by a smaller coefficient if we want the schemes (1.2) and
(1.3), respectively, to be stable for all equations (1.1) satisfying (2.2) and (1.12); see
[1, 6]. Notice that both constants K(α,β) and K(α,β,γ) are, for consistent schemes, larger
than or equal to 1.

The only difference between the sufficient stability conditions (2.3) and (1.19), as
well as between (2.4) and (1.20), is that λ1 in (2.3) and (2.4), respectively, is replaced
by (cosϑ)λ1 in (1.19) and (1.20). A geometric interpretation of this difference is that
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λ1 in (2.3) and (2.4) accounts for the operator Ã of (2.1), in the ‘direction’ of which
we did not impose any restriction; in contrast, λ1 in (1.19) and (1.20) accounts for
the anti-self-adjoint operator Aa; the fact that Aa is the operator analogue of a purely
imaginary number, i.e., a perturbation of the self-adjoint operator As in the ‘direction’
of the imaginary axis, is reflected in (1.19) and (1.20) through the length (cosϑ)λ1 of
the projection of iλ1 in the direction perpendicular to the boundary of the stability
sector Sϑ; see Figure 2.1.

x

y

C
1

ϑ ϑ

Sϑ

λ1

sin
ϑ−

λ 1
cos

ϑ

λ1 cosϑ

Figure 2.1. Geometric interpretation of the stability conditions (1.19)
and (1.20): (cosϑ)λ1 is the length of the component (projection) of iλ1
in the direction perpendicular to the boundary of the stability sector Sϑ.

We now present the main stability result of [1] for the implicit–explicit scheme (1.3);
see [1, (6.6)] and [6, (2.12)]. The proof of the corresponding stability result for the
implicit scheme (1.2) is completely analogous.

Proposition 2.1 (The main stability result of [1]). Assume that the linear operator
A : V → V ′ is of the form (2.1), and let λ1 and λ2 be the stability constants of the
boundedness condition (2.2) and of the local Lipschitz condition (1.12) for the time-
independent operator B : V → V ′, with the operator As(t) replaced by As, respectively.
Then, under the linear stability condition (2.4) on λ1 and λ2, the implicit–explicit multi-
step scheme (1.3) is locally stable in the following sense: If U0, . . . , UN , V 0, . . . , V N ∈ Tu
satisfy (1.3) and the corresponding perturbed equations (1.22), respectively, then the sta-
bility estimate (1.23) holds true for the differences ϑm := V m − Um, with a constant C
independent of the time step k, the approximations Un, V n and the perturbations En.

2.2. Proof of Theorem 1.1. In contrast to Section 2.1, here we consider the initial
value problem (1.1) with linear operator A(t) of the form (1.6). In this case, now with
λ1 as in (1.11), the sufficient stability conditions (2.3) and (2.4) can be relaxed to (1.19)
and (1.20), respectively, i.e., the first terms on the left-hand sides of (2.3) and (2.4) can
be multiplied by cosϑ. See the relevant comments in [3].

We will see that Theorem 1.1 for the implicit–explicit scheme (1.3) follows from
Proposition 2.1 by using a more favourable decomposition of the operator A(t) and a
discrete perturbation argument. The proof of the corresponding stability result for the
implicit scheme (1.2) is again completely analogous and is omitted.
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The key point in the proof of Theorem 1.1 is the following choice of a decomposition
of the operator A(t),

(2.5) A(t) = Âs(t) + Ã(t), with Âs(t) := (1 + η)As(t) and Ã(t) := Aa(t)− ηAs(t),

with η a non-negative quantity that may depend on λ1(t) and λ2(t). We shall see that
a suitable choice of η is η := (tanϑ)λ1(t), with λ1 as in (1.11).

Now, in analogy to the anti-self-adjoint operator Aa(t) = A
−1/2
s (t)Aa(t)A

−1/2
s (t), see

(1.7), with the notation of the decomposition (2.5), we consider the operator

Ã(t) := Â−1/2
s (t)Ã(t)Â−1/2

s (t);

notice that, in contrast to Aa(t), the operator Ã(t) is not anti-self-adjoint for positive
η, since Ã(t) is not anti-self-adjoint. We have the following crucial relation between
Ã(t) and Aa(t),

Ã(t) = Â−1/2
s (t)

(
Aa(t)− ηAs(t)

)
Â−1/2
s (t) =

1

1 + η

(
Aa(t)− ηI

)
,

with I the identity operator on H. Now, in view of the anti-self-adjointness of Aa(t),
for any real number η̃ we have

(2.6) |(Aa(t)− η̃I)v|2 = |Aa(t)v|2 + η̃2|v|2 ∀v ∈ H,

and infer that the norms of the operators Ã(t) and Aa(t) are related as

(2.7) |Ã(t)|2 = 1

(1 + η)2
(
|Aa(t)|2 + η2

)
.

From (2.7) and (1.11), we obtain for the norm of Ã(t) the central estimate

(2.8) |Ã(t)v| ≤
√
λ21(t) + η2

1 + η
|v| ∀v ∈ H ∀t ∈ [0, T ].

Furthermore, it is easily seen that the operators Âs(t) and B(t, ·) satisfy the estimate

(2.9) |Â−1/2
s (t)

(
B(t, v)−B(t, ṽ)

)
| ≤ λ̂2(t)|Â1/2

s (t)(v − ṽ)|+ µ̂2(t)|v − ṽ| ∀v, ṽ ∈ Tu,

with

(2.10) λ̂2(t) :=
λ2(t)

1 + η
and µ̂2(t) :=

µ2(t)√
1 + η

.

Compare (2.8) with (1.11) and (2.9) with (1.12), respectively.

2.2.1. Time-independent operators. We first assume that the operators A and B in
(1.1) are time independent. From (2.4) and (2.8), (2.9), (2.10), we then infer that the
scheme (1.3) is locally stable for (1.1), with a time-independent operator A of the form
(1.6), if λ1 and λ2 are such that

(2.11) 1

sinϑ

√
λ21 + η2

1 + η
+K(α,β,γ)

λ2
1 + η

< 1,
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for some non-negative η. Now, for η = (tanϑ)λ1, condition (2.11) reduces to the desired
sufficient stability condition (1.20) and the proof is complete. The motivation for this
choice of η is that (2.11) can be written in the form[ 1

sinϑ

√
λ21 + η2 − η

]
+K(α,β,γ)λ2 < 1

and the expression in brackets attains its minimum at η = (tanϑ)λ1.
In the case of A-stable implicit methods (α, β), i.e., when ϑ = 90◦, it suffices to

choose the parameter η in (2.11) large enough.
Let us mention that the sufficient stability condition in [1] is linear; see (2.4). How-

ever, since the bound of the norm of Ã(t) in (2.8) is nonlinear in λ1, we are led to the
nonlinear stability condition (2.11).

2.2.2. Time-dependent operators. We shall now utilize a discrete perturbation argu-
ment to extend our previous stability result to the case of time-dependent operators
A(t), B(t, ·) : V → V ′, t ∈ [0, T ], assuming that they satisfy (1.11) and (1.12) as well
as the Lipschitz conditions (1.13) and (1.14), respectively, with respect to t. Although
this argument is well known, see, for instance, [18, 19, 26, 23, 11, 10], it is, to the best
of our knowledge, employed in the analysis of implicit and implicit–explicit multistep
methods for nonlinear parabolic equations by spectral and Fourier techniques for the
first time; in particular, it was an essential requirement up to now that the self-adjoint
part of the linear operator was time independent.

First, subtracting (1.3) from (1.22), and letting ϑm := V m − Um, we obtain

(2.12)
q∑
i=0

(
αiI + kβiA(t

n+i)
)
ϑn+i = k

q−1∑
i=0

γi
[
B(tn+i, V n+i)−B(tn+i, Un+i)

]
+ kEn,

n = 0, . . . , N −q. For a fixed m, q ≤ m ≤ N, and for n = 0, . . . ,m−q, we rewrite (2.12)
in the following form

(2.13)
q∑
i=0

(
αiI + kβiA(t

m)
)
ϑn+i = k

q−1∑
i=0

γi
[
B(tm, V n+i)−B(tm, Un+i)

]
+ kEn,

n = 0, . . . ,m− q, where

(2.14)



En := En + EnA + EnB,

EnA :=

q∑
i=0

βi
[
A(tm)− A(tn+i)

]
ϑn+i,

EnB := −
q−1∑
i=0

γi

{[
B(tm, V n+i)−B(tm, Un+i)

]
−

[
B(tn+i, V n+i)−B(tn+i, Un+i)

]}
.

Since the time t is frozen at tm in both operators A(tm) and B(tm, ·) in (2.13), and
conditions (1.11) and (1.12) are satisfied for t = tm, we can apply the already-established
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stability estimate for time-independent operators and infer that

(2.15) |ϑm|2 + k
m∑
ℓ=0

∥ϑℓ∥2 ≤ C
{ q−1∑

j=0

(
|ϑj|2 + k∥ϑj∥2

)
+ k

m−q∑
ℓ=0

∥E ℓ∥2⋆
}
;

see (1.23) for the case of time-independent operators. Notice also that the constant C
in (2.15) is independent of tm; it only depends on T, the suprema of the function on the
left-hand side of the sufficient stability condition (1.20), and the function µ2 in (1.12).

Our task is now the estimation of the last term on the right-hand side of (2.15) in a
suitable way; to this end, we shall use the Lipschitz conditions (1.13) and (1.14) with
respect to t. First, we have

∥E ℓA∥⋆ ≤
q∑
i=0

|βi| ∥[A(tm)− A(tℓ+i)]ϑℓ+i∥⋆,

and thus, using the Lipschitz continuity of A in time, see (1.13),

(2.16) ∥E ℓA∥⋆ ≤ LA

q∑
i=0

|βi|(tm − tℓ+i)∥ϑℓ+i∥, ℓ = 0, . . . ,m− q.

Analogously, using (1.14), we obtain

(2.17) ∥E ℓB∥⋆ ≤ LB

q−1∑
i=0

|γi|(tm − tℓ+i)∥ϑℓ+i∥, ℓ = 0, . . . ,m− q.

Let

(2.18) E n :=
n∑
ℓ=0

∥E ℓA + E ℓB∥2⋆ and Θn := k
n∑
ℓ=0

∥ϑℓ∥2.

In view of (2.16) and (2.17), we have

Em−q ≤ C

m−q∑
ℓ=0

( q∑
i=0

(tm − tℓ+i)∥ϑℓ+i∥
)2

≤ C

m−1∑
ℓ=0

(tm − tℓ)2∥ϑℓ∥2,

whence

Em−q ≤ Ck

m−1∑
ℓ=0

(m− ℓ)2k∥ϑℓ∥2,

i.e.,

(2.19) Em−q ≤ Ck

m−1∑
ℓ=0

(m− ℓ)2(Θℓ −Θℓ−1),

with Θ−1 := 0. Now, by summation by parts, we have
m−1∑
ℓ=0

(m− ℓ)2(Θℓ −Θℓ−1) =
m−1∑
ℓ=0

[
2(m− ℓ)− 1

]
Θℓ,
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and (2.19) yields

(2.20) Em−q ≤ Ck

m−1∑
ℓ=0

(m− ℓ)Θℓ ≤ C

m−1∑
ℓ=0

Θℓ.

From (2.15) and (2.20), we easily infer that

(2.21) Θm ≤ C
{ q−1∑

j=0

(
|ϑj|2 + k∥ϑj∥2

)
+ k

m−q∑
ℓ=0

∥Eℓ∥2⋆
}
+ Ck

m−1∑
ℓ=0

Θℓ.

Therefore, with a discrete Gronwall inequality, we obtain

(2.22) Θm ≤ C
{ q−1∑

j=0

(
|ϑj|2 + k∥ϑj∥2

)
+ k

m−q∑
ℓ=0

∥Eℓ∥2⋆
}
,

m = q, . . . , N. Combining (2.15) with (2.22), see also (2.20), we get the desired stability
estimate (1.23), and the proof of Theorem 1.1 is complete.

Remark 2.1 (Relaxation of the Lipschitz conditions (1.13) and (1.14) to bounded
variation conditions). The Lipschitz conditions (1.13) and (1.14), with respect to t, can
easily be relaxed to bounded variation conditions,
(2.23) ∥

(
A(t)− A(s)

)
v∥⋆ ≤

[
σA(t)− σA(s)

]
∥v∥, 0 ≤ s ≤ t ≤ T, ∀v ∈ V,

and

(2.24)
∥[B(t, v)−B(t, ṽ)]− [B(s, v)−B(s, ṽ)]∥⋆ ≤

[
σB(t)− σB(s)

]
∥v − ṽ∥,

0 ≤ s ≤ t ≤ T, ∀v, ṽ ∈ Tu,

with two increasing functions σA, σB : [0, T ] → R. Indeed, it is easily seen that the
analogue of (2.19) is in this case

(2.25) Em−q ≤ C

k

m−1∑
ℓ=0

[
σ(tm)− σ(tℓ)

]2
(Θℓ −Θℓ−1),

with σ(t) := σA(t) + σB(t). Then, by summation by parts, we obtain

(2.26) Em−q ≤ C

k

m−1∑
ℓ=0

aℓΘ
ℓ,

with aℓ :=
[
σ(tm)− σ(tℓ)

]2 − [
σ(tm)− σ(tℓ+1)

]2
. From (2.15) and (2.26), we infer that

(2.27) Θm ≤ C
{ q−1∑

j=0

(
|ϑj|2 + k∥ϑj∥2

)
+ k

m−q∑
ℓ=0

∥Eℓ∥2⋆
}
+ C

m−1∑
ℓ=0

aℓΘ
ℓ.

Since the sum
∑m−1

ℓ=0 aℓ is uniformly bounded by a constant independent of m and the
time step k,

m−1∑
ℓ=0

aℓ =
[
σ(tm)− σ(0)

]2 ≤ [
σ(T )− σ(0)

]2
,

a discrete Gronwall-type argument applied to (2.27) leads again to (2.22), and the
stability proof is completed as before.
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Remark 2.2 (Slight relaxation of the boundedness condition (1.11)). The boundedness
condition (1.11) can be slightly relaxed to
(2.28) |Aa(t)v| ≤ λ1(t)|v|+ µ1(t)∥v∥⋆ ∀v ∈ H ∀t ∈ [0, T ],

with the non-negative continuous stability function λ1 as in (1.11) and a bounded
function µ1;µ1 accounts for lower order terms and does not enter into the sufficient
stability conditions (1.19) and (1.20). Compare (2.28) with (2.2). For instance, if As is
a positive definite self-adjoint operator and Aa := iλ1As + iµ1A

1/2
s , then

Aa := A−1/2
s AaA

−1/2
s = iλ1I + iµ1A

−1/2
s ,

whence
(2.29) |Aav| ≤ λ1|v|+ µ1∥v∥⋆ ∀v ∈ H.

2.3. Error estimates. Here, combining the easily established consistency of the impli-
cit–explicit multistep scheme (1.3) with the local stability result of Theorem 1.1, we de-
rive optimal order error estimates. These results extend easily to fully discrete schemes
if we discretize in space, for instance by the finite element method; cf., e.g., [6, 4].

For simplicity, we assume that the order of both q-step methods, the implicit (α, β)
and the explicit (α, γ), is p, i.e.,

(2.30)
q∑
i=0

iℓαi = ℓ

q∑
i=0

iℓ−1βi = ℓ

q−1∑
i=0

iℓ−1γi, ℓ = 0, 1, . . . , p.

The consistency error En of the scheme (1.3) for the solution u of (1.1), i.e., the
amount by which the exact solution misses satisfying (1.3), is given by

(2.31) kEn =

q∑
i=0

(
αiI + kβiA(t

n+i)
)
un+i − k

q−1∑
i=0

γiB(tn+i, un+i),

n = 0, . . . , N − q; we recall that uℓ = u(tℓ) are the nodal values of the solution u of
(1.1). First, letting

En
1 :=

q∑
i=0

[
αiu

n+i − kβiu
′(tn+i)

]
, En

2 := k

q∑
i=0

(βi − γi)B(tn+i, un+i),

with γq := 0, and using the differential equation in (1.1), we infer that
(2.32) kEn = En

1 + En
2 .

Now, by Taylor expanding about tn, we see that due to the order conditions of the
implicit method (α, β), i.e., the first equality in (2.30), and the second equality in
(2.30), respectively, the leading terms of order up to p cancel, and we obtain

(2.33)


En

1 =
1

p!

q∑
i=1

∫ tn+i

tn
(tn+i − s)p−1

[
αi(t

n+i − s)− pkβi
]
u(p+1)(s) ds,

En
2 =

k

(p− 1)!

q∑
i=1

(βi − γi)

∫ tn+i

tn
(tn+i − s)p−1 d

p

dtp
B(s, u(s)) ds.
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Thus, under obvious regularity requirements, we obtain the consistency estimate

(2.34) max
0≤n≤N−q

∥En∥⋆ ≤ Ckp.

Remark 2.3 (A basic difference in the error analysis of implicit and implicit–explicit
schemes). For a specific n ≥ q, the local stability estimate (1.23) is valid for the implicit–
explicit scheme (1.3), provided that U ℓ, V ℓ ∈ Tu, ℓ = 0, . . . , n − 1. Indeed, since γq
vanishes, no estimate of the difference B(tn, Un)−B(tn, V n) is needed. This fact plays
an important role in the error analysis since it allows us to show inductively that the
approximations Um belong to Tu; see Proposition 2.2. In contrast, in the case of the
implicit scheme (1.2), to establish the stability estimate (1.23), for a specific n, we need
to assume that U ℓ, V ℓ ∈ Tu, ℓ = 0, . . . , n.

Proposition 2.2 (Optimal-order error estimates). Assume that the stability functions
λ1 and λ2 of Theorem 1.1 satisfy the stability condition (1.20), that the solution u of
(1.1) is sufficiently smooth such that the consistency estimate (2.34) is valid, and that
we are given starting approximations U0, U1, . . . , U q−1 ∈ V to u0, . . . , uq−1 such that

(2.35) max
0≤j≤q−1

(
|uj − U j|+ k1/2∥uj − U j∥

)
≤ Ckp.

Let U q, . . . , UN ∈ V be recursively defined by the implicit–explicit q-step scheme (1.3).
Then, there exists a constant C, independent of k, such that for k sufficiently small,

(2.36) max
0≤n≤N

|u(tn)− Un| ≤ Ckp.

Proof. Let en := un − Un, n = 0, . . . , N, and subtract (1.3) from (2.31). According
to the consistency estimate (2.34) and our assumption (2.35) on the accuracy of the
starting approximations U0, U1, . . . , U q−1, there exists a constant C⋆ such that

(2.37) C
{ q−1∑

j=0

(
|ej|2 + k∥ej∥2

)
+ k

N−q∑
ℓ=0

∥Eℓ∥2⋆
}
≤ C2

⋆k
2p.

Next, we shall inductively show that

(2.38) |em|2 + k
m∑
ℓ=0

∥eℓ∥2 ≤ C
{ q−1∑

j=0

(
|ej|2 + k∥ej∥2

)
+ k

m−q∑
ℓ=0

∥Eℓ∥2⋆
}
,

m = q − 1, . . . , N. This stability estimate completes then the proof since (2.36) is an
immediate consequence of (2.38) and (2.37).

Now, the estimate (2.38) is clearly valid for m = q − 1. Assume inductively that it
holds for m = q − 1, . . . , n + q − 1, 0 ≤ n ≤ N − q. Then according to (2.37) and the
induction hypothesis, we have, for k small enough,

(2.39) max
0≤j≤n+q−1

∥ej∥ ≤ C⋆k
p−1/2 ≤ 1,

and thus U j ∈ Tu, j = 0, . . . , n + q − 1. Therefore, according to our local stability
estimate (1.23) with n replaced by n + q, see also Remark 2.3, the estimate (2.38)
indeed holds for m = n+ q as well, and the proof is complete. □
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3. On the sharpness of the stability conditions (1.19) and (1.20)
In this section, we first prove that the sufficient stability condition (1.19) for the

implicit scheme (1.2) is sharp by explicitly constructing suitable parabolic equations.
Then, we give necessary stability conditions for the implicit scheme (1.2) as well as
for the implicit–explicit scheme (1.3). In the case of the implicit scheme (1.2), the
necessary stability condition is linear, and leads us again to the conclusion that the
sufficient stability condition (1.19) is sharp. For the implicit–explicit scheme (1.3), the
sufficient condition (1.20) is sharp if the implicit method (α, β) is A-stable.

3.1. Sharpness of the sufficient stability condition (1.19) for the implicit
scheme (1.2). In view of (1.18), the sufficient stability condition (1.19) for the im-
plicit scheme (1.2) can be written as

(3.1) (cosϑ)λ1(t) + λ2(t) < sinϑ ∀t ∈ [0, T ].

Notice that the bound sinϑ on the right-hand side is the distance of the number 1
from the boundary of the stability sector Sϑ of the method. The positive definite
self-adjoint operator As is the operator analogue of a positive number; thinking of it
as normalized, we can view it as the analogue of 1. On the left-hand side of (3.1),
the stability function λ2 is simply added, since it accounts for the perturbation B, in
the ‘direction’ of which we did not impose any restriction. On the other hand, the
stability function λ1 accounts for the anti-self-adjoint operator Aa; the fact that this
is a perturbation of the self-adjoint operator As in the ‘direction’ of the imaginary
axis, in the sense that anti-self-adjoint operators are the analogues of purely imaginary
numbers, is reflected in (3.1) through the coefficient cosϑ; see Figure 2.1. The stability
condition (3.1) can also be written as λ2(t) < sinϑ − (cosϑ)λ1(t) with the expression
on its right-hand side being the distance of the point 1 + iλ1(t) from the boundary of
the stability sector Sϑ of the method; see Figure 2.1.

In the simplest case ϑ = 90◦, condition (3.1) reads λ2(t) < 1; the last condition is
necessary for the parabolicity of u′+Asu = λ2(t)Asu, with a positive definite self-adjoint
operator; in particular, condition (3.1) cannot be relaxed in this case.

We now focus on the interesting case ϑ < 90◦ and, assuming that the left-hand side of
(1.19) exceeds 1, shall explicitly construct examples of parabolic equations, for which the
implicit scheme (1.2) is unstable. Indeed, in that case, we will have (cos ϑ̂)λ1+λ2 = sin ϑ̂
for some ϑ < ϑ̂ < 90◦ (see (3.1)). Consider the ray ℓϑ̂ := {ρeiϑ̂, ρ ≥ 0}, and let ẑ2
denote the orthogonal projection of z1 := 1+ iλ1 on ℓϑ̂. First, λ2 = |ẑ2− z1|; see Figures
2.1 and 4.1. Let now As be a positive definite self-adjoint operator with unbounded
spectrum and consider the “rotated” operator ẑ2As. The eigenvalues of ẑ2As lie on the
ray ℓϑ̂, which is outside the stability sector Sϑ; therefore, according to the von Neumann
criterion, the method (α, β) is unstable for the equation

(3.2) u′ + ẑ2Asu = 0.

More precisely, by definition, for ϑ̂ sufficiently close to ϑ, the ray ℓϑ̂ is not entirely
contained in the stability region S of the method; if λ is an eigenvalue of As, then the
method is unstable for equation (3.2) for all time steps k such that kẑ2λ /∈ S; since
there exists an unbounded sequence of positive eigenvalues of As, it is impossible to
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find a positive k0 such that the method is stable for equation (3.2) for all time steps
0 < k < k0.

Now, we write equation (3.2) in the form

(3.3) u′ + Asu+ iλ1Asu = B(u)

with B(u) := −(ẑ2−z1)Asu. It is easily seen that the boundedness condition (1.11) and
the Lipschitz condition (1.12) are satisfied for (3.3) with the given constants λ1 and λ2.
We infer that if the left-hand side in the stability condition (1.19) exceeds the bound
on its right-hand side, the method (α, β) is in general unstable.

3.2. Necessary stability conditions. Here, we shall give necessary stability condi-
tions for the implicit scheme (1.2) as well as for the implicit–explicit scheme (1.3). The
necessary stability conditions are expressed in terms of two suitable functions. In the
case of the implicit method (1.2) the corresponding function has a simple form and
the necessary stability condition for the implicit scheme (1.2) will lead us to the same
conclusion as in the previous subsection, namely that the sufficient stability condition
(1.19) is sharp.

3.2.1. The implicit scheme. Assume that the implicit method (α, β) is A(ϑ)-stable, with
ϑ < 90◦ as large as possible. Extending the definition (1.17) of the constant K(α,β), let

(3.4) K(α,β)(y) := sup
x>0

max
ζ∈K

|xβ(ζ)|
|α(ζ) + x(1 + iy)β(ζ)| , − tanϑ < y < tanϑ.

Notice that K(α,β)(0) = K(α,β); see (1.17). Furthermore, since

|xβ(ζ̄)|
|α(ζ̄) + x(1 + iy)β(ζ̄)|

=
|xβ(ζ)|

|α(ζ) + x(1− iy)β(ζ)| ,

with ζ̄ denoting the complex conjugate of ζ, K(α,β) is an even function of y,

K(α,β)(y) = K(α,β)(−y), |y| < tanϑ.

Our task now is to simplify the presentation (3.4) of K(α,β)(y). Since the function is
even, it suffices to consider the case of non-negative arguments y. Let d(ζ) := α(ζ)/β(ζ),
for ζ in the unit circle K , represent the points of the root locus curve of the method
(α, β). The root locus curve is symmetric with respect to the real axis. Since the method
is A(ϑ)-stable, the root locus curve lies outside the sector −Sϑ.

We introduce the parts K +
y and K −

y of the unit circle K according to the sign of
Re

(
(1− iy)d(ζ)

)
,

K +
y := {ζ ∈ K : Re

(
(1− iy)d(ζ)

)
≥ 0}, K −

y := {ζ ∈ K : Re
(
(1− iy)d(ζ)

)
< 0},

with d(ζ) the points of the root locus curve; with 0 ≤ φ < ϑ such that y = tanφ,
and d(ζ) = ρ(ζ)eiψ(ζ), ρ(ζ) ≥ 0,−π ≤ ψ(ζ) < π, we have (1 − iy)d(ζ) = ρ(ζ)

cosϑei(ψ(ζ)−ϑ),
whence ζ ∈ K +

y and ζ ∈ K −
y , respectively, simply means that d(ζ) belongs to the

rotated by the angle φ non-negative and negative complex half-planes, respectively, in
the positive direction. For x̃ > 0, we have

(3.5) |1 + x̃(1− iy)d(ζ)|2 = 1 + 2x̃Reω(ζ; y) + x̃2|ω(ζ; y)|2
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with ω(ζ; y) := (1− iy)d(ζ). Now, for ζ ∈ K +
y , we have Reω(ζ; y) ≥ 0, and the infimum

of the right-hand side of (3.5), for positive x̃, is 1. For ζ ∈ K −
y , on the other hand, the

quadratic polynomial on the right-hand side of (3.5) attains its minimum at

x̃⋆(ζ; y) := −Reω(ζ; y)
|ω(ζ; y)|2

.

Thus, we have

(3.6) sup
x̃>0

1

|1 + x̃(1− iy)d(ζ)| =


1 ∀ζ ∈ K +

y ,

|ω(ζ; y)|
| Imω(ζ; y)|

=

√
1 + y2 |d(ζ)|

| Im
(
(1− iy)d(ζ)

)
|

∀ζ ∈ K −
y .

Now, from (3.6) and the definition of K(α,β)(y) we infer that

(3.7) K(α,β)(y) = sup
ζ∈K −

y

|d(ζ)|
| Im

(
(1− iy)d(ζ)

)
|
.

Let d(ζ) = −ρ(ζ)eiψ(ζ), with ρ(ζ) ≥ 0 and −π ≤ ψ(ζ) < π. Since the method is A(ϑ)-
stable, we have |ψ(ζ)| ≥ ϑ, and the infimum of |ψ(ζ)| is ϑ. Now, with 0 ≤ φ < ϑ such
that y = tanφ, we have

(1− iy)d(ζ) = − ρ(ζ)

cosφei(ψ(ζ)−φ),

whence (3.7) takes the form

K(α,β)(y) = (cosφ) sup
ζ∈K −

y

1

| sin
(
ψ(ζ)− φ

)
|
.

Since cos
(
ψ(ζ) − φ

)
> 0 for ζ ∈ K −

y , and either −π − φ ≤ ψ(ζ) − φ ≤ −ϑ − φ or
ϑ − φ ≤ ψ(ζ) − φ ≤ π − φ, it is easily seen that the infimum of | sin

(
ψ(ζ) − φ

)
| is

sin(ϑ− φ). Thus, the previous relation yields the desired simplified representation

(3.8) K(α,β)(y) =
cosφ

sin(ϑ− φ)
, y = tanφ.

Notice that this relation can also be written in the form

(3.9) K(α,β)(y) =
1

sinϑ− cosϑ tanφ =
1

sinϑ− (cosϑ)y , 0 ≤ y < tanϑ;

the denominator is the distance of the point 1 + iy from the boundary of the stability
sector Sϑ of the method (α, β); see Figure 2.1.

We shall see that
(3.10) K(α,β)

(
λ1(t)

)
λ2(t) ≤ 1 ∀t ∈ [0, T ]

is a necessary stability condition for the implicit scheme (1.2). As before, (3.10) is
necessary if we want (1.2) to be locally stable for all equations satisfying our assumptions
with the given stability functions λ1 and λ2.

Assume that (3.10) is not satisfied for a certain value t⋆ of t; for notational simplicity,
we drop the dependence of λ1 and λ2 on t⋆. Then, for the function k,

(3.11) k(x, ζ) :=
λ2xβ(ζ)

α(ζ) + x(1 + iλ1)β(ζ)
, x > 0, |ζ| ≥ 1,
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we have
(3.12) ∃z ∈ K , x > 0 |k(x, z)| > 1.

Since
lim

|ζ|→∞
|k(x, ζ)| = λ2xβq

|αq + x(1 + iλ1)βq|
≤ λ2xβq
αq + xβq

< λ2 < 1,

we infer that there exists a ζ⋆ ∈ C with |ζ⋆| > 1 such that |k(x, ζ⋆)| = 1, i.e.,
λ2xβ(ζ

⋆)

α(ζ⋆) + x(1 + iλ1)β(ζ⋆)
= e−iψ

for a ψ ∈ [0, 2π). Therefore,
(3.13) α(ζ⋆) + x(1 + iλ1)β(ζ⋆)− λ2xeiψβ(ζ⋆) = 0.

Then, with As a positive definite self-adjoint operator, choosing the anti-self-adjoint
operator Aa := iλ1As and the linear operator B := λ2eiψAs, we readily see that the
boundedness condition (1.11) and the Lipschitz condition (1.12) are satisfied. According
to the von Neumann criterion, a necessary stability condition is that, if ν is an eigenvalue
of As, the solutions of

(3.14)
q∑
j=0

[
αj + kν

(
(1 + iλ1)βj − λ2eiψβj

)]
vn+j = 0

are bounded; for kν = x this is not the case, since in view of (3.13) the root condition
is not satisfied. Therefore, the scheme (1.2) is not unconditionally stable.

In view of the presentation (3.9) of K(α,β)(y), the necessary stability condition (3.10)
for the implicit scheme (1.2) is linear; it takes the form
(3.15) (cosϑ)λ1(t) + λ2(t) ≤ sinϑ ∀t ∈ [0, T ].

Notice that the only difference between the sufficient and necessary stability conditions
(1.19) and (3.15), respectively, for the implicit scheme (1.2) is that the former is a strict
inequality and the latter a nonstrict inequality.

3.2.2. The implicit–explicit scheme. In the case of an A-stable implicit method (α, β),
the sufficient stability condition (1.20) for the implicit–explicit scheme (1.3) is sharp.
Therefore, as in subsection 3.2.1, we assume that the implicit method (α, β) is A(ϑ)-
stable, with ϑ < 90◦ as large as possible.

In analogy to the function K(α,β), see (3.4), for − tanϑ < y < tanϑ, we define the
even function K(α,β,γ) by

(3.16) K(α,β,γ)(y) := sup
x>0

max
ζ∈K

|xγ(ζ)|
|α(ζ) + x(1 + iy)β(ζ)| .

From (3.6) and the definition of K(α,β,γ)(y), we easily infer that

(3.17) K(α,β,γ)(y) = max
{ 1√

1 + y2
max
ζ∈K +

y

|γ(ζ)|
|β(ζ)|

, sup
ζ∈K −

y

|d(ζ)|
| Im

(
(1− iy)d(ζ)

)
|
|γ(ζ)|
|β(ζ)|

}
;

compare to (3.7).
As in the case of the implicit method (1.2), see (3.10),

(3.18) K(α,β,γ)

(
λ1(t)

)
λ2(t) ≤ 1 ∀t ∈ [0, T ]
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is a necessary stability condition for the implicit–explicit scheme (1.3). A simple rep-
resentation of K(α,β,γ) is unfortunately not available. Also, in contrast to K(α,β), the
function K(α,β,γ) is in general not increasing for positive y. Therefore, since

K(α,β,γ)(y)λ2(t) ≤ 1 ∀t ∈ [0, T ],

for all 0 ≤ y ≤ λ1(t), is clearly also a necessary stability condition, we modify (3.18) as
follows: With

K̃(α,β,γ)(y) := sup
0≤s≤y

K(α,β,γ)(s), 0 ≤ y < tanϑ,

a necessary stability condition for the implicit–explicit scheme (1.3) is

(3.19) K̃(α,β,γ)

(
λ1(t)

)
λ2(t) ≤ 1 ∀t ∈ [0, T ].

The left-hand sides of (1.20) and (3.19) do not coincide, in general; consequently, in
contrast to the implicit schemes (1.2), it remains open, whether the sufficient stabil-
ity condition (1.20) is best possible also among possibly nonlinear sufficient stability
conditions for the implicit–explicit schemes (1.3) when the implicit method (α, β) is
not A-stable. The discrepancy between the best possible linear sufficient stability con-
dition (1.20) and the corresponding necessary stability condition (3.19) for concrete
implicit–explicit schemes (1.3) can be studied at least computationally.

4. Additional sufficient stability conditions

In this section, we discuss additional sufficient stability conditions for schemes (1.2)
and (1.3). Here, the non-self-adjointness of A(t) is measured either by the smallest
half-angle φ(t) of a sector containing its numerical range or by the norm of A(t) and is
estimated by the ratio ν(t)/κ(t).

4.1. Using the norm of A(t) as a measure of the non-self-adjointness of A(t).
As an alternative to (1.11), let us now use the norm of the operator A(t) : H → H as
a measure of the non-self-adjointness of the operator A(t),

(4.1) |A(t)v| ≤ λ̃1(t)|v| ∀v ∈ H ∀t ∈ [0, T ].

In view of the relation (1.10) between the norms of A(t) and Aa(t), it is easily seen
that if (1.11) holds, then (4.1) is valid with λ̃1(t) =

√
1 + [λ1(t)]2, and, conversely,

if (4.1) holds, then (1.11) is valid with λ1(t) =
√

[λ̃1(t)]2 − 1. Thus, without loss of
generality, we may assume that λ1(t) and λ̃1(t) are related as follows

(4.2) [λ̃1(t)]
2 = 1 + [λ1(t)]

2 ∀t ∈ [0, T ].

Then, the linear sufficient stability conditions (1.19) and (1.20) for the implicit scheme
(1.2) and the implicit–explicit scheme (1.3), respectively, on λ1(t) and λ2(t) transform
into the following, nonlinear in λ̃1(t) and linear in λ2(t), sufficient stability conditions

(4.3) (cotϑ)
√

[λ̃1(t)]2 − 1 +K(α,β)λ2(t) < 1 ∀t ∈ [0, T ]

and

(4.4) (cotϑ)
√
[λ̃1(t)]2 − 1 +K(α,β,γ)λ2(t) < 1 ∀t ∈ [0, T ],
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respectively. Now,

(cotϑ)
√
[λ̃1(t)]2 − 1 < (cosϑ)λ̃1(t) ⇐⇒ (cosϑ)λ̃1(t) < 1,

and we infer from (4.3) and (4.4), respectively, that

(4.5) (cosϑ)λ̃1(t) +K(α,β)λ2(t) < 1 ∀t ∈ [0, T ]

and

(4.6) (cosϑ)λ̃1(t) +K(α,β,γ)λ2(t) < 1 ∀t ∈ [0, T ]

are linear sufficient stability conditions on λ̃1(t) and λ2(t) for the implicit scheme (1.2)
and for the implicit–explicit scheme (1.3), respectively. However, as we shall now see,
(4.5) and (4.6) are not best possible linear sufficient stability conditions for the implicit
scheme (1.2) and for the implicit–explicit scheme (1.3), respectively, if the method (α, β)
is not A-stable. First, in view of (1.8), using the von Neumann stability criterion, it is
easily seen that the implicit scheme (α, β) is in general unstable for the linear part of
the differential equation in (1.1) (with vanishing nonlinear part B) if (cosϑ)λ̃1 exceeds
1. Thus, the coefficient cosϑ of λ̃1(t) in (4.5) and (4.6) cannot be replaced by a smaller
coefficient; but the coefficients K(α,β) and K(α,β,γ) of λ2(t) in (4.5) and (4.6) can be
replaced by (sin2 ϑ)K(α,β) and (sin2 ϑ)K(α,β,γ), respectively; see (4.8) and (4.10) in the
sequel; notice that, since the nonlinear sufficient stability condition (4.3) for the implicit
scheme (1.2) is sharp, (4.8) is one (among infinitely many) best possible linear sufficient
stability condition on λ̃1 and λ2 for the implicit scheme (1.2).

First, we rewrite the sharp sufficient stability condition (4.3) in the form

(4.7) K(α,β)λ2(t) < 1− (cotϑ)
√
[λ̃1(t)]2 − 1 =: f(λ̃1(t)) ∀t ∈ [0, T ]

and notice that the function f is decreasing and strictly convex in the interval [1, 1/ cosϑ].
Replacing f on the right-hand side of (4.7) by its linear Taylor polynomial, about some
point x̃ ∈ (1, 1/ cosϑ], we are led to a linear sufficient stability condition for the implicit
scheme (1.2), which is best possible in the sense that the corresponding coefficients of
λ̃1(t) and λ2(t) cannot be replaced by smaller coefficients. For instance, by Taylor
expanding about x̃ := 1/ cosϑ, we obtain the best possible linear sufficient stability
condition

K(α,β)λ2(t) <
1

sin2 ϑ

[
1− (cosϑ)λ̃1(t)

]
,

i.e.,

(4.8) (cosϑ)λ̃1(t) + (sin2 ϑ)K(α,β)λ2(t) < 1 ∀t ∈ [0, T ];

compare to (4.5). This linear stability condition can also be written as

(4.9) (cosϑ)λ̃1(t) + (sinϑ)λ2(t) < 1 ∀t ∈ [0, T ].

The linear sufficient stability condition for the implicit–explicit scheme (1.3) corre-
sponding to (4.8) reads

(4.10) (cosϑ)λ̃1(t) + (sin2 ϑ)K(α,β,γ)λ2(t) < 1 ∀t ∈ [0, T ];
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compare to (4.6). Notice that, due to the fact that λ̃1(t) ≥ 1 in (4.8) and (4.10),
whereas λ1(t) ≥ 0 in (1.19) and (1.20), the coefficients of λ2(t) in (4.8) and (4.10) are
smaller than the corresponding coefficients in (1.19) and (1.20).

4.2. Using the smallest angle of a sector containing the numerical range of
A(t) as a measure of its non-self-adjointness. As an alternative to the boundedness
conditions (1.11) or (4.1), let us now use the smallest half-angle of a sector containing
the numerical range of A(t) as a measure of its non-self-adjointness,
(4.11) (A(t)v, v) ∈ Sφ(t) ∀v ∈ V ∀t ∈ [0, T ],

with 0 ≤ φ(t) < ϑ. Then, the boundedness condition (1.11) is satisfied with λ1(t) =
tanφ(t); see (1.8). Therefore, the sufficient stability conditions (1.19) and (1.20), for
the implicit multistep scheme (1.2) and the implicit–explicit multistep scheme (1.3),
respectively, take the form
(4.12) (cotϑ) tanφ(t) +K(α,β)λ2(t) < 1 ∀t ∈ [0, T ]

and
(4.13) (cotϑ) tanφ(t) +K(α,β,γ)λ2(t) < 1 ∀t ∈ [0, T ],

respectively. Let us also note that (4.12) can be rewritten as

λ2(t) <
1

cosφ(t) [sinϑ cosφ(t)− sinφ(t) cosϑ],

i.e., as

(4.14) λ2(t) <
sin(ϑ− φ(t))

cosφ(t) ∀t ∈ [0, T ];

see Figure 4.1 for the geometric interpretation. Due to the equivalence (1.8), the suffi-
cient stability condition (4.12) for the implicit multistep scheme (1.2) is also sharp.

4.3. Estimating the non-self-adjointness of A(t) by the ratio ν(t)/κ(t). The
commonly used ratio ν(t)/κ(t) of the boundedness and coercivity functions, see (1.4)
and (1.5), is also an estimate of the non-self-adjointness of the operator A(t); notice,
however, that this ratio may be a crude estimate of the non-self-adjointness of A(t)
since it depends on the choice of the specific norm ∥ · ∥ on V ; see [2, Example 2.1].
According to (1.4) and (1.5), the time-dependent norms ∥ · ∥t,

(4.15) ∥v∥t := (As(t)v, v)
1/2 = |As(t)1/2v| ∀v ∈ V,

first used in the stability analysis of BDF methods in [2, 12], are uniformly equivalent
to ∥ · ∥,

(4.16)
√
κ(t) ∥v∥ ≤ ∥v∥t ≤

√
ν(t) ∥v∥ ∀v ∈ V.

We denote by ∥ · ∥⋆,t the corresponding time-dependent dual norm on V ′,

∀v ∈ V ′ ∥v∥⋆,t := sup
ṽ∈V
ṽ ̸=0

|(v, ṽ)|
∥ṽ∥t

= |As(t)−1/2v|.
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λ1
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sin(ϑ−
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cosφz2 =
cos(ϑ−

φ)

cosφ
eiϑ

z2

Figure 4.1. Geometric interpretation of the stability condition (4.14)
for the implicit scheme (α, β). The stability constant λ2 cannot exceed λ̃2,
the distance of the point z1 = 1 + iλ1 from the boundary of the stability
sector Sϑ of the method.

Now, for v̂ ∈ V, v̂ ̸= 0, using the first inequality in (4.16) and (1.5), with v :=
As(t)

−1/2v̂, we have
|A(t)v̂|
|v̂|

=
∥A(t)v∥⋆,t

∥v∥t
= sup

ṽ∈V
ṽ ̸=0

|(A(t)v, ṽ)|
∥ṽ∥t ∥v∥t

≤ 1

κ(t)
sup
ṽ∈V
ṽ ̸=0

|(A(t)v, ṽ)|
∥ṽ∥ ∥v∥

=
∥A(t)v∥⋆
κ(t)∥v∥

≤ ν(t)

κ(t)
,

i.e., |A(t)| ≤ ν(t)/κ(t). Consequently, replacing λ̃1(t) in (4.3) and (4.4), respectively,
by ν(t)/κ(t), we obtain sufficient stability conditions

(4.17) (cotϑ) 1

κ(t)

√
[ν(t)]2 − [κ(t)]2 +K(α,β)λ2(t) < 1 ∀t ∈ [0, T ]

and

(4.18) (cotϑ) 1

κ(t)

√
[ν(t)]2 − [κ(t)]2 +K(α,β,γ)λ2(t) < 1 ∀t ∈ [0, T ]

for the implicit scheme (1.2) and the implicit–explicit scheme (1.3), respectively; these
conditions are never more advantageous than (4.3) and (4.4), respectively, with λ̃1(t) =
|A(t)|, and may be much more restrictive than (4.3) and (4.4). Notice, also, that with
the norm ∥ · ∥t on V, (1.4) and (1.5) are satisfied with κ(t) = 1 and ν(t) = |A(t)|, that
is, the inequality |A(t)| ≤ ν(t)/κ(t) holds as an equality for this norm.

Remark 4.1 (Comparison with the energy technique). Stability of implicit as well as
of implicit–explicit BDF schemes of order up to 5 can be established also by the energy
technique under linear sufficient stability conditions on λ̃1(t) and λ2(t); see [2, 9, 12]. In
the interesting case of the three-, four-, and five-step methods, the stability conditions
of [2, 9, 12] are more stringent than the corresponding conditions (4.5) and (4.6). In
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particular, the conditions of [2, 9, 12] are, for high order BDF schemes, not best possible
linear sufficient stability conditions.

5. Application to example (1.24)
In this section we briefly discuss the boundedness condition (1.11) in the case of the

initial and boundary value problem (1.24). We will see that the bound λ1(t) is the
spectral radius of a matrix; in two simple cases more explicit forms of λ1(t) can be
derived. To save space, we do not discuss the Lipschitz condition (1.12) here, since
it is a reformulation of corresponding conditions used in, e.g., [6, 12, 7, 3]; we refer
to these articles and references therein for examples of operators satisfying (1.12) or
modifications thereof in tubes defined in terms of L∞-based Sobolev norms.

Let (·, ·) and ⟨·, ·⟩ denote the L2 inner product and the product L2 inner product in
L2 := (L2)d :=

(
L2(Ω)

)d
, respectively; we denote by | · | both corresponding norms.

With the notation of subsection 1.3, let us introduce in V, V = H1
0 = D(A

1/2
s (t)), 0 ≤

t ≤ T, the time-dependent norms ∥ · ∥t by ∥v∥t := |A1/2
s (t)v|. We identify H with its

dual, and denote by V ′ the dual of V, V ′ = H−1, and by ∥ · ∥⋆,t the time-dependent dual
norms on V ′, ∥v∥⋆,t := |A−1/2

s (t)v|. We use the notation (·, ·) also for the antiduality
pairing between V ′ and V ; then ∥v∥t = (As(t)v, v)

1/2 and ∥v∥⋆,t = (v, A−1
s (t)v)1/2.

We shall see that the boundedness condition (1.11) is satisfied with

(5.1) λ1(t) := max
x∈Ω

ρ
(
S(x, t)

)
, t ∈ [0, T ],

where ρ(·) is the spectral radius of the antihermitian matrices S(x, t) := Oι−1/2(x, t)

Õι(x, t)Oι−1/2(x, t).
First, clearly,

(Asv, ṽ) =
d∑

i,j=1

(aijvxj , ṽxi) =
d∑
i=1

( d∑
j=1

aijvxj , ṽxi

)
=

d∑
i=1

(
(Oι∇v)i, ṽxi

)
,

i.e.,
(As(t)v, ṽ) = ⟨Oι(·, t)∇v,∇ṽ⟩.

In particular, (As(t)v, v) = ⟨Oι(·, t)∇v,∇v⟩, whence

(5.2) ∥v∥t = |A1/2
s (t)v| = |Oι1/2(·, t)∇v|.

Now,

(Aa(t)v, ṽ) = ⟨Õι(·, t)∇v,∇ṽ⟩ = ⟨S(·, t)Oι1/2(·, t)∇v,Oι1/2(·, t)∇ṽ⟩,

whence

(5.3) |(Aa(t)v, ṽ)| ≤ max
x∈Ω

∥S(x, t)∥2 |Oι1/2(·, t)∇v| |Oι1/2(·, t)∇ṽ|,

with ∥ · ∥2 denoting the spectral (Euclidean) norm of a matrix. Therefore,

|(Aa(t)v, ṽ)| ≤ max
x∈Ω

∥S(x, t)∥2 |A1/2
s (t)v| |A1/2

s (t)ṽ|, t ∈ [0, T ],
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and thus, since the spectral norms of the antihermitian matrices S(x, t) are equal to
their spectral radii,

|A−1/2
s (t)Aa(t)v| ≤ λ1(t)|A1/2

s (t)v| ∀v ∈ V ∀t ∈ [0, T ],

i.e.,
(5.4) |A−1/2

s (t)Aa(t)A
−1/2
s (t)v| ≤ λ1(t)|v| ∀v ∈ H ∀t ∈ [0, T ],

with λ1 as given in (5.1). Thus (1.11) is satisfied with the function λ1 of (5.1).
Next we consider two special cases. In the first case, (5.1) takes a very simple form;

in the second, we give an explicit form of the matrices S(x, t); their spectral radii can
then easily be computed.

5.1. Two special cases. First case: Assume first that
(5.5) Õι(x, t) = ia(x, t)Oι(x, t), x ∈ Ω, 0 ≤ t ≤ T,

with a a smooth real-valued function, a : Ω × [0, T ] → R. Then, S(x, t) = ia(x, t)Id
with Id the d× d unit matrix; thus,
(5.6) λ1(t) = max

x∈Ω
|a(x, t)| ∀t ∈ [0, T ].

The analysis of implicit–explicit multistep methods in this particular case, with a matrix
Oι independent of t and a function a independent of x, was the subject of [3]. If

(5.7) Oι(x, t) = a(x, t)Id, Õι(x, t) = iã(x, t)Id, x ∈ Ω, 0 ≤ t ≤ T,

with a and ã smooth real-valued functions, a, ã : Ω × [0, T ] → R, then the parabolic
equation in (1.24) takes the form

ut −∇ ·
(
(a(x, t) + iã(x, t))∇u

)
= B(t, u).

In this case
Õι(x, t) = i ã(x, t)

a(x, t)
Oι(x, t), x ∈ Ω, 0 ≤ t ≤ T,

and, according to (5.6),

(5.8) λ1(t) = max
x∈Ω

|ã(x, t)|
a(x, t)

∀t ∈ [0, T ].

Second case: Here we shall consider the general case in two space dimensions, d = 2.
It is well known that

(5.9) Oι1/2 = 1√
trOι+ 2

√
detOι

(
Oι+

√
detOι I2

)
,

with trOι := a11 + a22 the trace of Oι. An easy way to check this is by means of the
Cayley–Hamilton theorem, which in the case of 2× 2 matrices yields Oι2 + (detOι)I2 =
(trOι)Oι; then, (

Oι+
√

detOι I2
)2

=
(

trOι+ 2
√

detOι
)
Oι,

and (5.9) follows. Furthermore, multiplying (5.9) by Oι−1/2, we easily see that

(5.10) Oι−1/2 =
1

√
detOι

√
trOι+ 2

√
detOι

((
trOι+

√
detOι

)
I2 −Oι

)
.
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Therefore, the antihermitian matrices S(x, t) = Oι−1/2(x, t)Õι(x, t)Oι−1/2(x, t) take in
this case the form

(5.11) S =
1

detOι
(

trOι+ 2
√

detOι
)(c2OιÕι− cOι(OιÕι+ ÕιOι) +OιÕιOι

)
,

with the constant cOι := trOι+
√

detOι.
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